
Predicting Sequences of Optimization Passes
using Machine Learning

Ashique Khudabukhsh (khudabukhsh@gmail.com)
Jayant Krishnamurthy (jayantk@cs.cmu.edu)

May 2, 2012

1 Project Description

The performance of code generated from an optimizing compiler depends not
only on the optimizations performed, but also upon their order. However,
it is typically unknown what sequence of optimizations should be applied to
any given input program. This problem is exacerbated by the sheer num-
ber of possible sequences of optimizations, rendering infeasible a brute-force
search for the best possible sequence. Selecting an appropriate sequence of
optimizations is critical to achieving maximum performance in the compiled
program.

Previously, machine learning has been used to predict a high-performance
sequence of optimization passes for a given program or method[1, 2]. How-
ever, for computational tractability, these approaches severely limit the space
of optimization sequences from which the prediction is drawn. In [1], the pre-
dicted optimization sequence must be a modification of an existing, hand-
tuned strategy. In [2], a classifier is trained to predict an entire pass sequence;
since a pass sequence is treated as an atomic unit, the predicted sequences
must be relatively short (as the number of possible sequences grows expo-
nentially in sequence length). As a consequence, these approaches are likely
to find suboptimal optimization sequences, since they explore only a small
subset of the space of optimization sequences.

We propose an alternative formulation of this pass-prediction problem:
our approach independently models the behavior of individual transformation
passes and the performance of compiled object files. The models learned in

1



this fashion can then be composed to predict the performance of a program
when compiled with a sequence of optimizations. As a consequence, our
approach can explore a much larger space of potential optimizations, while
requiring a smaller number of machine learning models.

2 Method

Our optimization pass prediction approach has two phases. During the train-
ing phase, the approach uses sample programs, compiled with various opti-
mizations, to learn the behavior of various compiler passes. This step learns
how individual code transformation passes affect compiled bytecode. Addi-
tionally, we train a model to predict the running time of a program from
its bytecode. This phase models how various aspects of compiled bytecode
affect its running time. During the test phase, the approach predicts a good
sequence of transformations for a given program. This phase performs a
search over possible transformation sequences, using the predictions of the
trained models to guide the search.

2.1 Training

The object of training is to produce two sets of functions, fp ∈ F and g. Each
fp ∈ F represents the expected effect of transformation pass p; we represent
programs as vectors in Rd, hence fp : Rd → Rd. Training produces one
function fp for every possible transformation pass p; for example, we will
learn one function for the p =licm pass, and an independent function for
the p =adce pass. The function g maps program vectors to their expected
running times, i.e., g : Rn → R. This function is independent of any passes.
Both functions are estimated from data, and, during test time, the combined
effect of functions in fp and g is used to evaluate the potential performance
of a sequence of optimizations.

2.1.1 Generating Training Data

Both F and g are produced by training machine learning models on a training
data set. We construct independent training data sets for each fp ∈ F and
g. During this section, we assume access to a set of benchmark programs,
from which all data sets are generated. See Section 3.1 for details on the
benchmark data set.

2



The training data Dp = {(xi, yi)}n
i=1 for pass p consists of tuples of com-

piled programs, (xi, yi), where yi is generated by running pass p on xi 1.
Given a set of benchmark programs, we create an xi for each program by
compiling it without optimizations using LLVM. We then generate yi by
compiling the same program using only optimization pass p.

Training data for the timing function g is generated similarly. This step
aggregates all of the compiled programs generated in the previous step, then
runs each program to estimate its running time. Two data points (xj, tj) ∈ Dt

are created for every (xi, yi) ∈ Dp, one by running xi and one by running
yi. tj is an estimate of xj’s running time in nanoseconds; we estimate tj by
running xj 100 times and taking the mean.

In both cases, the compiled programs xi and yi are converted into feature
vectors, as required by the machine learning algorithms.

2.1.2 Program Representation

Table 1 presents the features used to represent program bytecodes in the
machine learning algorithms. For the instruction count features, we used the
standard LLVM analysis pass instcount and the STATISTIC macro to gather
data. We used a Perl script to parse the output into appropriate format.

In order to compute different features on variable counts, we modified the
code of our homework assignment for Live Variable analysis and parsed the
output using a Perl script into suitable format. For several loop-information-
bases statistics, we modified our function-info code for homework assign-
ment by combining LoopInfo analysis and iterating through the basic blocks
present in each function.

2.1.3 Training Machine Learning Models

The data sets Dp and Dt are used to estimate the functions fp and g. We
experimented with two different machine learning algorithms for estimating
these functions: k-nearest neighbors (KNN) and multivariate linear regres-
sion. However, we found that multivariate linear regression worked poorly
on both tasks. Therefore, this section only describes the application of KNN
to both the program transformation task and the timing prediction task.

1We use superscripts to index training examples, and subscripts to denote standard
vector indexing.

3



Feature Implementation
Number of basic blocks -instcount pass
Number of Alloca instructions
Number of Br instructions
Number of FAdd instructions
Number of FCmp instructions
Number of FDiv instructions
Number of FMul instructions
Number of FPToSI instructions
Number of FSub instructions
Number of Load instructions
Number of Ret instructions
Number of Store instructions
Number of memory instructions
Number of Unreachable instructions
Maximum number of variables in a function Live variable analysis
Maximum number of registers simultaneously live with further modification
Total number of variable
Average depth of a statement inside a loop FunctionInfo with LoopInfo
Maximum loop nesting depth
Percentage of statements contained in some loop

Table 1: Features used to represent the bytecode of compiled programs in
the machine learning models. Each row of the above table is a dimension in
the program’s feature vector.

4



KNN is a simple machine learning algorithm that makes predictions for a
test instance x based on similar instances in the training set D = {(xi, yi)}.
Given the test instance, KNN identifies the k vectors xi1 , ..., xik nearest to x
according to some distance metric. It then returns the average of the labels
for these points as its predictions, i.e., y =

∑
i=i1,...,ik yi. An advantage of

this procedure is that it does not assume a functional form for the prediction
function, and thus is capable of representing extremely complex functions.

2.2 Predicting Pass Sequences

The trained models for predicting the effects of transformation passes (fp ∈
F ) and predicting program running times (g) are combined with a search
procedure to identify good optimization pass sequences. The essential idea
is simple – given a sequence of passes, say p = [p1, p2, ..., pk] and an initial
program x – we can predict the bytecode produced by compiling x with
p by composing fp1 , fp2 , ..., fpk

. We can additionally estimate the running
time of the compiled program using g. Therefore, to identify a good pass
sequence, we simply search over values of p, constructing the final program
and estimating its running time.

One problem with this simple strategy is that the number of passes p
grows exponentially in the length of the pass. Therefore, we use a beam
search to reduce search complexity. This search procedure maintains a list of
the w best sequences found so far. At each step of the search, the algorithm
attempts to extend each sequence by appending another optimization pass to
the end. Each sequence produced in this fashion is evaluated by predicting
the compiled bytecode (using the learned fp functions) and predicting its
running time (using g). The w sequences with the smallest predicted running
times are retained for the next step of the search.

3 Experiments

3.1 Data Set

As our benchmark programs, we use the programs from the Computer Lan-
guage Benchmarks Game 2. These benchmarks are a set of relatively simple

2http://shootout.alioth.debian.org/

5



Distance Metric 1 2 3 4 5 6 7 8 9 10
Minkowski 7.46 7.65 6.47 5.86 5.55 5.51 6.30 10.66 18.82 27.27
Cityblock 4.64 5.72 7.07 7.03 6.99 7.22 7.57 9.62 17.63 23.86
Euclidean 4.91 6.01 7.41 7.97 8.31 8.75 9.38 10.93 18.80 24.92
Chebychev 7.72 10.28 9.17 7.99 8.33 7.89 8.08 15.52 25.05 32.14

Table 2: 10 fold cross-validation results for predicting program running time.

programs, constructed to compare the performance of algorithms across pro-
gramming languages and platforms. An advantage of using this data set
(over, say, SPEC) is that the programs are short; with larger programs, our
simple representation of programs as vectors seems unlikely to accurately
capture the program’s intricacies. This data set can thus be seen as a sanity
check for our approach. If our approach works on this data set, we can con-
ceptually extend it to larger programs by independently predicting feature
vectors for each function in the larger program.

3.2 Parameter Tuning

Broadly, KNN has two parameters – k, the number of neighbors, and the
choice of distance metric. We used 10-fold cross-validation to find suitable
values for these two parameters.

Table 2 shows the cross-validation results for runtime prediction. For
a given entry, the row indicates the distance metric used and the column
indicates the choice of k. Each value is the root-mean-squared error obtained
when predicting running time. Based on this table, we selected k=1 and
Cityblock as the distance metric for runtime prediction.

We did similar experiment to determine the parameters for predicting
intermediate representations. The optimal parameter settings for each pre-
dictor are shown in Table 3. We found that k, when set to 2, consistently
outperformed every other choice of k across every transform pass and any
distance metric. However, for each individual pass, the choice of distance
metric varied. We selected the “Minkowski” distance metric, as it was the
best for a majority of the passes.

3.3 Predicting Pass Sequences

This experiment measures the end-to-end performance of our pass predic-
tion system. We performed leave-one-out cross-validation on the benchmark

6



Pass Best k Best Distance Metric
adce 2 Minkowski
constprop 2 Minkowski
dse 2 Minkowski
indvars 2 Minkowski
inline 2 Euclidean
licm 2 Cityblock
mem2reg 2 Minkowski
sccp 2 Minkowski
tailcallelim 2 Minkowski

Table 3: Optimal KNN parameter settings for predicting intermediate rep-
resentations, per pass.

training set. For each left out program, we used the remaining data to train
both KNN models. We then used these models in the beam search proce-
dure to predict a high-performance sequence of transformation passes for the
left out program. This experiment simulates applying our technique to new
programs.

We perform several versions of this experiment, varying both the length
of the sequence of optimizations and the width w of the beam during beam
search. Table 4 summarizes our results. Each row represents a single program
compiled under 3 conditions, and each entry is the normalized running time
of the program (where the unoptimized program takes unit time). The first
condition is a baseline, LLVM with the -std-compile-opts flag. The next
two pairs of columns represent two conditions for the beam search. Each
pair of columns shows the normalized running time predicted by the machine
learning models along with the true normalized running time for the predicted
optimization pass sequence.

Generally, the results in Table 4 suggest that the default LLVM opti-
mizations are quite competitive with the search procedure. However, there
are a few programs on which the search procedure significantly outperforms
the default optimizations (e.g., binarytrees). We can additionally deter-
mine that larger beam widths and longer optimization sequences improve
the performance of the search procedure. Finally, comparing predicted run-
times with actual runtimes demonstrates that the machine learning models
typically err on the optimistic side.

7



w = 100, l = 10 w = 10, l = 5
Program LLVM Baseline Predicted Actual Predicted Actual
nbody 0.92 0.84 0.92 0.84 1.01
fibo 0.25 0.21 0.24 0.22 0.27
primes 0.89 0.96 1.03 4.39 1.08
algebraic 0.47 0.53 0.60 0.58 2.26
objinst 0.23 0.20 0.23 0.20 0.91
loop 1.10 0.98 1.14 1.06 1.72
echo 0.31 0.18 0.35 0.18 0.27
matrix 0.36 0.31 0.39 0.31 0.35
strcat 1.00 0.00 1.00 0.00 1.00
threadring 1.13 1.08 1.41 1.10 1.09
ary 0.72 0.58 0.67 0.58 0.63
heapsort 1.08 0.74 1.00 0.74 1.10
binarytrees 1.08 0.15 0.62 0.15 0.58
spectralnorm 0.98 0.00 0.99 0.00 1.00
methcall 0.28 0.25 0.28 0.25 0.26
lists 0.71 0.61 0.75 0.61 0.69
harmonic 0.86 0.79 0.97 0.79 1.07
recursive 0.74 0.03 0.52 0.03 0.53
except 0.20 0.22 0.22 0.22 0.89
fannkuch 0.57 0.32 0.33 0.32 0.43
takfp 0.28 0.24 0.33 0.24 0.68
strength 1.28 0.93 0.88 1.02 1.20
fannkuchredux 0.58 0.41 0.61 0.41 0.70
prodcons 0.68 0.49 0.76 0.58 0.72
nestedloop 1.13 0.70 0.79 3.23 0.96
meteor 0.82 0.00 0.94 0.00 0.89
partialsums 0.72 0.02 0.74 0.03 0.86
magicsquares 0.73 0.03 0.81 0.04 0.82
fasta 0.17 0.03 0.05 0.03 0.05
sieve 0.27 0.17 0.20 0.17 0.19
Average 0.68 0.66 0.81

Table 4: Prediction results for the beam search task. Each entry is a normal-
ized running time, where the unoptimized version of the program is assumed
to run in unit time.

8



4 Discussion

Predicting the best performing sequence of optimizations is critical in order
to achieve maximum program performance. We presented a novel machine
learning approach to this task that can predict arbitrary long optimization
sequences. Our results suggest that this procedure works much better than
the default optimizations for some programs, but on average has similar
performance to the default settings.

5 Distribution of Credit

We equally distributed the work for this project. Jayant did the program
timing and beam search, and Ashique generated features and trained the
machine learning models.

References

[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle,
J. Thomson, M. Toussaint, and C. K. I. Williams. Using machine learn-
ing to focus iterative optimization. In Proceedings of the International
Symposium on Code Generation and Optimization, pages 295–305, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[2] R. N. Sanchez, J. N. Amaral, D. Szafron, M. Pirvu, and M. G. Stoodley.
Using machines to learn method-specific compilation strategies. In CGO,
pages 257–266. IEEE, 2011.

9


