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Abstract

All mobile robots share the need to navigate, creating the problem of motion planning.
In multi-robot domains with agents acting in parallel, highly complex and unpredictable
dynamics can arise. This leads to the need for navigation calculations to be carried out within
tight time constraints, so that they can be applied before the dynamics of the environment
make the calculated answer obsolete. At the same time, we want the robots to navigate
robustly and operate safely without collisions. While motion planning has been used for
high level robot navigation, or limited to semi-static or single-robot domains, it has often
been dismissed for the real-time low-level control of agents due to the limited computational
time and the unpredictable dynamics. Many robots now rely on local reactive methods for
immediate control of the robot, but if the reason for avoiding motion planning is execution
speed, the answer is to find planners that can meet this requirement. Recent advances in
traditional path planning algorithms may offer hope in resolving this type of scalability,
if they can be adapted to deal with the specific problems and constraints mobile robots
face. Also, in order to maintain safety, new scalable methods for maintaining collision
avoidance among multiple robots are needed in order to free motion planners from the “curse
of dimensionality” when considering the safety of multiple robots with realistic physical
dynamics constraints. This thesis contributes the pairing of real-time motion planning which
builds on existing modern path planners, and a novel cooperative dynamics safety algorithm
for high speed navigation of multiple agents in dynamic domains. It also explores near
real-time kinematically limited motion planning for more complex environments. The thesis
algorithms have been fully implemented and tested with success on multiple real robot
platforms.
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