#### Real-Time Motion Planning and Safe Navigation in Dynamic Multi-Robot Environments

James Robert Bruce CMU-CS-06-181 December 15, 2006

School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213

#### Thesis Committee:

Manuela Veloso, Chair Avrim Blum James Kuffner Tony Stentz Lydia Kavraki (Rice University)

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Copyright © 2006 James Robert Bruce

This research was sponsored in part by United States Grants Nos. DABT63-99-1-0013, F30602-98-2-0135, F30602-97-2-0250, and NBCH-1040007. It was also supported by Rockwell Scientific Co., LLC under subcontract No. B4U528968 and prime contract No. W911W6-04-C-0058 with the US Army. The views and conclusions contained herein are those of the author, and do not necessarily reflect the position or policy of the sponsoring institutions, and no official endorsement should be inferred.

**Keywords:** Robotics, Robot Navigation, Motion Planning, Path Planning, Multi-Robot Systems, Robotic Soccer

### Abstract

All mobile robots share the need to navigate, creating the problem of motion planning. In multi-robot domains with agents acting in parallel, highly complex and unpredictable dynamics can arise. This leads to the need for navigation calculations to be carried out within tight time constraints, so that they can be applied before the dynamics of the environment make the calculated answer obsolete. At the same time, we want the robots to navigate robustly and operate safely without collisions. While motion planning has been used for high level robot navigation, or limited to semi-static or single-robot domains, it has often been dismissed for the real-time low-level control of agents due to the limited computational time and the unpredictable dynamics. Many robots now rely on local reactive methods for immediate control of the robot, but if the reason for avoiding motion planning is execution speed, the answer is to find planners that can meet this requirement. Recent advances in traditional path planning algorithms may offer hope in resolving this type of scalability, if they can be adapted to deal with the specific problems and constraints mobile robots face. Also, in order to maintain safety, new scalable methods for maintaining collision avoidance among multiple robots are needed in order to free motion planners from the "curse of dimensionality" when considering the safety of multiple robots with realistic physical dynamics constraints. This thesis contributes the pairing of real-time motion planning which builds on existing modern path planners, and a novel cooperative dynamics safety algorithm for high speed navigation of multiple agents in dynamic domains. It also explores near real-time kinematically limited motion planning for more complex environments. The thesis algorithms have been fully implemented and tested with success on multiple real robot platforms.

## Acknowledgements

First, I would like to thank my parents for supporting and guiding me as a student and as a son. I would like to thank my advisor, Manuela Veloso for her support of my research since 1998, picking up where my undergraduate education left off. Through much of my time at Carnegie Mellon, I would like to thank Scott Lenser, for always lending an ear for a problem research related or otherwise. The lab hasn't been the same since you left. I am indebted as well to all the members of our RoboCup teams past and present, for coming together to define a collective domain for pushing research which is much greater than the sum of its parts. Particular members who have helped me since I began my work include Mike Bowling, Brett Browning, Tucker Balch, Jennifer Lin, Dinesh Govindaraju, Mike Licitra, and Stefan Zickler. Without your work the teams never would have made it. I would like to thank other fellow lab members for our other collaborations, as well as the willingness to listen to me while I stood in front of a whiteboard to expound on a problem. Douglas Vail, Sonia Chernova, and Colin McMillen have best helped fill that role.

I am also indebted to particular research groups for supporting various aspects of my work. I would like to thank Masahiro Fujita for supporting an internship at Sony Corporation which allowed to explore planning on the QRIO platform. I would like to thank Tadashi Naruse, all his students (in particular Shinya Hibino) of Aichi Prefectural University for keeping our RoboCup project alive with their offer of joint collaboration and hosting me for RoboCup 2005. Most recently, I would like the thank the members of the ACO project from Rockwell Scientific for supporting my research work on complex kinematic planners.

## **Table of Contents**

| 1 | T 4          |
|---|--------------|
| T | Introduction |
|   |              |

 $\mathbf{2}$ 

| 1.1 | Navigation                             | 23 |
|-----|----------------------------------------|----|
| 1.2 | Dynamics                               | 24 |
| 1.3 | Problem Definitions                    | 26 |
|     | 1.3.1 Motion Planning                  | 26 |
|     | 1.3.2 Cooperative Safety               | 28 |
|     | 1.3.3 Complicating Factors             | 29 |
| 1.4 | Existing Approaches to Motion Planning | 29 |
| 1.5 | Approach and Thesis                    | 33 |
| 1.6 | Thesis Contributions                   | 36 |
| 1.7 | Guide to the Thesis                    | 38 |
| Doi | mains                                  | 39 |

 $\mathbf{23}$ 

|   | 2.2 | Fixed    | Wing UAV                                         | 42 |
|---|-----|----------|--------------------------------------------------|----|
|   | 2.3 | QRIO     | Humanoid Robot                                   | 44 |
|   | 2.4 | Summ     | ary of Domains                                   | 46 |
| 3 | Col | lision 1 | Detection                                        | 49 |
|   |     | 3.0.1    | Contributions of this Chapter                    | 50 |
|   | 3.1 | Existin  | ng Approaches to Broad-Phase Collision Detection | 51 |
|   |     | 3.1.1    | Coordinate Sorting and Sweep-and-Prune           | 51 |
|   |     | 3.1.2    | Spatial Hashing                                  | 52 |
|   |     | 3.1.3    | Spatial Partitioning Trees                       | 53 |
|   |     | 3.1.4    | Hierarchical Bounding Volumes                    | 55 |
|   | 3.2 | Appro    | each to Collision Checking                       | 55 |
|   |     | 3.2.1    | Extent Masks                                     | 55 |
|   |     | 3.2.2    | Heuristically Balanced AABB tree                 | 59 |
|   |     | 3.2.3    | Narrow-Phase Collision Checking                  | 62 |
|   |     | 3.2.4    | Performance Measurement                          | 65 |
|   | 3.3 | Summ     | ary                                              | 70 |
| 4 | Mot | tion P   | lanning                                          | 71 |
|   | 4.1 | Appro    | ach                                              | 71 |
|   |     | 4.1.1    | Contributions of this Chapter                    | 72 |

| 4.2  | Existi | ng Planning Methods                                                   | 73  |
|------|--------|-----------------------------------------------------------------------|-----|
|      | 4.2.1  | RRT Algorithm in Detail                                               | 73  |
|      | 4.2.2  | PRM Algorithm in Detail                                               | 74  |
| 4.3  | Execu  | tion Extended RRT (ERRT)                                              | 76  |
|      | 4.3.1  | Testing ERRT for RoboCup                                              | 79  |
|      | 4.3.2  | Conclusions in Applying ERRT to Soccer Robot Navigation $\ . \ . \ .$ | 82  |
|      | 4.3.3  | Exploring waypoint Cache Replacement Strategies                       | 84  |
|      | 4.3.4  | Bidirectional Multi-Bridge ERRT                                       | 85  |
|      | 4.3.5  | Comparing ERRT with the Visibility Graph in 2D                        | 89  |
| 4.4  | Dynar  | mic PRM                                                               | 93  |
| 4.5  | The A  | bstract Domain Interface                                              | 97  |
| 4.6  | Practi | cal Issues in Planning                                                | 99  |
|      | 4.6.1  | Simple General Path Smoothing                                         | 99  |
|      | 4.6.2  | Robust Planning                                                       | 99  |
| 4.7  | Applie | cations                                                               | 101 |
|      | 4.7.1  | Fixed Wing UAV                                                        | 101 |
|      | 4.7.2  | QRIO Humanoid Robot Planner                                           | 105 |
| Safe | - Navi | gation                                                                | 109 |
| Sar  |        | Barron                                                                | 100 |
|      | 5.0.3  | Contributions of this Chapter                                         | 109 |

 $\mathbf{5}$ 

|   | 5.1                 | Robot                                                                                                                                               | Model                                                                                   | 110                                                                                                                             |
|---|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|   | 5.2                 | The D                                                                                                                                               | ynamic Window Approach                                                                  | 114                                                                                                                             |
|   | 5.3                 | Dynan                                                                                                                                               | nics Safety Search                                                                      | 116                                                                                                                             |
|   | 5.4                 | Guara                                                                                                                                               | ntee of Safety                                                                          | 124                                                                                                                             |
|   | 5.5                 | Impro                                                                                                                                               | ving Efficiency                                                                         | 126                                                                                                                             |
|   | 5.6                 | Evalua                                                                                                                                              | ation and Results                                                                       | 128                                                                                                                             |
|   |                     | 5.6.1                                                                                                                                               | Simulation Evaluation                                                                   | 128                                                                                                                             |
|   |                     | 5.6.2                                                                                                                                               | Real Robot Evaluation                                                                   | 134                                                                                                                             |
|   | 5.7                 | Conclu                                                                                                                                              | usion                                                                                   | 137                                                                                                                             |
|   |                     |                                                                                                                                                     |                                                                                         |                                                                                                                                 |
| c | D.1                 |                                                                                                                                                     | 71                                                                                      | 190                                                                                                                             |
| 6 | Rela                | ated W                                                                                                                                              | Vork                                                                                    | 139                                                                                                                             |
| 6 | <b>Rel</b> a<br>6.1 | ated W<br>Motion                                                                                                                                    | Vork<br>n Planning                                                                      | <b>139</b><br>139                                                                                                               |
| 6 | <b>Rela</b><br>6.1  | ated W<br>Motion<br>6.1.1                                                                                                                           | Vork         n Planning         Scope and Categorization                                | <ul><li><b>139</b></li><li>139</li><li>140</li></ul>                                                                            |
| 6 | <b>Rel</b> a<br>6.1 | ated W<br>Motion<br>6.1.1<br>6.1.2                                                                                                                  | Vork         n Planning         Scope and Categorization         Graph and Grid Methods | <ul><li><b>139</b></li><li>139</li><li>140</li><li>141</li></ul>                                                                |
| 6 | <b>Rel</b> :        | Motion<br>6.1.1<br>6.1.2<br>6.1.3                                                                                                                   | Vork         n Planning                                                                 | <ul> <li>139</li> <li>139</li> <li>140</li> <li>141</li> <li>143</li> </ul>                                                     |
| 6 | <b>Rel</b> <i>i</i> | <ul> <li>ated W</li> <li>Motion</li> <li>6.1.1</li> <li>6.1.2</li> <li>6.1.3</li> <li>6.1.4</li> </ul>                                              | Work         n Planning                                                                 | <ul> <li>139</li> <li>139</li> <li>140</li> <li>141</li> <li>143</li> <li>143</li> </ul>                                        |
| 6 | <b>Rel</b> <i>i</i> | Motion<br>6.1.1<br>6.1.2<br>6.1.3<br>6.1.4<br>6.1.5                                                                                                 | Vork         n Planning                                                                 | <ul> <li>139</li> <li>139</li> <li>140</li> <li>141</li> <li>143</li> <li>143</li> <li>144</li> </ul>                           |
| 6 | <b>Rel</b> <i>i</i> | <ul> <li>ated W</li> <li>Motion</li> <li>6.1.1</li> <li>6.1.2</li> <li>6.1.3</li> <li>6.1.4</li> <li>6.1.5</li> <li>6.1.6</li> </ul>                | Vork         n Planning                                                                 | <ul> <li>139</li> <li>139</li> <li>140</li> <li>141</li> <li>143</li> <li>143</li> <li>144</li> <li>145</li> </ul>              |
| 6 | <b>Rel</b> <i>i</i> | <ul> <li>ated W</li> <li>Motion</li> <li>6.1.1</li> <li>6.1.2</li> <li>6.1.3</li> <li>6.1.4</li> <li>6.1.5</li> <li>6.1.6</li> <li>6.1.7</li> </ul> | Vork         n Planning                                                                 | <ul> <li>139</li> <li>139</li> <li>140</li> <li>141</li> <li>143</li> <li>143</li> <li>144</li> <li>145</li> <li>147</li> </ul> |

|   |     | 6.1.9   | Randomized Forward Planners            | 150 |
|---|-----|---------|----------------------------------------|-----|
|   | 6.2 | Safety  | Methods                                | 151 |
|   |     | 6.2.1   | Dynamic Window                         | 151 |
|   | 6.3 | Algori  | thm Summary                            | 151 |
| A | Mac | chine V | Vision for Navigation                  | 153 |
|   | A.1 | CMVis   | sion: The Color Machine Vision Library | 154 |
|   |     | A.1.1   | Color Image Segmentation               | 154 |
|   |     | A.1.2   | Color Spaces                           | 155 |
|   |     | A.1.3   | Thresholding                           | 158 |
|   |     | A.1.4   | Connected Regions                      | 160 |
|   |     | A.1.5   | Extracting Region Information          | 162 |
|   |     | A.1.6   | Density-Based Region Merging           | 162 |
|   |     | A.1.7   | Performance                            | 163 |
|   |     | A.1.8   | Summary of the CMVision Library        | 164 |
|   | A.2 | Patter  | n Detection                            | 164 |
|   |     | A.2.1   | Single Patches                         | 167 |
|   |     | A.2.2   | Patterns and Detection                 | 170 |
|   |     | A.2.3   | Pattern Comparison                     | 173 |
|   |     | A.2.4   | Summary of Pattern Vision              | 176 |

| В | The | CMDragons Multi-Robot System                  | 179 |
|---|-----|-----------------------------------------------|-----|
|   | B.1 | Software Overview                             | 182 |
|   | B.2 | Robot Hardware                                | 183 |
|   | B.3 | Robot Model                                   | 185 |
|   | B.4 | Motion Control                                | 186 |
|   | B.5 | Objective Assignment for Multi-Robot Planning | 188 |
|   | B.6 | One-touch Ball Control                        | 193 |
|   | B.7 | Summary and Results                           | 195 |

# List of Figures

| 1.1 | A qualitative comparison of the level of domain dynamics targeted by the design of various motion planning algorithms.                                                  | 33 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.2 | A qualitative explanation of planning challenges, plotting problem difficulty against the time used for a hypothetical planning algorithm.                              | 34 |
| 1.3 | A hypothetical comparison of two algorithms under a given timing constraint (A), and a difficulty constraint (B)                                                        | 34 |
| 2.1 | Several platforms used in navigational research. These include RoboCup small-size league soccer (left), a fixed wing UAV (center), and the QRIO humanoid robot (right). | 39 |
| 2.2 | The dimensions of the current RoboCup small-size field                                                                                                                  | 40 |
| 2.3 | Two teams are shown playing soccer in the RoboCup small size league                                                                                                     | 41 |
| 2.4 | Five generations of Carnegie Mellon robots: (from left) 1997, 1998-99, 2001, 2002-03, 2006                                                                              | 42 |
| 2.5 | A robot on the left finds a path to a goal on the right using the ERRT algorithm.                                                                                       | 43 |
| 2.6 | A kinodynamicly-limited search tree (left), and the corresponding simplified plan (right) for the UAV. The plan length is approximately 13km long                       | 45 |

| 2.7  | The Sony QRIO robot (left), and a stereo generated occupancy grid environ-<br>ment map (right). | 46 |
|------|-------------------------------------------------------------------------------------------------|----|
| 2.8  | QRIO on top of an autonomously reached step obstacle                                            | 47 |
| 3.1  | Examples of KD and BSP spatial partitioning trees                                               | 54 |
| 3.2  | Examples of several space partitioning hierarchies                                              | 57 |
| 3.3  | Example environment with the corresponding projected extent masks $\ . \ . \ .$                 | 58 |
| 3.4  | Two broad-phase bounding box checks using projected extent masks                                | 58 |
| 3.5  | Example swept circle obstacle check using only distance queries                                 | 63 |
| 3.6  | The first levels of bounding boxes on a terrain K-D tree                                        | 65 |
| 3.7  | Nodes expanded on an example terrain distance query                                             | 66 |
| 3.8  | Two domains with 64 obstacles used as collision checking benchmarks. $\ . \ .$                  | 67 |
| 3.9  | Collision query time distribution with 64 circular obstacles                                    | 68 |
| 3.10 | Scaling of collision queries with obstacles for extent masks                                    | 68 |
| 3.11 | Scaling of collision queries with obstacles for AABB tree                                       | 69 |
| 3.12 | Scaling of collision queries with obstacles for a linear array                                  | 69 |
|      |                                                                                                 |    |

| 4.2  | The effect of waypoints. The lines shows the sorted planning times for 2670 plans with and without waypoints, sorted by time to show the cumulative performance distribution. The red line shows performance without waypoints, while the blue line shows performance with waypoints (Waypoints=50, p[Waypoint]=0.4). | 80  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.3  | Planning times vs. number of nodes expanded with and without a KD-tree for nearest neighbor lookup. The KD-tree improves performance, with the gap increasing with the number of nodes due to its expected complexity advantage $(E[O(\log (n))] \text{ vs. } E[O(n)]$ for the naive version)                         | 83  |
| 4.4  | Comparison of several waypoint cache replacements strategies while varying the waypoint cache selection probability.                                                                                                                                                                                                  | 85  |
| 4.5  | The effect of repeated extensions in ERRT on plan length                                                                                                                                                                                                                                                              | 87  |
| 4.6  | The effect of multiple connection points in ERRT on plan length                                                                                                                                                                                                                                                       | 88  |
| 4.7  | Environments used for benchmarking planners.                                                                                                                                                                                                                                                                          | 90  |
| 4.8  | A comparison of ERRT with the visibility graph method across several 2D domains.                                                                                                                                                                                                                                      | 92  |
| 4.9  | Dynamic PRM connection technique, using radial direction sampling. The sampled directions (left) and the resulting roadmap (right) are shown                                                                                                                                                                          | 95  |
| 4.10 | The test domain for interactive and benchmark testing of Dynamic PRM                                                                                                                                                                                                                                                  | 96  |
| 4.11 | Path smoothing using the leader-follower approach                                                                                                                                                                                                                                                                     | 100 |
| 4.12 | An example of a specially handled collision check when the initial position<br>is partially penetrating an obstacle. The collision check is handled in two<br>segments                                                                                                                                                | 101 |

| 4.13 | A kinodynamicly-limited search tree (left), and the corresponding simplified plan (right) for the UAV. The plan length is approximately 11km with way-points every 100m. Obstacle clearance is shown as a translucent tunnel                                                                                             | 102 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.14 | An example of limiting Kinematics for the RRT extend operator                                                                                                                                                                                                                                                            | 103 |
| 4.15 | An example of a goal updating dynamically during search to try to maintain<br>a tangent constraint. The original tangent, shown dotted (left), is updated as<br>a the ERRT search tree expands (right).                                                                                                                  | 104 |
| 4.16 | Two examples of the fly-to-orbit capability of the UAV planner. $\hdots$                                                                                                                                                                                                                                                 | 104 |
| 4.17 | An occupancy grid and its distance transform                                                                                                                                                                                                                                                                             | 106 |
| 4.18 | QRIO on top of an autonomously reached step obstacle                                                                                                                                                                                                                                                                     | 107 |
| 5.1  | Drive layout for a CMDragons holonomic robot with four omni-directional wheels (left), and a picture of a partially assembled robot (right).                                                                                                                                                                             | 111 |
| 5.2  | The model of $A(v)$ used in applying DSS to small-size soccer robots. $F$ is the maximum acceleration and $D$ is maximum deceleration. It is oriented by the current velocity $v$ .                                                                                                                                      | 113 |
| 5.3  | Example environment shown in world space and velocity space. Note that this figure is hand-drawn and thus only approximate                                                                                                                                                                                               | 115 |
| 5.4  | An example of an iteration of DSS with two agents. Each agent starts by assuming it will stop (a), and then each agent chooses an action (b)-(c), while making sure the action will allow a safe stop afterward. Finally, the actions are executed (d) and the agents can safely assume that stopping is a valid action. | 121 |
| 5.5  | Example velocity profile of two agents $i$ and $j$ . Each agent starts at a distinct velocity and executes a control acceleration for time $C$ , and then comes to a stop using deceleration $D$ . This defines three segments of relative motion, each with a constant acceleration                                     | 107 |
|      | each with a constant acceleration.                                                                                                                                                                                                                                                                                       | 121 |

| 5.6  | An example situation showing n agents with $\Omega(n^2)$ overlapping trajectories.                                                                                                                                                                                                   | 128 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.7  | The evaluation environment for the DSS algorithm                                                                                                                                                                                                                                     | 129 |
| 5.8  | Multiple robots navigating traversals in parallel. The outlined circles and lines extending from the robots represent the chosen command followed by a maximum rate stop.                                                                                                            | 130 |
| 5.9  | Comparison of navigation with and without safety search. Safety search sig-<br>nificantly decreases the metric of interpenetration depth multiplied by time<br>of interpenetration.                                                                                                  | 132 |
| 5.10 | Comparison of several margins under increasing vision error. The four differ-<br>ent margins used are listed in the key, while increasing vision standard devia-<br>tion is plotted against the collision metric of interpenetration depth multiplied<br>by time of interpenetration | 133 |
| 5.11 | Average execution time of safety search for each agent, as the total number<br>of agents increases. For each robot count, 100 trials of the left-right traversal<br>task were run. Both the raw data and means are shown.                                                            | 135 |
| 5.12 | A sequence captured while running DSS with four CMDragons robots. All agents completed their 2.8m traversal within 3.1 seconds.                                                                                                                                                      | 135 |
| 5.13 | A sequence captured while running DSS with four CMDragons robots and five small static obstacles. All agents completed their 2.8m traversal within 2.8 seconds.                                                                                                                      | 136 |
| 6.1  | Algorithm steps in RRT                                                                                                                                                                                                                                                               | 144 |
| 6.2  | Example Growth of RRT                                                                                                                                                                                                                                                                | 145 |
| 6.3  | RRT extensions with obstacles                                                                                                                                                                                                                                                        | 146 |
| 6.4  | RRT as a motion planner                                                                                                                                                                                                                                                              | 147 |

| 6.5  | Uniformly Sampled PRM Example                                                                                                                                                                                                                                                                                      | 147 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| A.1  | A video image and its YUV color classified result                                                                                                                                                                                                                                                                  | 156 |
| A.2  | A YUV histogram with a threshold defined                                                                                                                                                                                                                                                                           | 157 |
| A.3  | A 3D region of the color space represented as a combination of 1D binary functions.                                                                                                                                                                                                                                | 159 |
| A.4  | An example of how runs are grouped into regions                                                                                                                                                                                                                                                                    | 161 |
| A.5  | The CMDragons'02 Robots. More recent robots use use the same marker pattern                                                                                                                                                                                                                                        | 165 |
| A.6  | Aggregate error distribution for all samples including all three patch diame-<br>ters. This is actual data collected from the vision system.                                                                                                                                                                       | 168 |
| A.7  | Cumulative distributions of absolute error. Note that patch size does not have a large effect on error. Along the direction of travel, the largest patch size decreases error somewhat, but does worse than the smallest patch size perpendicular to the direction of travel.                                      | 169 |
| A.8  | Examples of common tracking patterns from the RoboCup F180 environment.                                                                                                                                                                                                                                            | 170 |
| A.9  | Comparison of the positional and angular error of different patterns as the er-<br>ror of individual patches vary. For relatively small patch standard deviations,<br>a linear relationship exists between the two, although the number of patches<br>and layout of the pattern vary the factor.                   | 175 |
| A.10 | 2D scatter plots of adjacent readings for single patches (top) and for a full<br>Butterfly pattern (bottom). Uncorrelated readings would show up as a circular<br>2D Gaussian cloud. Note the structure in the plot for a single patch, and the<br>unstructured but non-circular distribution for the full pattern | 177 |

| 181 |
|-----|
| 182 |
| 183 |
| 184 |
| 185 |
| 187 |
| 190 |
| 192 |
| 193 |
|     |

## List of Tables

| 1.1 | A generic motion planning and replanning algorithm                                                                       | 30 |
|-----|--------------------------------------------------------------------------------------------------------------------------|----|
| 1.2 | Guide to the thesis                                                                                                      | 38 |
| 2.1 | A summary of the planning properties of several real robot domains                                                       | 46 |
| 3.1 | Algorithm for constructing and using a basic spatial hash table                                                          | 53 |
| 3.2 | Algorithm for building a spatial tree with per-node bounding boxes $\ldots$ .                                            | 56 |
| 3.3 | Algorithm for checking a spatial tree with per-node bounding boxes $\ldots$ .                                            | 58 |
| 3.4 | Algorithm for building a mask signal                                                                                     | 60 |
| 3.5 | Algorithm for querying a mask signal                                                                                     | 61 |
| 3.6 | Our method to evaluate a splitting plane for building a hierarchical bounding box representation for collision checking. | 61 |
| 3.7 | Algorithm for checking a swept query based on distance                                                                   | 64 |
| 4.1 | The basic RRT planner stochastically expands its search tree to the goal or to a random state.                           | 75 |
| 4.2 | A basic implementation of a PRM planner                                                                                  | 77 |

| 4.3 | The code for a one-shot PRM planner                                                                                                                       | 78  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.4 | The extended RRT planner chooses stochastically between expanding its search tree to the goal, to a random state, or to a waypoint cache                  | 78  |
| 4.5 | The parameter values for ERRT used in the benchmark experiment                                                                                            | 89  |
| 4.6 | A comparison of ERRT with the visibility graph method across several 2D domains.                                                                          | 91  |
| 4.7 | A comparison of performance of Dynamic PRM with various approaches for<br>roadmap connection.                                                             | 97  |
| 5.1 | The Dynamic Window method for a single agent                                                                                                              | 116 |
| 5.2 | A comparison of properties of Dynamic Window, explicit planning, and Dy-<br>namics Safety Search                                                          | 117 |
| 5.3 | The high level search routines for velocity-space safety search                                                                                           | 118 |
| 5.4 | Robot-robot checking primitive for safety search                                                                                                          | 122 |
| 5.5 | The parabolic trajectory segment check.                                                                                                                   | 123 |
| 6.1 | Comparison of related planning algorithms                                                                                                                 | 152 |
| A.1 | Performance of the CMV ision low-level color vision library at various resolutions                                                                        | 163 |
| A.2 | The estimated standard deviations and $95\%$ confidence intervals by patch size.                                                                          | 170 |
| A.3 | The number of uniquely identifiable patterns that can be detected using a certain number of colors (excluding the key patch and key patch color) $\ldots$ | 172 |
| B.1 | Results of RoboCup small-size competitions for CMDragons from 2001-2006                                                                                   | 195 |