
Chapter 4

Motion Planning

4.1 Approach

In our domains (see 2), each environment is a mix of static and dynamic obstacles:

• The RoboCup small-size domain contains up to 10 agents moving at a given
time, with five agents not controlled by our system. The teams in the environment
are operating adversarial with conflicting goals.

• The fixed-wing UAV domain contains a static terrain paired with a variable
number of geometric obstacles reflecting constraints that can change per-query.

• The humanoid domain contains an occupancy grid model which is being con-
tinuously updated, and thus it nearly always changes between queries. Much of
the grid is highly correlated across queries however.

Thus, in each case unmodelled or unpredictable elements are modifying the environment.
Dynamic elements, such as the trajectory of opponent robots, are not accurately predictable
beyond a short time in the future. The result is that we cannot apply system which assumes
a known future trajectory for moving obstacles, but instead one that allows new decisions
to be made each control cycle. In addition, we assume no notification of which objects have
moved or how their geometry has been altered. While in some domains, this information
may be available, other domains may not be able to recover this information efficiently.
The factors of the dynamic and unpredictable environment led to the choice of an iterative
approach to replanning, were replanning is unconditional as new state information arises
each cycle.

71

In addition, the geometry and dimensionality of the obstacles varies between domains. If we
desire a single planning framework that works for all of the domains, this limits our choices of
applicable planners. Of the available options (see 6), we have chosen randomized approaches
to motion planning, which require no explicit model of their environment. Instead, the
configuration space is discovered experimentally through queries to a collision detection
system.

The two methods we have chosen to extend are RRT and PRM. We have developed a
single planning framework which supports a derivative of RRT, called ERRT, as well as
an incremental variant of PRM. As a result of the combination as a single parameterized
method, we have removed some of the unnecessary distinctions between the algorithms. The
resulting parameterized method can be tuned to act as the method most suitable for a given
problem domain.

4.1.1 Contributions of this Chapter

• The waypoint cache, and its associated point distribution, are novel. It is in-
troduced as part of the author’s Execution Extended RRT (ERRT) algorithm,
which extends the RRT algorithm of LaValle and Kuffner [65]

• The ERRT algorithm is tested on a physical robot platforms for a the RoboCup
small-size team. As far as the author is aware, this is the first application of an
RRT-derived planner to a physical robot platform (fall 2001), and the longest-
running use at 5 years (It has been used in all subsequent RoboCup experiments
and applications.)

• Bidirectional Multi-Bridge ERRT introduces novel parameters to the Kuffner’s
RRT-Connect algorithm [51]. These new parameters allow a tradeoff between
planner efficiency and plan length optimality.

• The novel Dynamic PRM algorithm is introduced, which extends Kavraki et
al.’s Probabilistic Roadmap (PRM) algorithm [54]. It is tested on the QRIO
humanoid robot.

• This chapter identifies the requirements for robust motion planning for robotics
applications, and in particular robustness to location error. The author is not
aware of these requirements or their solutions being identified in existing work
on randomized or graph-based motion planners.

• The efficient heuristic of an active goal is introduced to solve kinematically con-
strained planning problems where the goal is defined as a fixed-radius orbit
around a point. It is demonstrated as part of a planner for fixed-wing unmanned

72

aerial vehicles (UAVs).

4.2 Existing Planning Methods

4.2.1 RRT Algorithm in Detail

In essence, an RRT planner searches for a path from an initial state to a goal state by ex-
panding a search tree. For its search, it requires the following three domain-specific function
primitives:

function Extend (env:Environment, current:State, target:State):State
function Distance (current:State, target:State):Real
function RandomState ():State

First, the Extend function calculates a new state that can be reached from the target state
by some incremental distance (usually a constant distance or time), which in general makes
progress toward the goal. If a collision with an obstacle in the environment would occur
by moving to that new state, then a default value, EmptyState, of type state is returned
to capture the fact that there is no “successor” state due to the obstacle. In general, any
heuristic methods suitable for control of the robot can be used here, provided there is a
reasonably accurate model of the results of performing its actions. The heuristic does not
need to be very complicated, and does not even need to avoid obstacles (just detect when a
state would hit them). However, the better the heuristic, the fewer nodes the planner will
need to expand on average, since it will not need to rely as much on random exploration.
Next, the function Distance needs to provide an estimate of the time or distance (or any
other objective that the algorithm is trying to minimize) that estimates how long repeated
application of Extend would take to reach the goal. Finally, RandomState returns a state
drawn uniformly from the state space of the environment.

For a simple example, a holonomic point robot with no acceleration constraints can imple-
ment Extend simply as a step along the line from the current state to the target, and Distance
as the Euclidean distance between the two states. Table 4.1 shows the complete basic RRT
planner with its stochastic decision between the search options:

• with probability p, it expands towards the goal minimizing the objective function
Distance,

73

• with probability 1− p, it does random exploration by generating a RandomState.

The function Nearest uses the distance function implemented for the domain to find the
nearest point in the tree to some target point outside of it. ChooseTarget chooses the goal
part of the time as a directed search, and otherwise chooses a target taken uniformly from the
domain as an exploration step. Finally, the main planning procedure uses these functions to
iteratively pick a stochastic target and grow the nearest part of the tree towards that target.
The algorithm terminates when a threshold distance to the goal has been reached, though it
is also common to limit the total number of nodes that can be expanded to bound execution
time.

4.2.2 PRM Algorithm in Detail

Probabilistic Roadmap (PRM) planners take a related but alternative approach to planning
compared to RRT. The main motivation for using PRM is that it allows planing to be split
into two phases, the first of which can be reused in a static environment. The two stages are
the following:

Learning Phase where a finite graph model, or roadmap, is constructed up to approximate
the geometry of the free configuration space.

Query Phase where the roadmap is extended with a particular problem instance and
searched for a free path.

An implementation of this variant of PRM can be found in 4.2. The learning phase proceeds
by adding points randomly distributes within the environment, and then attempting to find
pairs of nodes which can be reached with a local planner. If the local planner succeeds, an
edge is added to the roadmap graph. This is implemented in the function PRMLearn, which
first calls the function AddStates to sample random states from the environment. AddStates
only adds states which are in Cfree . Next, PRMLearn calls ConnectStates, which attempts
to connect each state with its neighbors using the function Connect.

The function Connect is in a sense the core of the PRM planner, much like Extend for
RRT. This implementation find finds all other states within a certain maximum distance
(line 1), and attempts a straight-line connection with those neighboring states (line 3-4).
Many variants of Connect exist in PRM literature, in particular by varying the neighbors

74

function RRTPlan(env:Environment, initial:State, goal:State) : RRTTree
1 var nearest,extended,target : State
2 var tree : RRTTree
3 nearest ← initial
4 tree ← initial
5 while Distance(nearest,goal) < threshold do
6 target ← ChooseTarget(goal)
7 nearest ← Nearest(tree,target)
8 extended ← Extend(env,nearest,target)
9 if extended 6= EmptyState
10 then AddNode(tree,extended)
11 return tree

function ChooseTarget(goal:State) : State
1 var p : R
2 p ← UniformRandom(0,1)
3 if p ∈ [0, GoalProb]
4 then return goal
5 else if p ∈ [GoalProb, 1]
6 then return RandomState()

function Nearest(tree:RRTTree,target:State) : State
1 var nearest : State;
2 nearest ← EmptyState;
3 foreach State s ∈ tree do
4 if Distance(s,target) < Distance(nearest,target)
5 then nearest ← s;
6 return nearest;

Table 4.1: The basic RRT planner stochastically expands its search tree to the goal or to a
random state.

75

chosen or the local planner which is used [6, 49]. The implementation is the earliest variant
as described in Kavraki et al. [53, 54].

The query phase for PRM is shown in the function PRMQuery. It begins by adding the
initial and goal states to the roadmap, and then proceeds with a graph search to find a
path on this augmented roadmap. The function GraphSearch can be implemented using A*
search in order to find the shortest length path of those that exist in the roadmap graph.

One aspect of note for the two-phase PRM is that its completeness depends on a parameter
n reflecting the number of samples with which to model the environment. This means the
planner may fail in the query phase, and does not attempt any further search. Early work
in PRM recognized this issue, and for cases where one wishes to continue planning until
a solution is found, a one-shot version of PRM was developed. In Table 4.3, a one-shot
PRM variant which continues expanding the search is shown. It simple alternates a learning
phase with a search phase, increasing the number of samples added at each stage by a factor
ExpandFactor which is greater than one. The sub-functions are all reused from the two-phase
PRM planner.

4.3 Execution Extended RRT (ERRT)

Some optimizations over the basic described in existing work are bidirectional search to
speed planning, and encoding the tree’s points in an efficient spatial data structure [4]. In
this work, a KD-tree was used to speed nearest neighbor lookup, but bidirectional search
was not used because it decreases the generality of the goal state specification (it must then
be a specific state, and not a region of states). Additional possible optimizations include a
more general biased distribution, which was explored in this work in the form of a waypoint
cache. If a plan was found in a previous iteration, it is likely to yield insights into how a plan
might be found at a later time when planning again; The world has changed but usually
not by much, so the history from previous plans can be a guide. The waypoint cache was
implemented by keeping a constant size array of states, and whenever a plan was found, all
the states in the plan were placed into the cache with random replacement. This stores the
knowledge of where a plan might again be found in the near future. To take advantage of
this for planning, Table 4.4 shows the modifications to the function ChooseTarget.

With ERRT, there are now three probabilities in the distribution of target states. With
probability P [goal], the goal is chosen as the target; With probability P [waypoint], a random
waypoint is chosen, and with the remaining probability a uniform state is chosen as before.
Typical values used in this work were P [goal] = 0.1 and P [waypoint] = 0.6. Another

76

type StateSet = set of State
type EdgeSet = set of Edge
tuple RoadMap = (StateSet * EdgeSet)

function AddStates(env:Environment, V :StateSet, n:Z) : StateSet
1 for i = 1 to n
2 q ← RandomState();
3 if CheckObs(env,q)
4 then V ← V + s
5 return V

function Connect(env:Environment, (V, E):RoadMap, q:State) : EdgeSet
1 L = NearbyStates(V ,q,MaxDist)
2 foreach s ∈ L do
3 if CheckObsLine(env,q,s)
4 then E ← E + (q, s)
5 return E

function ConnectStates(env:Environment, G:RoadMap) : EdgeSet
1 foreach q ∈ V do
2 E ← Connect(env,G,q)
3 return E

function PRMLearn(env:Environment, num:Z) : RoadMap
1 var (V, E) : RoadMap
2 V ← AddStates(env,∅,num)
3 E ← ConnectStates(env,(V,∅))
4 return (V, E)

function PRMQuery(env:Environment, initial:State, goal:State) : Plan
1 V ← V + {initial,goal}
2 E ← Connect(env,(V, E),initial)
3 E ← Connect(env,(V, E),goal)
4 P ← GraphSearch((V,E),initial,goal)

Table 4.2: A basic implementation of a PRM planner

77

function PRMOneShot(env:Environment, initial:State, goal:State) : Plan
1 var (V, E) : RoadMap
2 var P : Path
3 V ← {initial,goal}
4 E ← ∅
5 repeat
6 let n = Max(Size(V) · ExpandFactor, MinNumAddStates)
7 V ← AddStates(env,V ,n)
8 E ← ConnectStates(env,(V, E))
9 P ← GraphSearch((V, E),initial,goal)
10 until P 6= ∅
11 return P

Table 4.3: The code for a one-shot PRM planner

function ChooseTarget(goal:State) : State
1 let p = UniformRandom(0,1)
2 let i = RandomInt(0,NumWaypoints-1)
3 if p ∈ [0, GoalProb] then
4 return goal
5 else if p ∈ [GoalProb, GoalProb + WaypointProb] then
6 return WaypointCache[i]
7 else if p ∈ [GoalProb + WaypointProb, 1] then
8 return RandomState()

Table 4.4: The extended RRT planner chooses stochastically between expanding its search
tree to the goal, to a random state, or to a waypoint cache.

78

extension was adaptive beta search, where the planner adaptively modified a parameter to
help it find shorted paths. A simple RRT planner is building a greedy approximation to a
minimum spanning tree, and does not care about the path lengths from the initial state (the
root node in the tree). The distance metric can be modified to include not only the distance
from the tree to a target state, but also the distance from the root of the tree, multiplied by
some gain value. A higher value of this gain value (beta) results in shorter paths from the
root to the leaves, but also decreases the amount of exploration of the state space, biasing it
to near the initial state in a “bushy” tree. A value of 1 for beta will always extend from the
root node for any Euclidean metric in a continuous domain, while a value of 0 is equivalent
to the original algorithm. The best value seems to vary with domain and even problem
instance, and appears to be a steep tradeoff between finding an shorter plan and not finding
one at all. However, with biased replanning, an adaptive mechanism can be used instead
that seems to work quite well. When the planner starts, beta is set to 0. Then on successive
replans, if the previous run found a plan, beta is incremented, and decremented otherwise.
In addition the value is clipped to between 0 and 0.65. This adaptive bias schedule reflects
the idea that a bad plan is better than no plan initially, and once a plan is in the cache and
search is biased toward the waypoints, nudges the system to try to shorten the plan helping
to improve it over successive runs.

4.3.1 Testing ERRT for RoboCup

Figure 4.1: An example from the simulation-based RRT planner, shown at two times during
a run. The tree grows from the initial state. The best plan is shown in bold, and cached
waypoints are shown as small black dots.

79

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

plan

tim
e

(m
s)

No waypoints
Waypoints

Figure 4.2: The effect of waypoints. The lines shows the sorted planning times for 2670
plans with and without waypoints, sorted by time to show the cumulative performance
distribution. The red line shows performance without waypoints, while the blue line shows
performance with waypoints (Waypoints=50, p[Waypoint]=0.4).

80

For a RoboCup like domain with 10 other obstacles, we found that expanding a constant num-
ber of nodes (N=500) and 50 waypoints worked fairly well, and would normally run in 20ms
or less. The step size of the extensions was 8cm (the world is 320cm by 240cm). The goal was
used as a target with P [goal] = 0.1 and the waypoints were used with P [waypoint] = 0.4.
The adaptive beta parameter was turned off in the final version, since waypoints appear to
achieve most of the benefits of beta search without increasing the search time, although in
future work we’d like to explore the relationship between the two. The waypoints qualita-
tively seemed to help get the agent out of difficult situations, since once it found a valid plan
to take it out of some local minima or other oscillation point, it would be highly likely to
find a similar plan again since the waypoints had such a high probability of being chosen as
targets. This effect of waypoints on performance was examined in an experiment, and the
results are shown in in Figure 4.2. Since the curves diverge at moderate difficulty, it appears
that waypoints help speed planning by offering “hints” from previous solutions. When the
problem becomes impossible or nearly impossible, neither performs well. This is what one
would expect, because waypoints are only available when a solution was found in a previous
iteration. Overall, he simulation appeared successful enough that we set out to adapt the
system for a real robot, and to employ a KD-tree to speed up the nearest neighbor lookup
step to further improve efficiency.

For RoboCup F180 robot control, the system for must take the input from a vision system,
reporting the position of all field objects detected from a fixed overhead camera, and send
the output to a radio server which sends velocity commands to the robots that are being
controlled. The path planning problem here is mainly to navigate quickly among other
robots, while they also more around executing their own behaviors. As a simplification for
data gathering, we first examined the more simple problem of running from one end of the
field to the other, with static robots acting as obstacles in the field. In filling in the domain
dependent metrics, we first tried metrics that maintained continuous positional and angular
velocity, continuous positional velocity only, and fixed curvature only. None of these worked
well, substantially increasing planning times to unacceptable levels or failing to find it at
all within a reasonable number of node expansions (N=2000). All metrics were written in
terms of time and timesteps so the planner would tend to optimize the time length of plans.
Although this was a substantial setback, we could still fall back on the obviously physically
incorrect model of no kinematic constraints whatsoever and fixed time step sizes, which had
been shown to work in simulation. The extension metric then became a model of a simple
heuristic “goto-point” that had already been implemented for the robot.

The motivation for this heuristic approach, and perhaps an important lesson is the following:
(1) in real-time domain, executing a bad plan immediately is often better than sitting still
looking for a better one, and (2) no matter how bad the plan, the robot could follow it at
some speed as long as there are no positional discontinuities. This worked reasonably, but

81

the plans were hard to follow and often contained unnecessary motion. It did work however,
and the robot was able to move at around 0.8m/s, less that the 1.2m/s that could safely be
achieved by our pre-existing reactive obstacle avoidance system. The final optimization we
made was the post-process the plan, which helped greatly. After a path had been determined,
the post processing iteratively tested replacing the head of the plan with a single straight
path, and would keep trying more of the head of the plan until it would hit an obstacle.
Not only did this smooth out the resulting plan, but the robot tended to go straight at the
first “restricted” point, always trying to aim at the free space. This helped tremendously,
allowing the robot to navigate at up to 1.7m/s, performing better than any previous system
we have used on our robots. Videos of the this system are available in the supplemental
materials [21].

The best combination of parameters that we were able to find, trading off physical per-
formance and success with execution time was the following: 500 nodes, 200 waypoints,
P [goal] = 0.1, P [waypoint] = 0.7, and a step size of 1/15sec. To examine the efficiency gain
from using a KD-tree, we ran the system with and without a KD-tree. The results are shown
in Figure 4.3. Not only does the tree have better scalability to higher numbers of nodes due
to its algorithmic advantage, but it provides an absolute performance advantage even with
as few as 100 nodes. Using the tree, and the more efficient second implementation for the
robot rather than the initial prototype simulator, planning was able to perform on average
in 2.1ms, with the time rarely going above 3ms. This makes the system fast enough to use
in our production RoboCup team, as it will allow 5 robots to be controlled from a reason-
ably powerful machine while leaving some time left over for higher level action selection and
strategy.

4.3.2 Conclusions in Applying ERRT to Soccer Robot Navigation

In this work a robot motion planning system was developed that used an RRT path planner
to turn a simple reactive scheme into a high performance path planning system. The novel
mechanisms of the waypoint cache and adaptive beta search were introduced, with the
waypoint cache providing much improved performance on difficult but possible path planning
problems. The real robot was able to perform better than previous fully reactive schemes,
traveling 40% faster while avoiding obstacles, and drastically reducing oscillation and local
minima problems that the reactive scheme had. This was also the first application of which
we are aware using an RRT-based path planner on a real mobile robot.

Several conclusions could be drawn from this work. First, a heuristic approach (incorrectly)
assuming a purely holonomic robot for the extend operator may perform better than a more

82

200 250 300 350 400 450
1

2

3

4

5

6

7

Nodes Expanded

T
im

e
(m

s)

with KD−tree
no tree

Figure 4.3: Planning times vs. number of nodes expanded with and without a KD-tree for
nearest neighbor lookup. The KD-tree improves performance, with the gap increasing with
the number of nodes due to its expected complexity advantage (E[O(log (n))] vs. E[O(n)]
for the naive version).

83

correct version with a dynamics model when planning time is critical. In other words, a
better model may not improve the entire system even if it makes the generated plans better,
because the more correct model severely limits the number of points or iterations that can
be run. Second, it was found that plan simplification was necessary when incorrect motion
models are used. Our real robot system worked without any plan post processing, but
not nearly as well as when a local post-processing metric could apply its more accurate
model over the head of the plan and thus remove most of its excess motion for the period
about to be executed. Finally, the highly flexible extend operator of RRT demonstrates
how existing reactive control methods can easily be added to improve the planner by adding
domain specific control rules. ERRT can build on these reactive methods to help eliminate
oscillation and local minima through its lookahead mechanism. Together they can form a
fast yet robust navigation system.

4.3.3 Exploring waypoint Cache Replacement Strategies

In the base ERRT planner, the waypoint cache of previous plans is a fixed size bin with
random replacement. However many other possible replacement strategies are possible, so
we thought it to be an interesting area to explore. One approach that is even simpler than
random replacement is to simply use the last valid plan in its entirety. By not splitting the
plan, we still maintain a sequence ordering which allows an optimization: drawing waypoints
from the cache which the search tree has already reached only wastes computation, since the
tree already can reach that far up the plan. Thus the truncation heuristic was devised: Any
time the planner reached a waypoint w that it was extending toward, successive draws from
the waypoint cache are limited to nodes that came after w in the plan stored in the cache.
This effectively limits and focuses the waypoints drawn to those areas not yet explored by
the search tree. We called this heuristic “truncation” as can inactivate the leading segment
of the waypoint cache during planning.

To test the effect, we created a sample set of domains inspired by the RoboCup small
environment, with additional obstacles added to make the planning problems more complex.
The planner was run for 2000 iterations on the first six example environments shown in
Figure 4.7 (i.e. all those with 34 or fewer obstacles). Each environment is approximately
5.5m by 4.1m, and the agent’s avoidance radius is 90mm. The initial and goal positions
goal positions were varied in a vertical sinusoid to represent the changing robot position and
newly calculated target points for navigation.

Since the waypoint cache’s effect on planning is dependent on how frequently we select from
the cache, the waypoint cache drawing probability was also varied. In all the problems, the

84

probability of picking the goal configuration was fixed at p = 0.05. The timing results from
running on a 2.4GHz AMD Athlon-based computer are shown in Figure 4.4. First, we can
see that all methods performed well, planning in less than 1ms on average. Next, we can
see that there is little difference between the random replacement bin and the last single
plan approaches. When we apply the truncation heuristic to the last single plan approach
however, we achieve a noticeable speedup. On average, planning times improved by 25%
in the range of “reasonable” waypoint cache probabilities from 0.5 to 0.8. Thus in further
ERRT derived planners, the truncation heuristic as an alternative to random replacement
bins of the original ERRT approach.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e
(m

s)

Waypoint Probability

Random Replacement
Single Plan
Truncated

Figure 4.4: Comparison of several waypoint cache replacements strategies while varying the
waypoint cache selection probability.

4.3.4 Bidirectional Multi-Bridge ERRT

One variant of the RRT planner which has demonstrated high performance for one-shot
queries is RRT-Connect [51]. It combines bidirectional search with an iterated extension

85

step. In RRT-Connect, a random target is chosen just as with the base RRT planner.
However, instead of calling the extend operator once, the RRT-Connect repeats the extension
until either the target point is reached, or the extension fails (such as when it would hit
an obstacle). The search is performed bidirectionally, with a tree growing from both the
initial and goal configurations. In each step, after a random target point is chosen, one
tree repeatedly extends toward that target, reaching some final configuration q′. The second
tree then repeatedly extends toward q′ (as opposed to the random target), in an operation
referred to as Connect. After each iteration, the tree swaps roles for extending and connecting
operations, so that both the initial and goal trees grow using both operations.

While these improvements can markedly improve RRT’s one-shot planning time, they do
have an associated cost. While RRT, with its single extensions, tends to grow in a fixed
rate due to the step size, RRT-Connect has a much higher variance in its growth due to
the repeated extensions. As a result, when planning is iterated, RRT-Connect tends to
find more widely varying homotopic paths. This is not an issue for one-show planning,
but can become a problem for iterated planning with interleaved execution. Thus ERRT
adopts the improvements of RRT-Connect, but modified somewhat. First, ERRT supports
repeated extensions, but only up to some maximum constant, which can be tuned for the
domain. Figure 4.5 shows the effect of this parameter on the average plan length for a
domain. Each datapoint is includes the mean and confidence interval for 300 test runs,
where each run represents 240 iterated plans on the domain RandRect (see Figure 4.7),
under sinusoidal motion of the initial and goal positions. As the number of extensions
increases, the plan average length grows. While applications can apply smoothing to remove
some of the inefficiency of less optimal plans, a shorter plan is more likely to be in the
same homotopy class as the optimal plan. Thus plan length is at least one indicator of the
reachable length even after smoothing, and stability in the homotopic path is important for
interleaved execution of the plan. In the figure, it is unclear why the average plan length
drops after 10 repeated extensions, although this change is not large in comparison to the
confidence interval. Thus repeated extensions, while they may speed planning, may come at
the expense of average plan length. ERRT, by using a tunable constant to set the maximum
number of extensions, allows the system designer to trade off between the two. In most
applications, we have used a value of 4, and found it to represent a reasonable compromise.

ERRT also adopts the notion of the connect operation from RRT-Connect, however this
can also cause plan length to suffer. ERRT again offers a way to mitigate this with a
tunable parameter, which is the number of connections between the initial and goal trees
before planning is terminated. Thus, ERRT allows multiple connection points, and can
choose the shortest path of those available when planning terminates. Implementing such
a feature represents an important departure from RRT however; with multiple connections
the connected planning “tree” is actually now a graph. This does not pose any significant

86

5600

5800

6000

6200

6400

0 2 4 6 8 10 12 14 16

av
g.

 p
la

n
le

ng
th

 (
m

m
)

maximum repeated extensions

mean
90% confidence

Figure 4.5: The effect of repeated extensions in ERRT on plan length.

87

theoretical problems to RRT, but requires the implementation to support graph operations
efficiently instead of the normally faster tree operations. When planning terminates, A*
search is used over the resulting graph. The effect of varying the number of connection
points is shown in Figure 4.6. The methodology is the same as used for the maximum
repeated extensions, but using the domain RandCircle. As can be seen, increasing the
number of connections improves the plan length, although the effect decreases after 6-8
connection points. Multiple connection points by definition increase planning execution
time, since ERRT continues to search even after a path has been found. However, after
the first connection, ERRT can operate in a purely any-time fashion, using up idle time in
the control cycle to improve the solution, but able to terminate and return a valid solution
whenever it is needed. Again, by offering the number of connections as a parameter, the
tradeoff can be set by the system designer.

6800

6900

7000

7100

7200

7300

7400

7500

7600

7700

0 2 4 6 8 10 12 14 16

av
g.

 p
la

n
le

ng
th

 (
m

m
)

target number of bridges

mean
90% confidence

Figure 4.6: The effect of multiple connection points in ERRT on plan length.

Supporting multiple extensions and multiple connection points give ERRT the benefits of
RRT-Connect, as well as the ability to tune the system as needed. By supporting a graph
representation instead of search trees, as well as planning over the resulting roadmap graph,

88

ERRT takes a step toward unification with the PRM family of planners. The only differences
that remain are in the sampling strategies for building and maintaining the search graph or
roadmap structure.

4.3.5 Comparing ERRT with the Visibility Graph in 2D

Since ERRT operates in 2D for our test domains, it is a reasonable question to ask whether
it offers any advantage over traditional methods. Because ERRT is a continuous domain
planner, it is most directly comparable to the Visibility Graph method [69] (see 6.1.3).
Although ERRT is not limited to 2D, it can be compared with the Visibility Graph within
this context. In addition, as the Visibility Graph is a minimum-length-optimal planner, we
can compare the plan lengths produced by ERRT to the optimal lengths. The environments
used can be seen in Figure4.7, and range from four to 128 obstacles, and cover a broad
range of free volume ratios and C-space connectivity. The domain is roughly modelled on
RoboCup small-size, where each environment is 5.5m by 4.1m, with the agent’s avoidance
radius set at 90mm. The agents moved in a vertical sinusoid with a period of 120 iterations,
and the data points are the mean values of 2000 planning iterations. The ERRT parameter
values are shown in Table 4.3.5.

ERRT Parameter Value
Maximum number of nodes 512
Goal target point probability 0.05
Initial target point probability
(for bidirectional search)

0.05

Waypoint cache selection prob-
ability

0.80

Waypoint cache size 100
Extension step size 120
Max repeated extensions 4
Target number of connections 4

Table 4.5: The parameter values for ERRT used in the benchmark experiment.

The results of the benchmark testing can seen graphically in Figure 4.8, and a tabular
summary in Table 4.3.5. First, it is apparent that ERRT has an advantage in execution
time for more complex domains, particularly those with many small obstacles. Because the
Visibility Graph must model all possible tangents in its constructed roadmap, it scales poorly
with obstacles. It uses up to O(n2) edges for n obstacles, even for domains that conceptually
that difficult, such as CircleGrid and BoxGrid. ERRT fares worst in a comparative sense

89

Empty (4) LocalMin (7) ZigZag (8)

Passage (10) CircleGrid (34) BoxGrid (34)

RandRect (64) RandCircle (64) Square128 (128)

Ring128 (128)

Figure 4.7: Environments used for benchmarking planners.

90

on ZigZag, which has few obstacles but a long solution path. ERRT takes almost 13 times
the execution time of Visibility Graph, although ERRT still only requires 1.4ms of planning
time on average for the domain. ERRT fares best on Square128, running 28 times faster
than Visibility Graph, which takes over 12ms of planning time. ERRT’s slowest execution
time across all domains is only 2.2ms.

In terms of success probability, as shown in part (b) of Figure 4.8, Visibility Graph demon-
strates its completeness, never failing to generate a solution, while ERRT is not far be-
hind. ERRT is worst on Ring128, where it finds a solution 97.5% of the time, second worst
on ZigZag at 99.6%, and 100% on the eight other domains. The success probability is ad-
equate for all these domains when using iterated planner, as failures in one iteration only
result in a short stall of execution. Finally, in terms of plan length ERRT is at worst 28%
longer than the optimal path, even without whole-path optimization. This is aided by tuning
the extension step size, maximum repeated extensions, and the number of connections for
bidirectional search.

Domain VisGraph exec. ERRT exec. speedup relative plan length
(ms) (ms) (VisGraph/ERRT) (ERRT/VisGraph)

Empty 0.057 0.091 0.626 1.046
LocalMin 0.102 0.558 0.182 1.154
ZigZag 0.110 1.401 0.078 1.283
Passage 0.154 0.300 0.513 1.225

CricleGrid 1.654 0.245 6.746 1.077
BoxGrid 1.623 0.522 3.107 1.226
RandRect 1.986 0.432 4.596 1.132
RandCircle 1.311 0.652 2.011 1.124
Square128 12.194 0.428 28.471 1.163
Ring128 7.329 2.199 3.333 1.246

Table 4.6: A comparison of ERRT with the visibility graph method across several 2D do-
mains.

In summary ERRT compares favorably even against the classic optimal 2D Visibility Graph
planner. Even in relatively simple domains, if numerous obstacles need to be supported with
low execution times, ERRT makes a good choice in place of Visibility Graph. With some
robotic applications modelling the environment with large numbers of obstacles retrieved
from sensors, this can be an important property. If however, the solution paths are long,
with only a few obstacles, ERRT does not appear to be the best choice for 2D planning.
ERRT’s advantage with large numbers of obstacles, along with its ability to operate in higher
dimensions inherited from RRT, appears to make it a reasonable choice for general mobile
robot planning applications.

91

0

2

4

6

8

10

12

Em
pty

LocalM
in

ZigZag

Passage

CircleGrid

BoxGrid

RandRect

RandCircle

Square128

Ring128

tim
e

(m
s)

(a) Average Execution Time

VisGraph
ERRT

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Em
pty

LocalM
in

ZigZag

Passage

CircleGrid

BoxGrid

RandRect

RandCircle

Square128

Ring128

su
cc

es
s

pr
ob

ab
ili

ty

(b) Success Probabilty

VisGraph
ERRT

0

2000

4000

6000

8000

10000

12000

14000

Em
pty

LocalM
in

ZigZag

Passage

CircleGrid

BoxGrid

RandRect

RandCircle

Square128

Ring128

le
ng

th
 (

m
m

)

(c) Plan Length

VisGraph
ERRT

Figure 4.8: A comparison of ERRT with the visibility graph method across several 2D
domains.

92

4.4 Dynamic PRM

PRM planners have proved to be the most popular randomized planner for static environ-
ments. Since they split planning into an environment learning stage and a very fast query
stage, they work very efficiently for environments that do not change often. In addition, they
support explicit minimum cost searches of the roadmap, which is useful when there are non-
binary obstacles with different traversal costs. Unfortunately, for mobile robotics problems
the environment is often non-static, which means the learning stage needs to be rerun fre-
quently. However, a large class of environments can be considered nearly static however; For
example, in a typical cluttered room only a few objects move at any time. One particularly
motivating domain for this approach is the QRIO humanoid domain, where path stability
is important due to high action latency, and the environmental obstacles evolve slowly over
time.

The only change that needs to be made to support dynamic environments is make the
learning stage operate incrementally. First, each node in the roadmap graph is augmented
with a replacement probability. Every sensor update cycle, all nodes are checked for validity.
They are marked as invalid if they no longer represent a free configuration. Additionally,
they can be randomly invalidated based on their replacement probability. All edges are then
checked to make sure they represent free paths, and marked invalid if they would result in a
collision, or if either of their two endpoint nodes has been marked as invalid. After this step,
the invalid nodes and edges are removed from the graph. The next step is to add nodes and
edges to the graph so that roadmap size and connectivity are maintained. Unlike advanced
static PRM planners, Dynamic PRM uses uniform sampling to generate configurations. In
order to achieve non-uniform graph density however, the initial replacement probability of a
node is based on its proximity to obstacles, decreasing as it gets further from obstacles. After
many iterations, this converges to a distribution similar to Gaussian PRM [9], which samples
more configurations near the boundary of free space. However Dynamic PRM can achieve
that density without the necessity for running more costly rejection sampling techniques for
free configurations, instead spreading the work over time.

Adding edges to a roadmap is an extremely costly operation if performed naively. The
simplest algorithm to implement would be to test all pairs of nodes, which of course scales
quadratically, and is not practical for large roadmap graphs. In [54], a variation is selected
where the nearest neighbors from different connected components are chosen, up to some dis-
tance threshold or degree limit. This results in a forest, which can poorly describe workspaces
with cycles; The query phase will only return one homotopic path, while in the case of cycles
we would like it to return the shortest path (or any other cost metric minimized during the
graph search). If we remove the tree constraint however, then local cliques may tend to form

93

where all the nodes are closer to each other than neighboring groups, and thus fail to connect
to the graph outside of that group, even though a free path exists. Furthermore, querying
the closest set of neighbors is a more complex operation than returning only a single nearest
neighbor for a query.

In order to explore this effect, Dynamic PRM implements three possible sampling strategies
for adding edges. The first technique, called nearest-k is the traditional PRM approach of
attempting to connect to all nodes up to some limit k within some maximum connection
distance d. The second approach, called gauss, randomly samples a point x near a particular
node q based on the a multivariate Gaussian centered on that node with standard deviation
d/2. The random point is then used to query the nearest node q′ in the roadmap, and
a connection is attempted between q and q′. In other words, the method takes a random
step, and then looks for a neighboring node in that area with which to connect. This is
repeated several times to form multiple connections. The third method is a refinement
of gauss, called ring, which independently samples a direction and a distance. The direction
is sampled uniformly, while the distance is a Gaussian centered at some non-zero distance.
The resulting distribution for the random step in 2D is approximately1 a Gaussian revolved
around the origin, and thus resembles a “fuzzy ring”.

To visualize how the sampling method of edge connection works, Figure 4.9 shows a simplified
sampling method which samples at fixed angles in 2D. On the left, the sampled steps are
shown extending radially from a node we wish to connect to other nodes in the roadmap.
After taking the nearest neighbor to the end of each of the steps, and connecting those two
nodes if a straight-line path exists, the resulting roadmap is shown on the right of the figure.
The guass and ring methods operated similarly, although the randomized directions allow
them to generalize to higher configuration space dimensionality.

Several enhancements to the basic algorithm can be applied to improve performance. First,
in order to fill in gaps left behind moving objects, it is necessary to recycle nodes, freeing
them up to be used in a new location. Although all nodes have a random replacement
probability, the recycling rate can be more directly controlled by introducing a parameter
called node aging. It is an increment applied to node replacement probabilities so that older
nodes are more likely to be replaced than new ones. A lower increment is more efficient since
less time is spent adding new nodes and edges to replace the replaced ones, while a higher
rate helps fill in gaps faster for dynamic environments. A second optimization is that during
the query stage, all nodes used in the final path have their replacement probabilities set to
zero. This ensures they won’t be replaced in the next sensor update cycle, and less likely
immediately afterward than other nodes. It also effectively increases the sampling density

1It is approximate because the true density increases as one nears the axis. The larger the mean offset
compared to the standard deviation, the more the distribution will approach a revolved Gaussian.

94

Figure 4.9: Dynamic PRM connection technique, using radial direction sampling. The
sampled directions (left) and the resulting roadmap (right) are shown.

along the path since nodes are still added to those areas at the same rate. Higher sampling
density helps to improve the local quality of the path.

To test the algorithm and the multiple sampling strategies, a test domain was constructed
which is pictured in Figure 4.10. An user interface was created for testing where the a
user can drag the goals and obstacles interactively as the system plans and navigates in
real-time. For benchmarking the algorithm, the domain is altered systematically. First, the
robot starts in one corner of the maze-like environment, and has to reach a goal in the next
corner in a counter-clockwise fashion. Each time the robot reaches a goal, the goal position
is moved to the next corner, resulting in the robot doing “laps” around the environment.
The planner was allowed up to 500 nodes, and up to eight edges per node in constructing
the roadmap. Although the obstacles do not move in the benchmark, the algorithm assumes
arbitrary changes in the environment may have taken place, as is possible in the interactive
testing mode. Thus, the Dynamic PRM method used aging and removing edges and nodes
in the roadmap, and sampling continuously to extend the roadmap into existing or possibly
new free configuration space.

The results of benchmarking can be seen in Table 4.4. The simulated robot was run for 32
laps around the environment for each sample, and the test was repeated 8 times to generate a
mean and standard deviation for each measurement. The simulated time represents the total
time for the agent to complete 32 laps, and is mainly depending on successful planning and
the quality of the roadmap paths. A failing planner or poor quality paths will increase the
total simulated time. Execution time represents the average execution time of the planner
each control cycle. Success probability is the chance that the planner returns a full path to the
goal each control cycle. Finally, roadmap entropy measures the connectedness of the roadmap
by measuring the total entropy based on the sizes of the connected components. A lower

95

Figure 4.10: The test domain for interactive and benchmark testing of Dynamic PRM.

96

entropy indicates a more connected roadmap. As can be seen in the table, few differences
exist between the methods. The ring sampling method leads nearest-k in all categories, and
leads gaussian in all but one category, although the results are not statistically significant.
The high success probability is due in part to the optimization of never removing edges from
the roadmap used in the plan of a previous cycle, however even then the sampling methods do
not have a particularly large impact. This can be seen as a positive result however, because
the sampling methods are easier to implement than nearest-k. This is due to the fact that the
sampling methods do not require a multiple-nearest-neighbor query to be implemented by
the spatial data structure storing the roadmap. Larger differences have been found between
the methods for roadmaps with an insufficient number of nodes, and thus a low planning
success probability, however this is not particular advantage. Such badly-tuned parameters
would be avoided in most implementations anyway, as tuning the number of nodes is just as
easy as changing the sampling method.

Sampling Simulated Time Avg. Execution Time Success Prob. Roadmap Entropy
Method [sec (std)] [msec (std)] [p (std)] [e (std)]
nearest-k 327.8 (6.49) 1.059 (0.00237) 0.9810 (0.00314) 1.030 (0.0173)
gaussian 324.6 (5.42) 1.051 (0.00212) 0.9808 (0.00315) 1.030 (0.0090)
ring 323.1 (4.00) 1.052 (0.00203) 0.9815 (0.00320) 1.029 (0.0122)

Table 4.7: A comparison of performance of Dynamic PRM with various approaches for
roadmap connection.

Although not explored to the extent that RRT derivatives have been investigated, Dynamic
PRM demonstrated high success probability and good coherence between control cycles,
making it a good choice for slowly evolving domains such as the planner for the QRIO
humanoid.

4.5 The Abstract Domain Interface

The domain interface resulted from an attempt to unify platform interfaces so that common
planning code could be developed. In traditional planning work, there are typically three
primary modules: Planner, collision detection, and a platform model. While this approach
works well for robots of relatively similar type, the communication required between the
platform model and collision detection are through the planner, complicating the interface
so that the planner needs to know much more about the domain than is really necessary.
Thus the current approach was devised, in which platform model and collision detection are
wrapped into a single “domain” module that the planner interacts with. Internally, collision

97

detection and the platform model are implemented separately, but importantly the planner
doesn’t depend on anything involved in the communication between the two. This allows
states in the configuration space to be a wholly opaque type to the planner (denoted by S),
which needs only to be copied and operated on by the domain’s functions. Additionally,
to speed up nearest neighbor lookups, the state must provide bounds and accessors to its
individual component dimensions. This allows the planner to build a K-D tree of states so
that linear scans of the tree are not necessary for finding the nearest state to a randomly
drawn target. While the traditional architecture can be made nearly as flexible, it typically
does so at a cost in efficiency. The domain interface approach leaves open the opportunities
for improved collision detection speed that can come with constraints or symmetry present
in the agent model. The domain operations are as follows:

• RandomWorldTarget():S - Returns a state uniformly distributed in C

• RandomGoalTarget():S - Returns a random target from the set of goal states

• Extend(s0:S,s1:S):S - Returns a new state incrementally extending from s0 toward s1

• Check(s:S):bool - Returns true iff s ∈ Cf

• Check(s0:S,s1:S):bool - Returns true if swept-sphere from s0 to s1 is contained in Cf

• Dist(s0:S,s1:S):real - Returns distance between states s0 and s1

• GoalDist(s:S):real - Returns distance from s to the goal state set

Using these primitives, the ERRT planner can be built which operates across multiple plat-
forms, and does so without sacrificing runtime efficiency. In addition, in the case of a purely
holonomic platform without dynamics constraints, a PRM variant can be implemented using
only these primitives (the local planner is formed by calling Extend repeatedly). One could
argue that the abstract domain approach moves almost all of the “important” code into
the domain itself, making the planner itself simplistic. In other words, all of the “planning
intelligence” has been shifted to the domain itself. However, the crucial difference is that
the code in the domain is relatively straightforward and self contained, while the intricate
interactions and practicality driven fall-back cases of planning reside in the core planning
code. Thus one could implement a domain with little or no knowledge of path planning,
reaching a core goal of general modular programming.

98

4.6 Practical Issues in Planning

4.6.1 Simple General Path Smoothing

Due to their random nature, the randomized planning approaches generate paths with addi-
tionally unnecessary motion present. Although technically safe, such motion is undesirable
for direct execution by the agent. ERRT as originally posed used a ”straight line” heuristic
to smooth the beginning of the path. This approach would check the straight line from
the initial position to each successive vertex along the path to see if they were free. The
longest free line found was used to replace the head of the plan. For iterative execution this
works well in smoothing out the motion of the agent; Later areas of the plan need not be
smoothed until the agent reaches that segment. Thus our 2D holonomic planner adopted
this simplification method and it has been found to work well in practice.

The straight-line method is however quite limited, since it does not respect kinodynamic
constraints. Thus for the UAV planner, a method was needed that respected kinodynamic
constraints. At the same time, it is a desirable feature that the smoothing method not be
tied to the exact constraints, so that the smoothing would not have to be reimplemented if
the constraint model was changed. Thus a more general method was desired, as well as one
which operated on entire paths if possible. The method we subsequently developed follows
a ”leader-follower” approach. The returned plan from ERRT is treated as a ”leader”, and a
new path is grown as a follower. The lead point on the plan maintains a minimum distance
from the follower path, and the follower path is grown using the domain’s extend operator
with the leader point as its target. This method is depicted in Figure 4.11.

In order to smooth the path maximally, the algorithm can be iterated, with successively
longer minimum distances maintained by the leader in each pass. If the simplification fails
(due to the follower’s extension hitting an obstacle), the last successful simplification is re-
turned. If the first few levels of simplification fail, and excess random motion is unacceptable
for that platform, it can be treated the same as a plan failure. By running the planner several
times, we can obtain a statistically very high probability of a successful smoothed plan being
returned. Given the speed of the basic path planner, this can be a viable approach.

4.6.2 Robust Planning

An additional issue important for planning on real robot platforms is that of robustness.
While iterative replanning helps deal with positional error within free space, it still does

99

Figure 4.11: Path smoothing using the leader-follower approach.

not gracefully handle problems when the robot steps outside of free space. In practice this
can happen quite easily due to sensing error in position, or action errors driving us off the
expected course. Implementation on the ground robots found numerous instances where
the robot would drive until an unfortunate series of sensor or action error resulted with the
robot having 1% of its radius lying with an obstacle. Intuitively we’d like the robot to fail
gracefully and plot a smooth path that leads out of the obstacle, but a typical planner only
has a binary view of safety, thus it simply fails to generate a path at all. This is because
all obstacle checks from the initial position fail at the initial position itself, preventing any
extensions from growing the tree. In previous planning work we explored relatively ad-hoc
approaches to returning to free space, but none was general enough to apply across domains.
Ultimately, we decided to split the general situation of “in an obstacle” into two categories.
The more common category is that the agent is only partially inside an obstacle while it’s
center coordinate is not. This is expressed as a obstacle distance from the center of less than
the robot’s radius r but greater than 0. The more serious case is when the robot’s center is
within an obstacle, resulting in an obstacle distance of 0 and meaning that deep penetration
has occurred. While the latter case can only really be handled in a domain dependent way
(some sort of safe failure or domain specific failure recovery), the partial case can be handled
in a general way. Our planner does so in a graceful way to avoid abrupt changes in trajectory
which might exacerbate the problem instead of correcting it. When planning is initiated,
if the the initial position qi is found be partially within an obstacle (0 < D(qi) < r), then
collision checks from qi are treated specially. When checking a swept-line from qi to any
point b, we first find a point along the line f where D(f) ≥ r. Then we check the swept
line from qi to f with a radius of D(qi), and a second swept line from f to b with a radius

100

of r. This is shown in Figure 4.12. The first condition ensures the trajectory does not
penetrate the obstacle any worse than the initial position, while the segment from f to b
ensures that the trajectory stays out of obstacles once it enters Cf . To keep the system
independent of the exact geometry of obstacles, f is found by recursive bisection, with a
domain specified maximum distance from qi. Changing the maximum allows varying how
aggressively the robot attempts to exit obstacles. The system has been found to work well
in practice, handling issues where minor penetration into the obstacles occurs. In doing so,
it helped decrease the occurrence of major penetration so that the domain specific “escape”
method is only called in cases of serious error or radically changing environments.

Figure 4.12: An example of a specially handled collision check when the initial position is
partially penetrating an obstacle. The collision check is handled in two segments.

4.7 Applications

4.7.1 Fixed Wing UAV

In order to explore ERRT’s capability as a planner in 3D environments, and in support of
a project supporting FixedWing UAVs, a new abstract domain for ERRT to model UAVs
(see 2.2. The UAV operated in 3D with limited climb and descent, as well as a severely
limited turning radius. Kinematic constraints were supported by mapping extensions to the
nearest reachable action, as in the example in Figure 4.14. The environment consisted of
terrain segments, and a total of 1.5 million triangles (see 3.2.3). For speed reasons, a weighted
Euclidean distance metric was used. Better metrics exist that depend on the kinematics, but
these are difficult to support efficient nearest-neighbor queries for with a hierarchical spatial
data structure. As a compromise, the distance function weights components of the position.
x and y coordinates along the ground were defined with unity weights. z (altitude), was

101

Figure 4.13: A kinodynamicly-limited search tree (left), and the corresponding simplified
plan (right) for the UAV. The plan length is approximately 11km with waypoints every
100m. Obstacle clearance is shown as a translucent tunnel.

given a weight of 10, which was the minimum required to generate a “spiraling” behavior
when repeated extensions are performed with a relative target that differs only in the z
dimension. Distance for x,y orientation was approximated using a heading vector scaled
by the current aircraft velocity. The orientation was given a weight of 2, although it did
not appear to have a large effect on the plans. The weighted Euclidean distance metric
worked, although the planner would sometimes get stuck in a local minima, requiring a
target point to be selected in a very small area for additional progress to be made. In
addition, application usage constraints enforced one-shot planning by the navigation system,
with no context associated with a problem. We solved both problems by iterating the
planner on an identical problem instance - local minima were avoided by “sampling” of the
planner itself, and multiple solutions can be ranked by quality criteria to help ensure that the
returned plan tended toward the shorter and smoother plans of those available. Because no
context was associated with a problem, and the replanning samples were ideally independent,
the waypoint cache was disabled for this domain. Multiple repeated extensions were still
used, although bidirectional search was disabled because the abstract domain only supports
forward kinematic constraints. In the final version, the planner replanned up to 48 times or
12 valid solutions. It simplifies any valid solution with the leader-follower path smoothing
approach, and picks the a plan based on the minimum cost weighting of length of curvature
changes. Execution time was highly dependent on the configuration, but averages between
0.5 to 4.0 seconds on a 2GHz processor.

One optimization that contributed to the performance on difficult problems was adaptive
iteration thresholds. With repeated replanning, once we have found a solution, that can serve

102

constraints

target

constrained
extension

Figure 4.14: An example of limiting Kinematics for the RRT extend operator

as an existence proof that a solution can be found within a certain number of iterations. In
subsequent iterations of the planner, we can use that number as a threshold speeding up
failure detection if those searches are stuck in a local minima and will not find a solution. In
order to help ensure multiple plan iterations are successful, the limit is set at a multiple of
the number for the successful plans. Thus, we maintain a iteration threshold m, and update
it whenever the planner is successful after i extensions using the rule in Equation 4.1, where
k is some constant larger than one (we used k = 2 for our implementation).

m← min (m, ki) (4.1)

The UAV domain motivated a unique new property for ERRT that mapped well onto the
randomized sampling planning approach, and would be difficult to implement with a more
model-driven approaches to planning. For fixed-wing UAVs, it is often desirable to fly
between stable orbits, allowing an aircraft to maintain an average position while it maintains
its required forward velocity to prevent stalling. Adding the ability to plan to an orbit is
thus a useful extension, but one that could be expensive due to less defined nature of the goal
along with the existing kinematic constraints. Because the planner is already rerun on the
same instance multiple times however, we can get away with a heuristic that has a non-zero
probability of achieving the objective (in fact all randomized planners are already this way
due to probabilistic completeness). We thus developed a method we call active goal, where
the nominal goal configuration is updated dynamically during search. For the fly-to-orbit
feature, we want to fly to the tangent of some defined orbit. Using the active goal approach,
we set the nominal goal to always be the tangent point relative to the closest point in the
current search tree to the goal. Every time a new extension is added to the search tree, if it

103

is closer to the goal configuration than the previously nearest point, the tangent is updated
for the new configuration. An example is shown in Figure 4.15. This method works much
of the time, as the point nearest to a goal in an RRT planner is by far the most likely to be
extended toward a goal. Due to random exploration, its possible for another branch of the
search tree to wander in and hit the goal non-tangentially, but in those cases, that search can
be aborted as a failure, leaving a subsequent rerun of the planner to find the solution. Two
results from the planner can be seen in Figure 4.16. In practice, the active goal approach
allowed the UAV navigation system to support orbits as goals with negligible additional
overhead compared to a fixed goal configuration.

goal goal

Figure 4.15: An example of a goal updating dynamically during search to try to maintain
a tangent constraint. The original tangent, shown dotted (left), is updated as a the ERRT
search tree expands (right).

Figure 4.16: Two examples of the fly-to-orbit capability of the UAV planner.

Development of a unified ERRT planner for multiple mobile robot platforms provided many
insights that would be difficult to determine if only one platform or similar platforms were

104

considered for an implementation. However there are still many opportunities for further
work. First and foremost, the relationship between distance metric, kinodynamic constraints,
and accelerated nearest-neighbor search could be explored. Development of good distance
metrics for kinematically constrained platforms is possible, but tedious, and more seriously
it prevents most forms of accelerating nearest-neighbor search to fail because the triangle
inequality is no longer satisfied. Using Euclidean distance worked, but generated local min-
ima that could only be avoided by rerunning the planner several times, which is an inelegant
solution. Better approximations which still allow the use of fast geometric data structures
most likely exist.

4.7.2 QRIO Humanoid Robot Planner

Path planning for a small humanoid robot was also explored, using the Sony QRIO [42]
(see 2.3). To implement the navigation module two different path planning approaches
were attempted. QRIO builds a local occupancy grid of its environment, which it updates
using depth maps calculated from stereo vision. Thus the environment is static except
for the portion where the robot can currently see. New information is incorporated into
the occupancy grid using Bayesian updates. ERRT was successfully adapted for purely
2D planning, but could not easily represent varying traversal costs which would be useful
planning which incorporates 3D actions, i.e. climbing and descending.

First, a 2D path planner was implemented using the RRT-based method described above,
which compared favorably to an existing grid-based A* implementation. For collision detec-
tion, a variant of the distance transform [62] was used on a thresholded occupancy grid, with
each free cell storing a offset to the nearest non-free cell. By using the constraint that the
nearest non-free cell is either the cell itself or one of the eight neighbors, the transform can
be created in two passes, a forward pass where the neighbors to the left and above a cell are
checked for their closest non-free cell, and a reverse pass where the neighbors to the right and
below are checked. This approach avoids the overhead of the queue based implementation
normally used, and results in an approximation which is perfect for convex obstacles, and
has at most half of a cell of error in concave corners. The result is shown in Figure 4.17.

To extend the planner to 3D stepping actions, the occupancy grid world model was extended
to include height values for each cell. This creates a heightmap, similar to that used in
Chestnutt et al. [25]. The point obstacle check used for nodes in the roadmap was modified
to check the flatness of the heightmap, using the standard deviation of the cells on which the
robot would stand as a metric. The check for edges was separated into two cases, one for flat
surfaces and one for stair transitions. The flat surface check used the point query to see if

105

Figure 4.17: An occupancy grid and its distance transform.

robot could stand at intermediate positions after each step. A 2.5D planner using Dynamic
PRM was subsequently developed using this collision detection model. The planner used
heightmaps to check that no obstacle impinged on the legs or torso for a given location, in
addition to the flatness constraint on the ground. The Dynamic PRM representation or free
space was updated incrementally as new sensor data was gathered, with cycles occurring
several times a second. In addition to planning paths on a single plane, the robot considered
actions to step between two planes if it detected such a transition. The stair transition check
determined that the change in height was less than the maximum climbable stair size, and
that the transition was short enough to be stepped over. Addition metrics for foot placement,
and step transition costs as described in [25] were not used.

During testing it was only occasionally successful. However, the system demonstrated that it
could autonomously identify, plan, and execute paths between different planes, without being
told that the height discontinuities exist before planning, nor the position, or height of those
transitions (see Figure 4.18). It was also noteworthy in that most numerical information,
including the difference between plane heights, was determined through sensor data rather
than supplied as a prior model. Videos of the system are available in the supplementary
materials [21].

106

Figure 4.18: QRIO on top of an autonomously reached step obstacle.

107

108

