
Chapter 1

Introduction

1.1 Navigation

Navigation is a problem as old as autonomous mobile robotics itself. As soon as a robot can
move on its own, it must figure out how to move to carry out its objectives or goals. More
generally, a robotic or virtual agent will face the problems of motion control and constrained
navigation in order to move successfully in an environment. These problems involve finding
trajectories through a state-space from one world configuration to another configuration
which satisfies some goal criteria. Finding such trajectories is referred to as motion planning.
Two examples from robotics would be navigation from a robot’s current location to some
specified goal, or starting from the current robot state and reaching a configuration which
is safe with respect to moving obstacles. A critical aspect of motion planning is that it can
use simulated actions to evaluate possible trajectories in trying to solve a given problem. It
can use this ability to find global solutions which fully solve a problem, whereas an approach
using only immediate state information (without action simulation) may get locally “stuck”
and fail to find a global solution. The motion planning approach depends on two important
properties of the agent and its planner. The first is that the agent has some model of its
environment or world state, while the second is that the agent has a model of what its actions
do insofar as they affect the world state. Taken together, this allows an agent to predict the
result of an action within the environment without actually executing that action, and use
this as a primitive to build a motion planner for solving navigational problems.

An important subcategory of autonomous agents are mobile robots, which are free to move
around an environment using a locomotive device such as wheels or legs. While an important

23



ability, this mobility significantly complicates the modelling of the environment and the
effects of actions. Most stationary articulated robots can have precomputed models of their
working area given to them, while mobile robots normally have to rely on perception to
create such a model. Thus mobile robots traditionally were relegated to immediate one-step
planning or reactive methods due to the minimal observability offered by sensors. Recent
work, particularly with networked sensors and map-building, has allowed mobile robots to
gain much better models of their environment, beyond what the sensors can detect at any
given time. However, many mobile robots still rely on a reactive layer for local navigation
of obstacles, relying only on the current state of the world and mapping it directly to an
action. Improved world and action models mean there is an opportunity to use motion
planning directly on top of robot control layers. A navigation system employing planning
will, however, have to deal with the biggest issues facing mobile robots: The environment
can change over time.

1.2 Dynamics

Dynamics is a key issue in navigation for mobile robots in partially structured environments,
or more generally for navigation in a multi-agent system lacking explicit coordination. As
considered in this thesis, dynamics can be split in agent dynamics and domain dynamics:

• Agent dynamics involve the effects of classical physics on the agent itself, resulting in
the kinematic and dynamic limitations on the agent which may have to be considered
for solving navigation problems. Other remaining differential processes on the agent
apply as well, such as electrical and energy storage properties, although the example
domains used in this thesis are primarily constrained by classical physics properties.
Dynamics constraints limit the acceptable values for derivatives of an agent’s position
over time, while Kinematic constraints which limit motion along submanifolds of the
configuration space. The combined set of constraints are referred to as kinodynamic
constraints. Kinematic limitations apply at any speed, while dynamics constraints be-
come steadily more important as an agent operates at higher speeds. Robot design
cannot escape all agent dynamics issues, as even a holonomic robot lacking any kine-
matic constraints will face some form of dynamics limitations, and in particular bounds
on acceleration and velocity. Thus dynamics limitations are a nearly universal issue
for mobile agents.

• Domain dynamics involve changes in the problem instance as an agent operates.
One cause of such dynamics are changes to the environment. An environment where

24



an agent operates alone, and obstacles do not change position can be said to be static.
An environment where other agents operate, or where obstacles change over time, or
even both, can thus be said to be dynamic. Environmental changes can result from
classical physics, such as with a moving obstacle acting under known forces. However
they can also be driven by other factors, such as discovery of previously unknown
obstacles, or updated positions for existing obstacles caused by unmodelled outside
influences. Additionally, Domain dynamics can also result from changes in the goal
specification over time. This could be due to a higher layer (such as a task-oriented
behavior using navigation as a primitive), or because the goal is specified in a dynamic
fashion (such as a robot tasked with following another agent).

Another way of classifying overall dynamics into categories is to split based on predictable
properties versus unpredictable properties:

• Predictable dynamics involve aspects that can be accurately modelled, such as
classical physics involving acceleration, velocity, and forces. It can also describe domain
changes which evolve in a known fashion over time, such as an obstacle which follows
a known trajectory (even if the forces which drive it are unknown.)

• Unpredictable dynamics involve aspects that are not modelled, such as alteration
of the problem instance by other agents, humans, or exceptional events. Unpredictable
dynamics can also describe the gathering of additional information which alters and
updates the agent’s environment model, even if there was no change to the domain
itself. Finally, unmodelled errors in the robot’s actions or sensors can also contribute
unpredictable dynamics since they alter the problem instance in an unknown way.

A final way of classifying dynamics is by their area of influence:

• Local dynamics can be used to describe changes which affect the local area near the
agent. An example of local dynamics is the detection of new obstacles nearby a robot
using an onboard sensor.

• Global dynamics describe changes which affect non-local areas. An example of global
dynamics is a robot modifying its world model with map updates sent by other agents.

While the distinction between local and global dynamics may not be particularly interesting
in forming a taxonomy or understanding the concept of dynamics, it is important from an

25



implementational view, as the area which involves dynamics affects the running time of
many motion planning algorithms. As a result, the local and global distinction is one way
to compare different algorithms when evaluating their suitability for a particular domain.

Now that we have identified several ways with which to classify dynamics, we can describe
why such a distinction is useful. Much research has concerned navigation with dynamics,
however it has mostly been concerned with predictable dynamics (see Chapter 6 for a detailed
description of related work.) As for unpredictable dynamics, it has mainly been addressed
in existing research as local unpredictable dynamics, involving changes which occur near the
agent. However, a mobile robot may easily face unpredictable global dynamics coupled with
predictable local dynamics. Several of the robot platforms considered as targets for this
work match that template. Thus, within this thesis we will assume a design goal of oper-
ation within a globally unpredictable domain, where changes are made to the environment
completely outside of the control of the agent driven by our algorithms. In addition, strong
local predictable dynamics are present, affecting the robot’s immediate actions. A typical
case of such a dynamic workspace is the case of multiple agents operate within the same
environment at high speeds.

1.3 Problem Definitions

This section defines the problems of motion planning and cooperative safety as addressed
in this thesis. The major notation used for planning and safety are given, along with the
definitions of general terms used throughout the document. It concludes with remarks about
the complicating factors for motion planning and cooperative safety algorithms.

1.3.1 Motion Planning

In order to form a specification for the motion planning problem as it is applied in this thesis,
a more formal definition is adopted. While the planning algorithms described in subsequent
chapters are expressed less formally using pseudo-code, each still follows the definition given
here. Thus the definition can be thought of as both a specification and a limit on the scope
of the problem addressed by this thesis. We now derive a notation similar to Latombe [62],
but with some additional generalization.

26



Definitions:

• W : The robot operates in an environment called a workspace, referred to as W . W
has N dimensions (normally N ∈ {2, 3}) and is a subset of RN .

• B: Objects in the workspace that the robot cannot interpenetrate (obstacles) are
denoted individually as Bi for some i, and the entire set denoted as B.

• A: A single robot is referred to as A. In the multi-robot case, there are n robots, and
each robot is referred to as Ai.

• q: The position of a robot includes values for linear dimensions (such as x and y posi-
tion), as well as values for orientation (θ) or the angles of various joints. Each of these
degrees of freedom (dof) is bounded, and may be modular (such as for orientation). A
vector q including all degrees of freedom is called a configuration.

• C: The set of all q values within range defines a subset of Rm called the configuration
space, often abbreviated as C-space and denoted as C.

• Cfree , Ccontact , Cnonfree : At each q, the robot A may be penetrating an obstacle, in con-
tact with an obstacle, or not in contact with any obstacle. The set of all configurations
where A is inside an obstacle is called Cnonfree , while the set of obstacle contact configu-
rations without interpenetration is called Ccontact . The configurations where A touches
no obstacles is Cfree . The three sets are disjoint, and their union is C.

• qinit , Qgoal: The robot starts at position qinit , and if an explicit goal position exists it
is called qgoal .

• G: A goal can more generally be expressed as an evaluation function G : q → R. In
this case the qgoal is set to be the maximum of G over C.

• τ(s): A path is denoted as τ(s), and is a continuous function mapping s ∈ [0, 1] to a
configuration in C. A path is constrained by τ(0) = qinit .

• valid : A path τ(s) is said to be valid if ∀s.s ∈ [0, 1]⇒ τ(s) ∈ Cfree , i.e., the path does
not touch any obstacles.

• solution: A path τ(s) is a solution if τ(0) = qgoal .

• feasible: A path may be valid, but due to constraints on the robot’s constraints (such
as the inability to fly) it may not be executable by the robot. Such a path is infeasible,
while a path that is within the robot’s capabilities it is said to be feasible.

27



The general path planning problem for an explicit goal is:
Given: A, Cfree , qinit , qgoal ;
Find a path τ(s) which is valid, feasible, and a solution.

We can also distinguish between two variants of the general path planning problem:

Path planning refers to algorithms where s is a pure parameter, and a path-tracking mo-
tion controller of some sort will be applied to execute the path.

Motion planning refers to algorithms where s can be mapped to time by some mapping
function (i.e. t = f(s)). Thus τ defines a trajectory through the state space, based on
time. Motion planning is thus a subset of path planning.

Although there are differences between these two types of planning, holonomic robots often
blur the distinction with their ability to execute any path at a sufficiently low speed. This
thesis deals with both holonomic and non-holonomic robots; The distinction between path
and motion planning is mainly reserved for the latter, where the difference is more significant.

1.3.2 Cooperative Safety

In addition to motion planning, we can define a pure version of what it means for a group
of robot agents to maintain safety. Note that this is independent of reaching any particular
goal, so it is not directly expressible as a kinodynamic 1 motion planning problem with added
dynamics dimensions. The definition adopted here is by no means the only way of expressing
the concept of safety, and alternate formulations exist (see [32], [46],and [36,37,61]). However,
the author is not aware of any alternate formulation that has become dominant, so we adopt
our single formulation of cooperative safety for the remainder of this thesis. We have found
our formulation to yield a practical algorithms that can be applied to currently existing
robots.

We define safety as: Given n agents, where each agent i has a trajectory defined by qi(t)
through state space (qi(t) ∈ C), and occupies some space r(q) ∈ C when at position q, then
safety at time t is:

1Kinodynamic refers to combined kinematic (positional) and classical dynamic (position derivatives)
properties

28



Rj(t) =
⋃

i∈[1,n],i6=j

r(qi(t)) (1.1)

S ′(t) = ∀i∈[1,n] qi(t) ∈ (Cfree −Ri(t)) (1.2)

Where Rj(t) refers to the area covered by all robots except j, and S ′(t) is the boolean
safety function which is true iff all robots are in the remaining free configuration space after
removing the areas covered by the other robots. Thus if S ′(t) is true, no two robots will
collide, and no robot will pass outside of Cfree . Furthermore, if there are constraints on q̇(t) or
q̈(t) (i.e., velocity and acceleration) in addition to S ′(t), we have the problem of cooperative
dynamic safety. The goal is that agents are able to navigate while maintaining S ′(t) at
all times, thus ensuring collisions do not take place between agents or with environment
obstacles.

1.3.3 Complicating Factors

The difficulty of a particular motion planning or safety problem as we have defined it depends
on many parameters, including the complexity of the environment or workspace, constraints
on robots’ actions, and the ability of the robot to observe and accurately model its envi-
ronment. The workspace complexity is based on factors such as dimensionality, the number
of obstacles, and the complexity of obstacle geometry. Constraints on actions are physi-
cal limitations of the robot, such as non-holonomic motion, bounded velocity, or bounded
acceleration. Throughout this work, there is a focus on dynamics, which can contribute to
motion planning complexity both through predictive difficulty (unpredictable dynamics) and
as constraints (predictable dynamics).

1.4 Existing Approaches to Motion Planning

Many design decisions have been made in research on classical navigation problems, and
several of those will be adopted in this work The first is the concept of replanning to deal with
dynamics. The simplest approach is called unconditional replanning, where the agent replans
each time a new action is to be decided, usually at some regular interval. Alternatively, the
agent can plan once, and then monitor the environment and its execution of the plan to
determine if it succeeds or fails. If the plan fails during execution, the agent can replan
at that time, and then continue its execution. This is called conditional replanning. Both

29



1. Map initial and goal locations to C-space representation

2. Update environment model with new information

3. Update C-space representation graph, or roadmap

4. Search roadmap for a path between initial and goal locations

5. Extract path vertices and edges as plan

Table 1.1: A generic motion planning and replanning algorithm

of this methods alternate planning with execution, and thus can be classified as interleaved
planning and execution. While some algorithms treat replanning the same as planning from
scratch on a new problem instance, other algorithms attempt to carry past information to
aid in replanning.

Navigation problems for a mobile agent are often divided into several distinct distance scales,
making the overall problem more tractable. Each level feeds a sequence of target locations to
lower levels, which lead the robot to the goal. High level planning (such as driving directions
on a road network), can largely ignore local motion constraints of the robot, and are global,
meaning that a plan is generated all the way from the initial position to the goal position.
Mid-level planning refers to methods for navigating a medium size environment (such as
within a parking lot), where kinematic constraints on a robot may need to be respected to
find a solution (such as parallel parking), but agent dynamics can mostly be ignored. Finally,
local planning involves avoiding immediate obstacles while respecting all motion constraints,
but is only concerned with reaching goals in a small area, such as out the braking distance.
Also, it is common for lower layers to experience more domain dynamics, although this is
dependent on the particular environments the agent is operating within. An example of
this property is that significant changes in a road network occur less frequently than small
obstacles impede the immediate path of a vehicle.

After determining appropriate distance scales and a replanning method, a planning algorithm
must be selected. Many options exist, and a detailed overview is provided in Chapter 6, while
a short summary will be provided here. First, a generic planning/replanning algorithm is
listed in Table 1.1. For a replanning algorithm, the roadmap update step can make use of
an existing roadmap from previous queries, while a non-replanning planner will use a new
model created from scratch each query. Some algorithms also interleave the roadmap update
step (3) with the roadmap search step (4) to gain efficiency for queries covering a small part
of the total configuration space.

30



The planners listed in the related work can be split into two major categories based on the
method for generating a roadmap from the configuration space. The two categories are grid-
based approaches and randomized sampling approaches. Grid based planners use a regular
grid over the environment, with one vertex per cell, and implicit edges connecting each cell
to its immediate neighbors. Each cell can have an associated traversal cost, defining it either
as free, an obstacle, or assigning some intermediate traversability. If the data source for the
environment model is itself a grid, this representation is quite direct, whereas if the data
source is not in grid form, a grid must be overlaid on the actual domain, and the cost values of
cells populated. The initial and goal locations are mapped to the nearest cells. Edge weights
for the implicit roadmap graph are set based on the cell traversal costs, and the resulting
graph can be searched using a minimum-cost graph searching algorithm such as Dijkstra’s
or A∗ [72]. The D∗ [80] extension of A∗ allows for efficient replanning with local updates of
the environment around the initial position, as well as updating the initial position itself.
D∗ updates only the affected portion of the A∗ search tree when changes are made to the
environment, allowing more efficient update steps when compared to A∗. The popular Field
D∗ [35] algorithm relaxes the assumption of paths at fixed angles between cells, resulting in
shorter paths on average compared to D∗, while sharing its replanning efficiency properties
with D∗.

In contrast to grid-based approaches, randomized approaches use random sampling of the C-
space in order to construct a roadmap. The Probabilistic Roadmap (PRM) family of planners
first samples configurations from C-space at random drawn from some distribution over C-
space [53, 54]. First, vertices are drawn at random from the distribution, and the initial
and goal configurations are also added as vertices. Then, a local search algorithm attempts
to connect nearby pairs of vertices, and if a free path is found, an edge is added between
the two vertices representing the local planner’s path between the two configurations. This
forms a graph of Cfree which can be searched using A∗. Classical PRM can answer many
queries by attempting to connect the initial and goal positions to an existing graph, making
it a multi-shot planning algorithm. However, domain dynamics can change the environment,
and thus invalidates the roadmap. Some variants of PRM, such as Lazy-PRM, mitigate
the construction time by deferring collision checks to the graph search stage, making it
more appropriate for dynamic environments. Another family of randomized planners are
based on the Rapidly Exploring Random Tree (RRT) concept [64, 65]. This interleaves
roadmap construction with search by growing a tree incrementally from the initial position.
Configurations are sampled randomly from C-space, and the nearest node in the current
roadmap is extended a fixed distance toward the sampled point. The new edge and vertex
are added only if the local path is free of obstacles. The sampling and extension steps are
repeated to grow a search tree out from the initial position until it reaches a goal state.
Many variants exist to improve the search efficiency of RRT, but it is a pure planner without
improved efficiency replanning capabilities. The recent DRT [33] planner adds a replanning

31



mode where environment updates are used to invalidate branches of the RRT tree, and thus
it supports efficient replanning for changes near the initial position, such as newly gathered
sensor data about obstacles. This is analogous to D∗ replanning for grids.

Handling domain dynamics is an important criteria for choosing a motion planning algorithm
for a mobile robot, thus it is important to consider the type of dynamics each algorithm can
handle. Figure 1.1 conceptualizes the appropriateness of various planning algorithms under
conditions of increasing domain dynamics. At the left, there are no dynamics at all (high
coherence), while at the right, there are maximum global domain dynamics - each replan is
totally unrelated to the one preceding it (no coherence). With little or no dynamics, a static
planner without support for replanning is sufficient. In a static domain, the solution need not
be updated. Explicit replanners may not be appropriate in this case compared to their static
counterparts, as they usually involve some additional overhead (such as with D∗ versus A∗).
With limited dynamics, such as shifting the initial or goal positions, explicit replanners such
as PRM, D∗ and DRT gain an advantage, and become the most appropriate planners. Once
dynamics changes involve the local environment however, the PRM variants no longer work
best, leaving only D∗ and DRT. As domain dynamics starts to incorporate global changes
however, all of the aforementioned algorithms are no longer appropriate. An example of
such a situation would be moving both the initial and goal locations by some amount, as
well as modifying the obstacles in the environment without a particular locality of change.
At extreme amounts of change however, fast static planners once again become the most
appropriate; The change is so great between replans that it is effectively a new planning
problem each time. This leaves a large gap between moderate global dynamics and extreme
dynamics, into which some mobile robotics applications fall. This thesis introduces the
Execution-Extended RRT planner, or ERRT, to address this gap. It makes no assumptions
about the locality or type of domain dynamics, and offers a few parameters to tune the
planner for the level of dynamics present.

In the case of a multi-agent domain, a navigation system may need to control multiple robots
in tandem. Planning for multiple agents can be handled with several different approaches.
One conceptually simple method is to concatenate all the agents into a single representation
of a joint state space and a joint action space. Unfortunately, the joint space approach leads
to poor scalability due to the exponential dimensional scaling of most planning algorithms.
This has led to popular decoupled approaches such as prioritized planning [87], where the
agents plan in a priority order, and later agents avoid the paths planned by earlier agents.
While the prioritized planning approach is incomplete, it scales well with the number of
robots.

32



Figure 1.1: A qualitative comparison of the level of domain dynamics targeted by the design
of various motion planning algorithms.

1.5 Approach and Thesis

Thesis: Safe multi-robot navigation operating within a real-time constraint is feasible using
a combination of randomized motion planning and a cooperative safety algorithm. Further-
more, the approach can yield a practical navigation system for multiple robots operating in
unpredictably dynamic environments.

Our approach to motion planning differs from much of the traditional research on motion
planning, in that it involves an emphasis on constrained timing requirements as opposed
to the solution of increasingly complex environments with calculation time used only as a
benchmark. In general, a given problem domain will have some minimum difficulty imposed
by the complexity of problem instances, and some maximum time in which a solution must
be returned in order for a candidate algorithm to be practical. Such a hypothetical situation
is shown in Figure 1.2. An algorithm’s performance represents a curve plotting problem
difficulty against the calculation time used, which increases with problem difficulty. The
time and difficulty constraints can be represented as lines on the plot. The timing constraint
imposes a maximum time allowed to solve a problem, thus the algorithm must lie below
this line to solve problems of a particular difficulty within the alloted time. The difficulty
constraint is a vertical line showing the minimum difficulty that a problem from that do-
main will entail; While simplifications can be made in problem domains, at some point no
further simplification can take place due to the inherent difficulty. An algorithm can be said

33



to “solve” a problem domain if part of its performance curve lies both below the timing
constraint and to the right of the complexity constraint. This is the case for the algorithm
shown in Figure 1.2. If one considers the extremes of timing and difficulty constraints, the
hypothetical situation shown in Figure 1.3 can arise. In situation (A), the timing constraint
dominates, leading to the research question of how difficult a problem can be solved under
the timing constraint. In situation (B), the difficulty constraint dominates, leading to the
question of how fast a problem of that difficulty can be solved. Note that in each case, a
different algorithm is better for each task.

Figure 1.2: A qualitative explanation of planning challenges, plotting problem difficulty
against the time used for a hypothetical planning algorithm.

Figure 1.3: A hypothetical comparison of two algorithms under a given timing constraint
(A), and a difficulty constraint (B).

This work is very much like the situation shown in Figure 1.3 (A), whereas much of the tra-
ditional research in motion planning attacks the problem shown in (B). This is because much

34



of the traditional work in motion planning is concerned with one-shot queries or multi-shot
planning in static environments, and solving such problems in increasingly complex environ-
ments characterized by high dimensionality and complex free configuration spaces (See [65]
as a typical example). Mobile robots are instead characterized by lower dimensional dynamic
environments and nearly continuous re-queries. As a dynamic mobile robot environment can
be unpredictable, any path found by a motion planning algorithm has a short period of ap-
plicability before it becomes obsolete. This short period leads to an implied iterative control
cycle, and imposes a timing constraint on any planner used. In the robot domains considered
in this thesis, these timing constraints end up the dominant factor in choosing a planning
algorithm. Attempting to solve more complex problems then becomes a dependent factor
for comparison, rather than the independent factor as in traditional work.

Thus at its core, this work seeks to extend the boundaries of motion planning, but not in
terms of absolute difficulty of problem instances. Rather, it seeks to improve the solution
speed of problems, allowing applications where navigation must be carried out within tight
timing constraints to solve more complex navigation problems, while remaining within the
timing constraint. Additionally, the acceptance of all types of dynamics allows significant
changes in the environment and the goal specification can be made between replans, allowing
the navigation system to be treated of as a primitive by task-oriented behaviors, rather than
treating navigation as an end in itself.

The timing requirements for semi-structured robot domains is dictated by the presence of
dynamics, and in particular unpredictable dynamics. A solution must be found and partially
executed before the information becomes irrelevant due to unpredicted changes. In robot
navigation systems where incomplete or heuristic planners have been used, a common reason
for such a choice has been the tight timing constraints imposed by either the domain itself
or limited computational resources present on the agent. While some existing mobile robot
systems use planning for low-level control, many more do not use motion planning at all,
instead relying on local reactive methods for immediate control of the robot, or limited
one-step enumeration and evaluation of steering commands. The use of motion planning is
restricted to higher levels of a navigation system, or is forgone completely.

The different requirements of mobile robot systems do not mean, however, that recent devel-
opments in motion planning for highly complex domains have no place in mobile robotics.
What it does mean is that these algorithms must be adapted, and their capabilities im-
proved for these domains to be practical for mobile robot control. Particular progress has
been made on traditional planning problems using randomized sampling approaches, such
as Probabilistic Roadmaps (PRM) and Rapidly exploring Random Trees (RRT). While the
focus of these techniques has been solving difficult problems in cluttered environments and
high-dimensional spaces, in this thesis I will demonstrate how they can be adapted for inter-

35



leaved planning and execution at high control rates in highly dynamic domains. In addition,
local dynamics constraints can be handled by a real-time cooperative safety method, compli-
menting the motion planner’s ability to deal with global unpredictable dynamics. The safety
method also allows the robots to be planned for individually, ignoring the other robots for
the purposes of the path planner, and using the safety algorithm prevent collisions rather
than relying on a joint state space or path obstacles from prioritized planning. Specific
contributions follow.

1.6 Thesis Contributions

The major contributions of this thesis are the following:

• The DSS Cooperative Multi-Robot Safety Algorithm: The novel multi-agent
Dynamics Safety Search (DSS) algorithm is described. It is based on Fox et al.’s
single-agent Dynamic Window approach [38]. DSS offers guaranteed safety for single-
agent and coordinated multi-agent systems. The Dynamic Window approach cannot
guarantee exact safety even in the single agent case. DSS is shown to have polynomial
complexity (as opposed to exponential complexity for joint planning), and near linear
complexity in simulation testing. Finally, DSS is demonstrated to aid in collision
avoidance on real robots from the RoboCup small size domain.

• The Waypoint Cache for Biased Replanning: The Waypoint cache is a method
of using previous plans to alter the sampling distribution for randomized replanners. It
allows more efficient replanning in dynamic domains, and is used to develop the ERRT
planner.

• The ERRT Randomized Motion Planner: The Execution-Extended RRT (ERRT)
algorithm is a novel extension of the RRT family of planners. ERRT can be tuned to
work for varying levels of domain dynamics faced in a particular application. Bidi-
rectional Multi-Bridge ERRT introduces additional parameters to the Kuffner’s RRT-
Connect algorithm [51]. These new parameters allow a tradeoff between planner effi-
ciency and plan length optimality.

• Survey of Collision Detection for Motion Planning: Existing work on collision
detection is evaluated for the task of motion planning, which differs in emphasis from
traditional comparisons of collision detection for other applications. The survey of
work contributes observations of similarity between several algorithms when applied
to motion planning.

36



• Navigation for a Competitive Multi-Robot Soccer System: Navigation lies
at the heart of a system with multiple robots working as a team in a soccer domain.
In addition to exploring the algorithms individually, robot soccer provides a way to
combine path planning and safety methods in the context of a larger system with goals
more complex than reaching fixed configurations. Using the algorithm as a primitive for
an autonomous soccer system helped drive requirements for robustness and efficiency,
while the competition offers a metric to compare implementations from many research
groups.

Additional contributions of this thesis are the following:

• The Extent Masks collision detection algorithm is a novel contribution of this thesis
research. It offers a tradeoff compared to other algorithms, scaling linearly in the
number of obstacles rather than sub-linearly, but offers pure linear scaling to any
number of dimensions. It it fast in practice for any domain with a small number
of obstacles relative to the space occupied or the dimensionality of the environment.
(Chapter 3)

• The novel Dynamic PRM algorithm is introduced, which extends Kavraki et al.’s Prob-
abilistic Roadmap (PRM) algorithm [54]. It is tested on the QRIO humanoid robot.
(Chapter 4)

• The mathematical approach to iterative swept-sphere collision detection developed in
this thesis, although simple, appears to be novel. Quinlan’s [75] related approach does
not use the explicit iterative formulation. (Chapter 3)

• Requirements for robust motion planning for robotics applications are introduced, and
in particular robustness to location error. The author is not aware of these requirements
or their offered solutions being identified in existing work on randomized or graph-based
motion planners. (Chapter 4)

• The heuristic of an active goal is introduced to solve kinematically constrained plan-
ning problems where the goal is defined as a fixed-radius orbit around a point. It is
demonstrated as part of a planner for fixed-wing unmanned aerial vehicles (UAVs).
(Chapter 4)

37



1.7 Guide to the Thesis

Table 1.7 indicates the chapters of particular relevance to understanding a given contribution.

Contribution Ch.1 Ch.2 Ch.3 Ch.4 Ch.5 Ch.6 Ap.A Ap.B
Multi-Robot Safety • ◦ ◦ F ◦ ◦
Waypoint Cache ◦ ◦ F
ERRT Motion Planner • ◦ ◦ F •
Col. Detection Survey ◦ F ◦
Robot Soccer System ◦ F • F F ◦ F F

Key: ◦=Somewhat relevant, •=Relevant, F=Essential

Table 1.2: Guide to the thesis

Chapter 1 introduces the general problem statements for motion planning and safety and
defines the scope of the work.

Chapter 2 describes the robot domains used for motivation and testing of the approaches
in this work

Chapter 3 describes the collision detection problem for path planning and several ap-
proaches. Very high efficiency is required for practical real-time path planning. A
novel approach is introduced for collision detection with sets of obstacles

Chapter 4 describes the motion planning algorithms which extend the existing randomized
path planning approaches. Pseudocode and experimental timing data is given. Also
describes application extensions.

Chapter 5 introduces the concept of multi-agent cooperative dynamics safety with a novel
algorithm for providing it at real-time rates for moderately sized teams.

Chapter 6 explores related work for motion planning, and the most relevant safety method.

Appendix A describes the vision system used to gather positional data for the small-size
domain. This chapter supports sensor error models used elsewhere in the document
with experimental data

Appendix B explains the software system for the CMDragons small-size team in detail.

38


