Page 1 of 15

The Junior Woodchuck
Manuel

of

Processing Programming

for

Android Devices

The Image

sketch_janO1b

Junior Woodchuck Manuel for Processing Programming - Version 1
Copyright David Nassar and Jim Roberts, December 2011, Pittsburgh PA

Page 2 of 15

Chapter 6
Almost Home . ..

The Image

Chapter5SecondSectionA

\

First, A Code Cleanup (and review)...

In Chapter 3 we introduced functions that we write and we use. The
function we wrote was named figure() and it drew this:

Junior Woodchuck Manuel for Processing Programming - Version 1
Copyright David Nassar and Jim Roberts, December 2011, Pittsburgh PA

Page 3 of 15

One reason we wrote the figure() function was so we could reuse it to
draw as many figures as we wanted to without having to copy and past
the figure code over and over again. Writing the figure() function let us
draw this image:

O CONCHICH

and keep our draw() function very simple and short:
void draw()

{
// Big Figure
drawFigure();

// Preparation for small figures

w = 80;
h = 80;
y = 580;

// Small Figure - fartherest left
x=50;
drawFigure();

// Small Figure second from left
x =180;
drawFigure();

// Small Figure third from left
x=310;
drawFigure();

// Small Figure fourth from left
X =440;
drawFigure();

}

Junior Woodchuck Manuel for Processing Programming - Version 1
Copyright David Nassar and Jim Roberts, December 2011, Pittsburgh PA

Page 4 of 15

We followed this idea in the code we wrote last time the class met when
we wrote this code:

//Wrap And Bounce void drawWrappingFigure()
//Day 3 App Lab {
//QVHS and MHS £i1ll(0, 0, 200);

ellipse(px, py, 40, 40);

float X, Y, deltaX; lmage (pl pxl py, 30! 30);

float px, py, deltaPy; }

Fimage pi void changeBouncingFigure()
{
id t X = x + deltaX;
zOl setupl) if(x > width) // too far right
size(400, 400); { P
= + .
imageMode (CENTER); //deltaX = deltaX + 2;
noStroke();) deltaX = -deltaX;
p = loadImage("Jim.jpg"); if (x <0) // too far left
{
X = 0; _ .
y = height/2;) deltaX deltaX;
px = width/2;)
py = 0;
deltaX = 3;) _ .
deltaPY = 4; 201d changeWrappingFigure()
' py = py + deltaPY;
! S X N
void draw() ?f (py > height + 40)
{ = - .
prepareScreen();) pY 40;
}

drawBouncingFigure();
drawWrappingFigure();
changeBouncingFigure(
changeWrappingFigure(

}

)i
)i

void prepareScreen()
{
£ill(200, 200, 0, 30);
rect(0, 0, width, height);
}

void drawBouncingFigure()
{
£ill(200, 0, 0);
ellipse(x, y, 33, 22);
}

Junior Woodchuck Manuel for Processing Programming - Version 1
Copyright David Nassar and Jim Roberts, December 2011, Pittsburgh PA

Page 5 of 15

This code draws the following:

(V@) WrapAndBounce

y -

This is how we write and user our own functions. The code in the draw()
function shown below tells Processing exactly what to do. However, these
functions are not defined in Processing’s APl so we have to write the code

that defines (tells Processing how to do) the behavior requested.
void draw()

{

prepareScreen();

drawBouncingFigure();
drawWrappingFigure();
changeBouncingFigure(
changeWrappingFigure(

)i
):

Here are the definitions for two of these functions:

void drawWrappingFigure() void changeBouncingFigure()
{ {
£i11(0, 0, 200); X = X + deltaX;
ellipse(px, py, 40, 40); if(x > width) // too far right
image (p, px, py, 30, 30); {
} //x = 0;
//deltaX = deltaX + 2;
deltaX = -deltaX;
}
if (x <0) // too far left
{
deltaX = -deltaX;

}
}

The syntax that is required is shown in blue. The code in black is up to us.
In our code the parentheses are empty. If you take a “real” programming
course, you will learn how and when to put stuff into the parentheses.
We do not have time to study that part of programming.

Junior Woodchuck Manuel for Processing Programming - Version 1
Copyright David Nassar and Jim Roberts, December 2011, Pittsburgh PA

Page 6 of 15

Compare the other function definitions on page 4 to these two definitions
to see how they are the same and how they are different.

Why do we do this? There are several reasons. One is that it makes the
code we want to write much easier to work with, debug, modify, and
explain to others.

Another thing that we did last time. We have used some variables in the
code that we own.
Here are the variables:

float x, y, deltaX;
float px, py, deltaPy;
PImage p;

Here is how we initialize them in our setup() function:

void setup()

{
size(400, 400);

imageMode(CENTER);

noStroke();

p = loadImage("Jim.Jjpg");
x = 0;

y = height/2;

px = width/2;

py = 0;

deltaX = 3;

deltaPY = 4;

The function calls like imageMode (CENTER) and
loadImage(“Jim. jpg”) are explained in the APIl. Look them up if
you are not sure what they are doing.

You can look at the other function definitions to see how we used these
variables.

Junior Woodchuck Manuel for Processing Programming - Version 1
Copyright David Nassar and Jim Roberts, December 2011, Pittsburgh PA

Page 7 of 15

Why do we do this? You just read this above but here it is again:

It makes the code we want to write much easier to work with, debug,
modify, and explain to others. It also lets our program changes it
behavior as it is running.

We also used some variables owned by Processing. Two of these “many
more” are width and height. These variables are initially 100 and 100. But
when we use the size() function, they have different values. Processing’s
variable width uses the first argument as its value and its variable height
uses the second argument for its value. You can see how we used these
variables in the code below:

//Wrap And Bounce void drawBouncingFigure()
//Day 3 App Lab {
//QVHS and MHS £ill(200, 0, 0);
float x, y, deltaX; ellipse(x, y, 33, 22);
float px, py, deltaPy; }
PImage p;
void drawWrappingFigure()
void setup() {
{ £ill(0, 0, 200);
size(400, 400); ellipse(px, py, 40, 40);
imageMode(CENTER); image (p, px, py, 30, 30);
noStroke(); }
p = loadImage("Jim.Jjpg");
x = 0; void changeBouncingFigure()
y = height/2; {
px = width/2; X = X + deltaX;
py = 0; if(x > width) // too far right
deltaX = 3; {
deltaPY = 4; //x = 0;
} //deltaX = deltaX + 2;
void draw() deltaX = -deltaX;
{ }
prepareScreen();
if (x <0) // too far left
drawBouncingFigure(); {
drawWrappingFigure(); deltaX = -deltaX;
}
changeBouncingFigure(); }
changeWrappingFigure();
} void changeWrappingFigure()
{
void prepareScreen() py = py + deltaPy;
{ if (py > height + 40)
£ill(200, 200, 0O, 30); {
rect(0, 0, width, height); py = -40;
} }
}

Junior Woodchuck Manuel for Processing Programming - Version 1
Copyright David Nassar and Jim Roberts, December 2011, Pittsburgh PA

Page 8 of 15

If we use Processing’s variables like this, then if we change the size of the
window, we do not have to change anything else in our code.

We have just spent 10 pages blathering about something that
programmers call “style”.

You do not have to write functions. You can put all of your code in setup(
) and draw().

You do not have to use variables. You can use numbers everywhere.

This decision in this class is yours.

BUT if you want to be able to quickly fine mistakes, or quickly modify your
program, or reuse to do something related but different, or explain it to

someone else, this style will make you life as a programmer much easier.

And other programmers that might look at your code will have much
greater respect for your work .

Now.. on to some really new stuff. . .

Junior Woodchuck Manuel for Processing Programming - Version 1
Copyright David Nassar and Jim Roberts, December 2011, Pittsburgh PA

Page 9 of 15

Some Really New Stuff...

We have written code that wraps a moving figure and code that bounces
a moving figure. Let’s take the code that wraps a moving figure and add
user control to the movement.

The way we alter the speed and direction of the rect is to alter the values
of the variables deltaX for the ellipse and deltaPY for the picture. It is
possible to do this while the program is running. We saw that last time.
Since we can do that, we can put in some code that will let the user
“drive” the image on the screen.

This question brings us to a new kind of function. Let’s review — we have
seen three kinds of functions:

* Processing writes them and we used them: rect(), fill(), . . .

* We write them and Processing uses them: setup(), draw().

* We write them and we use them: figure(), moveRectFigure(), ...

Let us introduce you to a fourth kind of figure:
* We write it and Processing will use it when the “user does
something”.

Anytime a “user does something” with or to the computer, itis called an
“event”. The typical events happen when the user presses a key or moves
the mouse. There are many different events. We are going to use one
that works with the computer, in the Android emulator, and your Android
device.

The event we are going to use happens when the user drags the mouse
(dragging means that the mouse button is down) or moves their finger on
the Android screen. Here is how we do it.

If we write a function named
mouseDragged()

{
}

Junior Woodchuck Manuel for Processing Programming - Version 1
Copyright David Nassar and Jim Roberts, December 2011, Pittsburgh PA

Page 10 of 15

then whenever the user:
* presses the mouse button and moves the mouse on the computer,
* presses the mouse button and moves the mouse in the emulator, or
* puts and moves their finger on the Android device screen
Processing will use this function.
It must be named exactly as show and the parentheses must be empty.
Inside the braces we can do anything that we want to do.

What we want to do is change the speed of the movement of the rect.

Question, “How do we do that?”

Junior Woodchuck Manuel for Processing Programming - Version 1
Copyright David Nassar and Jim Roberts, December 2011, Pittsburgh PA

Page 11 of 15

Here is one way we might solve this:
* user moves mouse right - horizontal speed increases
e user moves mouse left - horizontal speed decreases

This might work. You may have a better idea but your teacher is writing
this so it will have to do...sigh...

Another Question — “How do we know which way the mouse is moving?”
When we have a problem like this and we are not sure how to do it or we
have never solved a problem like this, a good way to start is to list all of
the data we have (variables) and see what might be helpful.

Let’s see... we have our variables in the code:

float x, y, deltaX;
float px, py, deltaPy;
PImage p;

Which variable or variables do we need to change so we can speed up
and slow down the picture (not the ellipse)? Think about it.

Junior Woodchuck Manuel for Processing Programming - Version 1
Copyright David Nassar and Jim Roberts, December 2011, Pittsburgh PA

Page 12 of 15

Did you really think about it?
deltaPY

This is the variable that controls the speed of the picture. If we change it,
we change the speed of the picture.

Now which Processing variables can we use to help us alter our variables?
width, height, mouseX, mouseY

Again, think about it.

We are working with the vertical movement only — you will work on the
horizontal movement during the next week.

It seems reasonable to check the vertical movement of the mouse. So, we
will use mouseY.

But we only know where the mouse is now (mouseX and mouseY). In order
to know which way the user moved it, we need to know where it was. If
we know where it was, we can compare where it was to where it is and
figure out which way it is moving.

Well, where was it?

It turns out that Processing “remembers” where the mouse was in the
previous frame. Processing stores that information in two other variables
that we can use:

pmouseX and pmouseY
which stands for “Previous Mouse X” and “Previous Mouse Y”.

We know - you are probably thinking, “Is there anything Processing does
not know?”

Great, now a third question — “How do we use these variables?”

We are working with the vertical movement. The vertical movements
should be very similar.

Junior Woodchuck Manuel for Processing Programming - Version 1
Copyright David Nassar and Jim Roberts, December 2011, Pittsburgh PA

Page 13 of 15

If the user is moving the mousedown then the y coordinate of the mouse
would be getting larger from the past frame to the current frame. The top
edge is position zero and the bottom edge is position height or in this

code, 400
void setup()

{
size(400, 800);

so when the user is moving the mouse to the down, mouseY will get
bigger. We need to ask the question, “Is the value of mouseY is getting
bigger?”

Remember that the way we ask questions in Processing is to use the if()
so we can do that with some code like this:
if (mouseY > pmouseY)

{
}

This says in English “If the value of the variable, mouseY is bigger than the
value of the variable, pmouseY” which is what we want to know.

If the answer is true, then we want to increase the value of the variable
deltaPY

How much we increase it is up each of us. We can increase it by a small
amount like 0.1 or by a larger amount like 1, or by a huge amount like 10.

We have to try different values and see what we like. Ideally this value
will be a variable so we can find and change it easily as we tinker and
tune our code. Let’s assume we have a variable named changeAmount and
it is set to a small value like 0.1.

If we do, we can write the code like this:

if (mouseY > pmouseY)

{
deltaPY = deltaPY + changeAmount;

}

Junior Woodchuck Manuel for Processing Programming - Version 1
Copyright David Nassar and Jim Roberts, December 2011, Pittsburgh PA

Page 14 of 15

The new mouseDragged() would look like this:
void mouseDragged ()

{
if (mouseY > pmouseY)
{
deltaPY = deltaPY + changeAmount;
}
}

If the movement upward , we can subtract changeAmount from deltaPY.
This same pattern can be used for the horizontal movement of the mouse.

Remember that you need to add horizontal movement. You will need a

deltaPX variable and you will need add code to the
changeWrappingFigure()
function to create horizontal movement. We leave them for you to write.

On the next page is your teacher’s version of this code. He has left a long
trace on the window so you can see how the movement works.

Junior Woodchuck Manuel for Processing Programming - Version 1
Copyright David Nassar and Jim Roberts, December 2011, Pittsburgh PA

Page 15 of 15

In the Next Exciting Chapter...

We are going to try to put this code together with the functions that
bounce the circle off the edges of the window and use the resulting code
for the basis for a game. You will try to drive the rect around the screen
and collide with the bouncing circle. If you do collide, you will
“dramatize” the collision and increase your score. You will display your
score on the screen and, possibly how long you have been playing the
game.

We will have to figure out how to detect the collision and how to display
text and time the game. We can do that!

So, go back over this and the previous chapters and try to understand the
code. If you do not, write your questions down and bring them to class.

if you have time, look up the distance(), text(), and millis() functions in
the API.

Good programming. . .

Junior Woodchuck Manuel for Processing Programming - Version 1
Copyright David Nassar and Jim Roberts, December 2011, Pittsburgh PA

