
Predicting sequence of parameterized
transform passes using Machine Learning

techniques

Ashique Khudabukhsh (khudabukhsh@gmail.com)
Jayant Krishnamurthy (jayantk@cs.cmu.edu)

March 22, 2012

1 Project Description

The performance of code generated from an optimizing compiler depends not
only on the optimizations performed, but also upon their order. However,
it is typically unknown what sequence of optimizations should be applied
to any given input program. This problem is exacerbated by parametrized
transform passes, where performance depends on the chosen parameter con-
figuration. A bad parameter configuration for such transform can adversely
affect performance. For example, for a given program, a bad parameter con-
figuration for loop unrolling may result in a code that runs slower than the
unoptimized original code. Selecting an appropriate sequence of optimiza-
tions and their parameters is critical to achieving maximum performance in
the compiled program.

Previously, machine learning has been used to predict a high-performance
sequence of optimization passes for a given program or method[1, 2]. How-
ever, for computational tractability, these approaches severely limit the space
of optimization sequences from which the prediction is drawn. In [1], the pre-
dicted optimization sequence must be a modification of an existing, hand-
tuned strategy. In [2], a classifier is trained to predict an entire pass sequence;
since a pass sequence is treated as an atomic unit, the predicted sequences
must be relatively short (since the number of sequences grows exponentially
in sequence length). As a consequence, these approaches are likely to find

1



suboptimal optimization sequences, since they explore only a small subset of
the space of optimization sequences.

We propose to explore using machine learning to determine high-performance
optimization sequences and parameters. Our approach is designed to be more
scalable than previous approaches, and as a consequence will allow us to
search longer sequences of optimizations. Ideally, this increased exploration
will result in better compiled program performance.

We compute the overall effect of a sequence of passes in the following
manner. For a given feature vector of code and a transform pass, we learn a
model to predict the feature vector of the resulting code after applying the
pass. For our first pass in the sequence, we start with the feature vector of our
original, unoptimized code as input. For each subsequent pass, we treat the
resulting intermediate feature vector obtained in previous step as input. This
gives us the freedom to create a sequence of passes of arbitrary length. We
also learn a model to predict the speedup factor of an intermediate feature
vector. By using these two models, we can apply beam search to search
through a large space of sequence of passes.

2 Goals

• 75 percent goal: Implement code to extract features from programs
and measure program performance with different optimizations and
parameter settings. Learn models to predict intermediate feature vec-
tors and speedup factor. Evaluate performance of models (accuracy of
intermediate code representations and running time predictions).

• 100 percent goal: Compare approach to prior work. Demonstrate that
increased exploration ability improves program performance.

• 125 percent goal: Explore other search options. One possible direc-
tion is to use Iterative-Local-Search based parameter optimization tools
such as ParamILS to predict globally efficient sequences.

3 Proposed Schedule

• March 26th - April 9th: Get SPEC benchmarks, write code to apply
various optimizations to each program, storing the resulting compiled

2



code and measuring resulting performance.

• April 9th - April 19th: Implement machine learning models. This
includes generating program features and trying several prediction al-
gorithms (e.g., multiple regression, nearest neighbor).

• Milestone: Demonstrate preliminary prediction results for both inter-
mediate program representations and program runtime.

• April 19th - May 2nd: Tune learned models to improve prediction
accuracy. Compare learned models with prior work.

Project Webpage: http://www.cs.cmu.edu/~jayantk/15745/

4 Resources

Our project will be implemented using LLVM and our evaluation will use
the SPEC benchmarks.

References

[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle,
J. Thomson, M. Toussaint, and C. K. I. Williams. Using machine learn-
ing to focus iterative optimization. In Proceedings of the International
Symposium on Code Generation and Optimization, pages 295–305, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[2] R. N. Sanchez, J. N. Amaral, D. Szafron, M. Pirvu, and M. G. Stoodley.
Using machines to learn method-specific compilation strategies. In CGO,
pages 257–266. IEEE, 2011.

3


