
Chapter 5

Safe Navigation

This chapter describes a novel method for safety among a set of cooperating robots. The
robots operate under the realistic dynamics constraints of bounded acceleration and bounded
velocity while maintaining safety among themselves and with a static environment. Under
conditions of noiseless sensing, perfect dynamics, and perfect communication, the system can
guarantee no collisions will take place as the robots move about the environment. In more
realistic settings, we’ve found the system to significantly decrease the number and severity
of collisions for a team of high performance robots playing RoboCup soccer. The system
was used for the past two years on our RoboCup small-size team. We lead the chapter by
describing the dynamics model used for the robot and the motion control system employed to
reach target points. The following section then describes the safety method, which operates
as a post-process to the motion control.

5.0.3 Contributions of this Chapter

• The novel multi-agent Dynamics Safety Search (DSS) algorithm is described. It
is based on Fox et al.’s single-agent Dynamic Window approach [38].

• An outline of a proof of single-agent and multi-agent safety of DSS is contributed.
The Dynamic Window approach cannot guarantee exact safety even in the single
agent case.

• DSS is shown to have polynomial complexity (as opposed to exponential com-
plexity for joint planning), and near linear complexity in simulation testing.

109

• DSS is demonstrated to aid in collision avoidance on real robots from the RoboCup
small size domain.

5.1 Robot Model

While there are many possible configurations of wheeled robots, each with their associated
dynamics, three classes covers many types of wheeled robots:

• Differential drive robots (two or more unsteered wheels or tracks)

• Holonomic robots (three or more omni-directional wheels)

• Car-like steered robots

In this chapter we will assume a holonomic robot model, as those are the robots with which
we have the most experience and we have available for testing. While the motion control
for each type of robot is significantly different, the safety method from this chapter can be
extended for different types of robots, with the core assumptions being that a robot can
remain at rest, and can come to a stop while traveling on a straight line. In the derivation
of our algorithm, we will use the more restrictive assumptions which attempt to model an
electrically driven holonomic robot. The assumptions and limitations of the robot model are
summarized as follows:

1. The robot is contained within a safety radius

2. The robot has immediate and direct control of its acceleration

3. The robot acceleration restricted to be within some set

4. The robot has a maximum “emergency stop” deceleration

5. The robot can only change the acceleration at fixed time intervals (control period)

6. The robot has a maximum bounded velocity

7. The robot has no minimum required velocity

Clearly these meet the core assumptions, as an agent can stop on a straight line and come
to rest if it directly controls its deceleration up to some bound, with no minimum velocity

110

necessary. In Figure 5.1 we show the layout of the drive system of one the CMDragons
RoboCup robots. It has four omni-wheels at fixed angles which. One axis of each wheel is
oriented toward the center of the robot and driven, while the other axis rolls freely due to
the omni-wheel’s perpendicular rollers. We will explore the model more fully in Chapter 5.1,
but for the purposes of the safety search it will suffice that the robot and its control system
meet the assumptions enumerated above.

Figure 5.1: Drive layout for a CMDragons holonomic robot with four omni-directional wheels
(left), and a picture of a partially assembled robot (right).

The notation used for the model is the following:

• q(t) denotes the robot’s position at time t

• q̇(t) denotes the robot’s velocity

• q̈(t) denotes the robot’s acceleration

• A(v) denotes the set of possible accelerations at velocity v

• D denotes the maximum “emergency stop” deceleration magnitude

• R denotes the safety radius

• ak denotes the desired acceleration at decision cycle k (algorithm input)

• uk denotes the acceleration command at decision cycle k (system control input)

111

• C denotes the fixed control period

With this notation, we can define the system transfer functions for position (f) and velocity
(ḟ) using Newtonian dynamics:

f(q, q̇, u, t∆) = q + q̇t∆ +
1

2
uit

2
∆ (5.1)

ḟ(q̇, u, t∆) = q̇ + uit∆ (5.2)

Within the context of the safety algorithm, we will at times need a more complex denotation
for q. At each decision cycle k the algorithm will construct a new piecewise function q for
each robot i. Thus qk

i (t) denotes the position function over t at cycle k for robot i. k will
be omitted when it is obvious, such as within a single iteration of the algorithm. To identify
the individual components of the piecewise function q, we will use qi(t, s) to denote qi(t) at
component s. At some times, in particular within pseudocode, a shorthand will be used for
the “current” state of an agent at time t0 in iteration k. It uses the following definitions:

xi0 = qk
i (t0) (5.3)

ẋi0 = q̇k
i (t0) (5.4)

ẍi0 = q̈k
i (t0) (5.5)

Also of note, is that we did not explicitly define the maximum speed bound for an agent,
as it can be expressed through the set of valid accelerations, A(v). The set A(v) should
be chosen to reflect the agent’s physical constraints on acceleration, as well as encoding the
maximum achievable or allowable velocity. This can be represented by restricting the set of
accelerations to those that would not exceed the maximum velocity after time C, or in other
words:

∀u∈A(v) ‖v + Cu‖ ≤ Vmax (5.6)

Although in the safety algorithms presented below, no particular form for A(v) is assumed,
practical implementations must choose a representation. In modelling a holonomic robot, a
“traction circle” has been found to work well in practice [52,77]. This corresponds to an A(v)
which is circular (or spherical in higher dimensions) with some radius F , and centered on

112

zero in acceleration space. However, some robots may be able to decelerate faster than their
maximum acceleration (D > F), and thus it should be included in the model if possible.
One way of doing this is a “partial ellipse”, where A(v) is a union of a traction circle of
radius F and half of an ellipsoid with a major axis of D and a minor axis of F . The
half-ellipse is oriented with its major axis away from the current velocity. A representative
acceleration space plot of this shape is shown in Figure 5.2. While both the traction circle
and the partial ellipse are only approximations to the true set of possible accelerations (see
Sherback et al. [77] for a detailed study), the partial ellipse model has been found to be
a good approximation for the CMDragons robots. If D = F , the partial ellipse model is
equivalent to the traction circle. With either model, A(v) must still be modified to exclude
velocities that exceed the maximum bound as described above.

v

D F

Figure 5.2: The model of A(v) used in applying DSS to small-size soccer robots. F is the
maximum acceleration and D is maximum deceleration. It is oriented by the current velocity
v.

Finally, we can give a formal definition of safety. This is a refinement of the weaker notion
of safety at a particular time expressed in Equation 1.2, as this new version uses a bounded
radius model for robots, and even more importantly it describes safety at all times past a
particular point, rather than only at a particular moment in time. This “strong” notion of
safety is represented as the following function S, which is comprised of two parts. Se is a
boolean function indicating safety between a robot i and the environment. Sr is a safety
function indicating safety between n mobile robots. Overall safety in a domain consisting of
a static environment and mobile agents is described by the function S, which is a conjunction
of Se and Sr.

113

Se(k, t0) = ∀i∈[1,n] ∀t>t0 qk
i (t) ∈ Cfree (5.7)

Sr(k, t0) = ∀i,j∈[1,n],i6=j ∀t>t0 ‖qk
i (t)− qk

j (t)‖2 ≥ (Ri + Rj)
2 (5.8)

S(k, t0) = Se(k, t0) ∨ Sr(k, t0) (5.9)

Se indicates if an agent i stays in the free configuration space after some time t0, and thus if
true, guarantees the agent has not collided with an obstacle within the configuration space.
Sr indicates if the Euclidean distance between any two distinct agents is always at least the
sum of their safety radii. Thus if true, it guarantees the agents never pass close enough
to collide after t0. The following section details the Dynamic Window algorithm, which
attempts to maintain Se for a single agent. It is followed by the Dynamic Safety Search
algorithm, which guarantees for a set of cooperating robots that S true in one iteration
remains true in subsequent iterations, while the robots attempt to execute externally specified
goals.

5.2 The Dynamic Window Approach

The goal of the safety system is to act as a post-process to motion control, which normally
does is not concerned with avoiding obstacles, instead focusing only on convergence given a
goal and the agent’s dynamics. Safety could be handled at the motion planning level, sub-
suming all obstacle avoidance, motion control, and dynamics safety into a single algorithm.
However, current solutions treat the resulting problem as a higher dimensional planning
problem, resulting in exponential complexity in the number of agents. Thus what is de-
sired is a polynomial complexity algorithm practical for multi-agent teams, and while not
complete, can still guarantee safety algorithmically. Our method will extend a single-agent
algorithm to reach these goals.

The “Dynamic Window” approach [38] is a search method which elegantly solves the problem
of collisions between a robotic agent and the environment. It is a local method, in that
only the next velocity command is determined, however it can incorporate non-holonomic
constraints, limited accelerations, maximum velocity, and the presence of obstacles into that
determination. It can thus provide for safe motion for a robot in a static domain. The search
space is the velocities of the robot’s actuated degrees of freedom. Fox et al [38] derived the
case of a synchro-drive robots with a linear velocity and an angular velocity, while Brock
et al [12] developed the case of holonomic robots with two linear velocities. Both methods
use the concept of a “velocity space” where actions can be tested for safety. each point in

114

the velocity space corresponds to reaching that velocity within the control period C, and
then executing a stop at a deceleration of D until the agent has come to a complete halt. A
velocity can considered safe if the robot can travel up to that command during C and then
stop without hitting an obstacle. This corresponds to not hitting an obstacle during C and
then not hitting an obstacle during the stop (which traces out a line in world coordinates).
It would be difficult to search all of velocity space to find the action that minimizes a cost
metric, however, due to limited accelerations, velocities are limited to only a small window
that can be reached within the acceleration limits of A(v) over the control cycle. An example
of a velocity space with an obstacle and an acceleration window is shown in Figure 5.3 1.

World Coordinates Velocity Space

Vx

Vy
Acceleration

Window

Obstacle

Agent

Figure 5.3: Example environment shown in world space and velocity space. Note that this
figure is hand-drawn and thus only approximate.

In order to find a safe command, the Dynamic Window method creates a grid over the
acceleration window, and evaluates each grid cell with a combination of a safety test and
an evaluation metric. The safety test checks if a velocity command would hit an obstacle,
resulting in an infinite cost. If the command is safe, then it is evaluated based on heuristics
for reaching a desired target (Dynamic Window includes both safety and motion control
in a single algorithm). Pseudocode for a variant is given in Table 5.1. The variation is
that we have replaced velocity space with a related concept of an acceleration space. The
acceleration space is defined using the possible accelerations in the robot model A(v) for one
control cycle C, with the results as defined in the transfer functions f and ḟ . In the code,

1Note that the velocity obstacle on the right of the figure was hand drawn rather than calculated, and is
thus only approximate

115

the function CheckSafetyObs calculates the position after the control cycle (lines 1-2), and
then calculates the stopping deceleration and the time required to stop (lines 3-4). If both
of these trajectories are safe, then the command can be executed safely2. The main search
function, DynamicWindowSearch searches a grid for the lowest cost acceleration command
that is safe. In Brock et al [12], the Dynamic Window approach was used successfully for a
robot moving up to 1m/s in cluttered office environments with dynamically placed obstacles.

function CheckSafetyObs(i:RobotId,u′) : Status
1 let p1 = f(qi, q̇i, u

′, C)

2 let v1 = ḟ(q̇i, u
′, C)

3 let h = −D v1

‖v1‖

4 let t∆ = ‖v1‖
D

5 let p2 = f(p1, v1, h, t∆)
6 return CheckObsLine(q,p1,R + ε)=Safe ∧ CheckObsLine(p1,p2,R)=Safe

procedure DynamicWindowSearch(i:RobotId)
1 let G = SampleUniformGrid(A(q̇))
2 ei ← ∞
3 foreach u′ ∈ G do
4 if CheckAccel(i,u)=Safe ∧ Cost(u′) < ei then
5 ui ← u′

6 ei ← Cost(u′)
7 end

Table 5.1: The Dynamic Window method for a single agent

5.3 Dynamics Safety Search

Our approach, called Dynamics Safety Search or DSS, extends the Dynamic Window ap-
proach to multiple velocity and acceleration bounded robots, and replaces the grid-based
sampling with a randomized sampling approach which guarantees the preservation of safety
if no sensor or action noise is present. It operates for n robots with the model described in
Section 5.1. In Table 5.3, Dynamics Safety search is compared against the Dynamic Window

2A small positive real number, ε, is used to ensure that the parabolic path traced during the control
period is included within the straight-line obstacle check. For typical short control cycles C < 0.1s, the
effect is minimal. Alternatively, a parabolic trajectory check could be implemented by the collision detection
library.

116

approach on which it is based as well as a hypothetical complete motion planner operating on
the joint configuration and space defined by the n agents. Compared to Dynamic Window,
DSS supports an exact guarantee of safety, and does not require a sufficient resolution in
order to find a solution. DSS also supports multiple agents running the algorithm, and sup-
ports avoidance of uncontrolled moving obstacles (but without safety guarantees). Finally
DSS does not use a fixed grid or resolution, and thus can operate as an anytime algorithm
(only constant overhead per agent). Compared to a joint state-space planner, DSS is not
complete, and is not guaranteed to find solutions avoiding moving obstacles. However, DSS
can operate as an anytime algorithm with O(n2) complexity, rather than the non-anytime
exponential complexity of the planner. If we replace the complete planner with a random-
ized variant, we can achieve better complexity guarantees but give up both completeness
and guaranteed safety. DSS thus occupies a middle ground that is intended to be practical
for implementation of multi-robot teams.

Dynamic Window Joint Planning Dynamics Safety Search
Complete No Yes No
Safety guarantee Resolution Exact Exact
Multiple agent support No Yes Yes
Moving obstacle support No Yes Partial
Anytime algorithm No No Yes
Multi-agent complexity N/A Exponential O(n2)

Table 5.2: A comparison of properties of Dynamic Window, explicit planning, and Dynamics
Safety Search

The easiest way to understand the DSS algorithm is in a top-down manner. The high-level
routines are listed in Table 5.3. The main function DynamicsSafetySearch, runs once per
decision cycle (not per robot). It starts each iteration by setting each agent’s command in
ui as the stopping deceleration if the agent is moving (lines 3-5). This is guaranteed to be a
safe action to perform by the previous iteration. An evaluation cost based on the difference
between this stop command and the desired acceleration ak

i is stored in ei (line 6). This will
be used to rank alternatives to find one which most closely matches the desired command.
The current approach uses squared Euclidean distance as the metric. Next, the duty cycle
for the command, γi is set to ensure that the agent comes only to a stop and does not begin
to accelerate in the opposite direction (line 7). For small control periods, such as C < 0.1s,
the effect is negligible, but it is necessary for completeness. In practical implementations,
γi is almost always equal to C. After this “initialization to stop” phase from (lines 1-7),
DynamicsSafetySearch then calls a helper function ImproveAccel for each agent, which will
try to better match the agent’s desired action while maintaining safety.

117

function CheckAccel(i:RobotId, u′:Vector) : Status
1 if CheckSafetyObs(i,u′)=Unsafe
2 then return Unsafe
3 foreach j ∈ [1, n], j 6= i do
4 if CheckRobot(i,u′,j,uj)=Unsafe
5 then return Unsafe
6 return Safe

procedure ImproveAccel(i:RobotId)
1 if CheckAccel(i,ak

i)=Safe then
2 ui ← ak

i

3 ei ← 0
4 γi ← C
5 else
6 foreach j ∈ [1, m]
7 u′ ← RandomAccel(q̇i)
8 if CheckAccel(i,u)=Safe and ‖u′ − ak

i ‖2 < ei then
9 ui ← u′

10 ei ← ‖u′ − ak
i ‖2

11 γi ← C
12 end
13 end

procedure DynamicsSafetySearch()
1 foreach i ∈ [1, n] do
2 let s = ‖q̇i‖
3 if s > 0
4 then ui ← −D q̇i

s

5 else ui ← ~0
6 ei ← ‖ui − ak

i ‖2
7 γi ← min(s

D
, C)

8 foreach i ∈ [1, n] do
9 ImproveAccel(i)

Table 5.3: The high level search routines for velocity-space safety search.

118

The procedure ImproveAccel consists of two major stages. In the first stage, it checks to see if
the agent’s desired command can be carried out without causing any failure in the safety. It
does this by calling the CheckAccel function which returns whether or not using a particular
acceleration as a command maintains safety for all of the agents. If ImproveAccel finds that
the desired command can be safely executed (line 1), then it sets that command in ui (line
2) to be carried out for the duration of the control cycle (line 4). The evaluated cost is zero,
since the current command matches the desired command. As a result, further search is not
necessary as no better matching command could be found. In practical implementations,
it is this short-circuit that results in the efficiency of the algorithm. If the agents are not
interfering with each other or close to C-space boundaries, it is normally the case that the
agent’s desired action will be safe. If however, the desired action cannot be performed, a
search is carried out (lines 6-12), which tries to find an acceleration that is safe, but with a
lower evaluated cost. In line 7, a random acceleration is sampled from the set of accelerations
possible at the current velocity (A(v) in the robot model). This is checked for safety, as well
as having a lower cost than the current action (line 8). If both these conditions are met, the
action is set and the evaluation cost calculated (lines 9-11).

For the high-level search routines, this leaves the function CheckAccel. It returns if a give
acceleration is safe, and has a straightforward implementation based on the definition of
safety in equations 5.7-5.9. Safety with respect to the environment is handled using the
same function as we used in the implementation of the Dynamic Window approach (lines
1-2). Robot agents are handled by checking the new action with each other robot using the
function CheckRobot, which is described below (lines 3-5). If neither of these checks finds a
violation of safety, the action is considered safe (line 6).

In Figure 5.4, and example run of DSS for a single control cycle can be seen. Each agent is a
shaded circle, with the desired acceleration shown as an arrow in the first frame. An extruded
circle “pill shape” denotes the trajectory of the robot including its action and stopping
phases. Because DSS never violates the safety of an existing trajectory, the extruded area
can be thought of as a reserved space to stop 3. The stopping trajectory also indicates the
current velocity of the agent, which is along the same direction as the stopping trajectory. To
the right of each of the depictions of the environment, a plot of the horizontal velocity with
time is given for both agents. In part (a), each agent has its action initialized to stop, and
the arrows display the desired acceleration command. The velocity plot shows both agents
decelerating to a complete stop. In part (b), agent 1 has chosen a safe action (depicted by
the blue arrow) which is as close as possible to the desired action (shown in light gray).
The effect on the velocity plot is to accelerate up to time C, and then stop within a new

3Although it is a useful approximation to think of these areas as non-overlapping, it is not the case that
these areas are necessarily disjoint. It is only the case that at any given point in time, the robots cannot
occupy the same circles defined by their safety radius.

119

reserved stopping area. Agent 1’s action was constrained by the rectangular environment
obstacle, so it could not match the desired acceleration. In part (c), agent 2 chooses an
action depicted by the dark arrow, which matches the desired action as closely as possible
while maintaining safety. The effect on the horizontal velocity is shown on the right. Agent
2’s action is constrained by the need to avoid hitting agent 1 during the stopping trajectory.
In part (d), the agents have advanced by time C and have executed their actions. The
remaining trajectory is a valid stopping action. A new iteration of the algorithm can begin.
Thus, using DSS attempts to iteratively delay stopping into the future with each iteration,
while always maintaining that as an action to fall back on if needed. This is similar to the
Dynamic Window approach, but because the stopping action is treated specially, rather than
integrated into the grid search as in Dynamic Window, DSS can always guarantee finding a
safe action.

We now proceed in describing the lower layers of the algorithm. In Table 5.4, the mid-level
functions for DSS are shown. The function MakeTrajectory is used to construct a trajectory
for an agent starting with a given acceleration ui. Mathematically it is constructing the
piecewise components of the function qk

i (t). Line 1-3 calculate the time and the resulting
position and velocity of executing action ui, starting from the current state of the robot in
xi0 and ẋi0. The system transfer functions are used to perform the forward prediction of
position and velocity (Equations 5.1 and 5.2). In lines 4-6, the results of a stopping action
are calculated. hi is acceleration opposite the agent’s current velocity with a magnitude of D,
while ts is the time when the agent will come to a stop. Again the system transfer function
is used to compute the position, and the velocity will be zero. Based on the acceleration
model of the robot, each of these three phases of motion for the robot (control, stopping,
stopped) define a trajectory from t0 onward, and during each segment the acceleration is
constant. Thus the entire trajectory can be modelled as parabolic segments. For this purpose,
the parabolic tuple is defined, with the order of members being the position, velocity, and
acceleration vectors, respectively, followed by the time interval for which that parabolic
motion segment is defined. Lines 7-9 of MakeTrajectory construct parabolic tuples for the
three phases of motion. These three items are then used the construct a trajectory tuple
(Line 10).

Given the function MakeTrajectory, and a primitive for checking parabolic segments for
collision, the implementation of CheckRobot is as follows. Lines 1-2 construct the trajectories
for agents i and j. Then each pair of parabolic segments is checked against one another using
the primitive checking function CheckParabolic (Lines 3-6). The function CheckParabolic
returns unsafe if two parabolic segments pass within a certain distance of one another (in
this case the sum of i and j’s safety radii). If no collision is found between any pair of
segments, then the actions ui and uj are safe in the sense of Se (Equation 5.7) and the Safe
status is returned (Line 7).

120

time

v.x

C

0

0

1

1

22

time

v.x

C

0

0

1

2

1
2

time

v.x

C

0

0

1

22
1

time

v.x

C

0

0

1

22
1

(c)

(b)

(a)

(d)

Figure 5.4: An example of an iteration of DSS with two agents. Each agent starts by
assuming it will stop (a), and then each agent chooses an action (b)-(c), while making sure
the action will allow a safe stop afterward. Finally, the actions are executed (d) and the
agents can safely assume that stopping is a valid action.

121

tuple Parabolic = (Vector * Vector * Vector * [Time,Time])
tuple Trajectory = (Parabolic * Parabolic * Parabolic)

function MakeTrajectory(i:RobotId, ui:Vector) : Trajectory
1 let tc = t0 + Cγi

2 let xi1 = f(xi0, ẋi0, ui, tc − t0)

3 let ẋi1 = ḟ(ẋi0, ui, tc − t0)
-

4 let hi = −D ẋi1

‖ẋi1‖

5 let ts = tc + ‖ẋi1‖
D

6 let xi2 = f(xi1, ẋi1, hi, ts − tc)
-

7 let Pi0 = Parabolic(xi0, ẋi0, ui, [t0, tc])
8 let Pi1 = Parabolic(xi1, ẋi1, hi, [tc, ts])
9 let Pi2 = Parabolic(xi2, 0, 0, [ts,∞])
10 return Trajectory(Pi0,Pi1,Pi2)

function CheckRobot(i:RobotId, ui:Vector, j:RobotId, uj:Vector) : Status
1 let (Pi0,Pi0,Pi0) = MakeTrajectory(i,ui)
2 let (Pj0,Pj1,Pj2) = MakeTrajectory(j,uj)
-

3 for a = 0 to 2 do
4 for b = 0 to 2 do
5 if CheckParabolic(Pia, Pjb, Ri + Rj) = Unsafe
6 then return Unsafe
7 return Safe

Table 5.4: Robot-robot checking primitive for safety search.

122

The pseudocode for the primitive function CheckParabolic is shown in Table 5.5. After
assigning names to the components of the parabolic tuples (lines 1-2), the function calculates
the overlapping time interval of the trajectories (line 3). If there is no overlap in the time
intervals, there is by definition no time at which a collision could occur, thus the parabolic
segments are safe with respect to one another (line 4). In lines 6 and 7, trajectory functions
are defined (matching the system transfer function f in the robot model). Next, a fourth-
order polynomial “clearance” function d(t) is defined, which is equal to the squared distance
between the parabolic function minus the squared total radius. Any value of d(t) less than
zero over the interval T indicates a collision, a zero value indicates constant, and the absence
of any such values indicates a safe trajectory. Thus the last block of the function (lines 9-15)
implements the classical function minimization technique for differentiable functions over an
interval. First, lines 9-10 check the boundaries of the interval, and next the real roots of the
derivative of d(t) with respect to t are determined. Any root within the time interval T with
a non-positive value of d(t) results in the status Unsafe being returned (lines 12-14). If none
of the extrema are unsafe, the function returns a status of Safe (line 15). The approach
taken in CheckParabolic defining d(t) is similar to the “relative velocity” method of Fiorini
et al. [36] for an agent planning among multiple moving obstacles.

function CheckParabolic(P1:Parabolic,P2:Parabolic,r:R) : Status
1 let (x1, ẋ1, u1, [t1a, t1b]) = P1

2 let (x2, ẋ2, u2, [t2a, t2b]) = P2

-

3 let T = Intersection([t1a, t1b],[t2a, t2b])
4 if T = ∅ then return Safe
5 let [ta, tb] = T
-

6 let p1(t) = x1 + ẋ1(t− t1a) + 1
2
u1(t− t1a)

2

7 let p2(t) = x2 + ẋ2(t− t2a) + 1
2
u2(t− t2a)

2

8 let d(t) = ‖p1(t)− p2(t)‖2 − r2

-

9 if d(ta) ≤ 0 or d(tb) ≤ 0
10 then return Unsafe
11 let M = RealRoots(Deriv(d(t),t),t)
12 foreach t ∈ M do
13 if t ∈ T and d(t) ≤ 0
14 then return Unsafe
15 return Safe

Table 5.5: The parabolic trajectory segment check.

123

Overall, the Dynamics Safety Search algorithm is a fairly involved, but highly modular
approach. Each of the subfunctions has a well defined interface and semantics. While this
method is not complete in a kinodynamic planning sense, it scales polynomially with the
number of robots, and can guarantee safety among multiple moving agents with realisitic
motion constraints. The achievement of objectives is difficult to analyze, since DSS uses a
reactive and oppurtunistic method for achieving goals within its safety assumptions. However
when paired with a path planner which already lacks completeness, the loss may not prove
as problematic. In particular, the assumptions of DSS fit well with applications where
achievement of task objectives is secondary to safe operation.

5.4 Guarantee of Safety

Ultimately, we want to satisfy the notion of safety described by Equation 1.2 from Chap-
ter 1.3.2. However, that definition of safety is “weak” in that it only considers the position
at the current time, and thus it is difficult to show that this definition is met while dynamics
constraints are respected. Thus DSS defines the stronger definition of safety embodied in
Equation 5.9, where safety is modelled over an entire future trajectory from the current time
forward. The DSS safety guarantee applies to agent bounded by a radius, rather than the
more general set theoretic definition in Equation 1.2. Within the case of such a circular or
spherically bounded agent however, the DSS guarantee of Equation 5.9 is strictly inclusive
of the weak definition.

DSS maintains safety by treating Equation 5.9 as an invariant during all operations on the
world state. The statement of safety embodied in it defines exactly the kind of safety we
would like an algorithm to provide; at all times it maintains a future trajectory that can
safely be executed indefinitely. Of course, if a problem instance for DSS starts out as unsafe,
there is no guarantee that DSS can return the system to safety. Thus the guarantee we can
seek from the safety search method is that it can maintain safety if started from any safe
situation. In particular, we wish to demonstrate that:

Theorem 5.4.1. For n robots given the model from Section 5.1, if S(k, t0) holds, then after
time C, and the execution of DynamicsSafetySearch, then S(k + 1, t0 + C) holds.

Due to the complexity of DSS, a full proof of the algorithm would be very long, thus the
proof is only sketched here in enough detail to justify the claims of safety. Operations on the
world state for DSS fall into two main categories, both of which maintain the strong safety
invariant:

124

• The passage of time C maintains the safety invariant if new actions are set to
stopping the agent

• Any modification of actions performed by ImproveAccel maintains the safety
invariant

These two operations cover everything occurring in the top level procedure DynamicsSafety-
Search. For the first type of system transition, the passage of time is governed by the system
transfer functions (Equations 5.1-5.2. Immediately following this, the first part of Dynam-
icsSafetySearch sets a stopping action. The other type of transition is a “decision cycle”
where the latter part of DynamicsSafetySearch calls ImproveAccel on each agent. If both of
these operations maintain safety individually, the safety invariant overall is maintained. We
will first focus on time passage, and then follow with action modification.

In order to show that advancing time does not cause the safety invariant to fail, the critical
point is that trajectory qk+1

i (t) follows the path of qk
i (t) after time C has passed, allowing the

safety at iteration k to imply safety at the next iteration. In other words, given a trajectory
function qk

i defined as the following:

qk
i (t) =


qk
i (t, 0) if t ∈ [t0, tc]

qk
i (t, 1) if t ∈ [tc, ts]

qk
i (t, 2) if t > ts

(5.10)

where tc = t0 + C, and the individual components of q represent the parabolic segments P
created in MakeTrajectory, we want to show that:

qk
i+1(t) =

{
qk
i (t, 1) if t ∈ [tc, ts]

qk
i (t, 2) if t > ts

(5.11)

The can be shown to be the case because the calculations in line 1-3 of MakeTrajectory exactly
mirror the system transfer functions f and ḟ . As a result, qk

i+1(t) follows the “tail” of qk
i (t)

for any time after t0 + C. With this fact holding for all robots, and the assumption that
all other obstacles are static, any safety guarantees for the original trajectory functions will
carry over. Thus, for any trajectory constructed in the previous frame by MakeTrajectory,
the passage of time will maintain the safety invariant. Of course, if a new action is not
chosen, we must show that the stopping action from DynamicsSafetySearch. The critical
point there is that lines 1-3 construct a function that matches Equation 5.11, with the the

125

action set to the derivative of qk
i (t, 1). Thus, overall the safety invariant in maintained by

advancing time.

Next, we argue that ImproveAccel maintains the invariant. This is straightforward, as both
cases where an action is set in the function ImproveAccel are guarded by conditional state-
ments asserting CheckAccel returns a status of Safe. The function CheckAccel can be shown
to mirror the definition of S in Equation 5.9. Both parts of S are expressed, as lines 1-2
matches Se (Equation 5.7) while lines 3-5 matches Sr (Equation 5.8)

DSS maintains the safety invariant from Equation 5.9 at all times, and thus satisfies the
weaker definition of safety at any time instant expressed in Equation 1.2. This guarantee
rests on the assumption that all moving agents are participating in the algorithm, and that
the obstacles in the configuration space are otherwise static. Also, there can be no sensory
error in the positions and velocities, and no action error as expressed in the system transfer
functions (Equations 5.1-5.2).

5.5 Improving Efficiency

For a practical implementation, a few approaches can lead to significant gains in the execu-
tion speed of the algorithm. The first approach is to cut down on the number of parabolic
segments that need to be checked against one another as a nested loop in the function Check-
Robot. In a typical situation for a pair of robots, the plot of speed versus time would look
similar to Figure5.5. In the common case where γ = 1, the control periods for the two agents
are identical, so the first two parabolic motion segments must be checked against one another,
but will not overlap with any other segments. After that, both agents will be decelerating,
so the “stopping” parabolic segments will need to be checked against one another. Finally,
the second agent to come to a stop much check its stopping parabolic segment against the
“stationary” segment of the other agent. After this time, both agents are stopped, and the
status of their safety will not change. Using this approach, the number of parabolic pairs
that need to be checked drops from nine to three. Even in the case where γ < 1, a similar
approach means that only four checks need to carried out.

Another helpful approach is to use broad-phase collision detection techniques as explored
in Chapter 3, and in particular the Extent Masks approach described in 3.2.1. A bounding
box can be associated with each trajectory tuple, and CheckRobot can first check for overlap
between the bounding boxes before proceeding with a trajectory check. In cases with many
agents, where only a few pairs of agents are within close proximity, this can result in a
large speedup. Taking the broad-phase approach further, based on the structure of A(v) one

126

js

t

s

C

is
1 2 3

Figure 5.5: Example velocity profile of two agents i and j. Each agent starts at a distinct
velocity and executes a control acceleration for time C, and then comes to a stop using decel-
eration D. This defines three segments of relative motion, each with a constant acceleration.

could construct a bounding box which included all possible trajectories, or a box Bi such
that for any u ∈ A(ẋi0), the resulting trajectory function q′i(t) lies within Bi. Any agent or
obstacle outside this bounding box need never be checked for safety. The agents and obstacles
overlapping the box could be placed in a “potentially colliding set” calculated in the function
ImproveAccel, placing it outside the search loop for accelerations. This optimization would
likely result in a large speedup for domains with many agents.

In the implementation of DSS used in the evaluation and application of the algorithm,
both the parabolic pairs optimization and the trajectory bounding box optimization were
incorporated. The potential colliding set optimization was not implemented due to the more
invasive changes required for the algorithm and supporting libraries, as well as the sufficient
performance of the current implementation.

Another question one can ask is what the minimum complexity of the general DSS approach
could be. For n agents, m obstacles, and k random samples in the acceleration search, the
worst-case complexity is of DynamicsSafetySearch O(kmn2). This results from the complex-
ity of CheckAccel, which is O(mn), which is called up to k times in ImproveAccel, which is
thus O(kmn). The n calls to ImproveAccel by DynamicsSafetySearch leads to the final com-
plexity. The complexity of the top level procedures derive directly from the approach itself,
leading the focus to trying to improve CheckAccel is possible. The scaling with obstacles is
subject to the problems discussed in Chapter 3, however improving the n factor would be
helpful for large numbers of agents by removing the n2 factor. However, if the algorithm is
called with an environment like that shown in Figure 5.6, no spatial data structure based
on bounding volumes on trajectories will allow a sub-linear number of checks for a single
agent. Thus, the complexity cannot be improved within the bounds of the DSS approach

127

unless addition constraints on parameters or environments are made. In practice however,
with more uniform distributions of agents and obstacles, performance has been found to be
adequate. This will be explored in detail in the next section.

Figure 5.6: An example situation showing n agents with Ω(n2) overlapping trajectories.

5.6 Evaluation and Results

The Dynamic Safety Search algorithm was implemented as a C++ object following the
approach presented in the pseudocode, but with the optimizations described in Section 5.5.
It was first tested in a simple simulator of an environment similar to the RoboCup small size
league, but with more complicated environmental obstacles. It was subsequently added to
the CMRoboDragons system in 2005 and an updated version in the CMDragons 2006 team.

5.6.1 Simulation Evaluation

The evaluation domain consists of up to ten simulated robots modelled after idealized
RoboCup small size robots. The task is to alternately achieve goals on the left and right
side of the environment with several obstacles. The domain used for testing is shown in
Figure 5.7. The state pictured in the figure is just at the beginning of a test run, with the
robots represented as filled circles and their respective goals represented as outlined circles.
The straight line indicates the motion control target, and the remaining jagged path is the
unoptimized result from an ERRT planner. The stop trajectory is represented as before, as

128

a swept circle, but it is not visible in the figure because the agents are not yet moving. In all
the tests, the robots have a diameter of 90mm and environment is 5m by 4m. Each robot
agent has a command cycle of C = 1/60 sec, a maximum velocity of 2m/s. The maximum
acceleration is F = 3m/s2, and the deceleration is D = 6m/s2, and A(v) is modelled as a
partial ellipse (see Figure 5.2).

Figure 5.7: The evaluation environment for the DSS algorithm.

For the collision avoidance experiments, four robots were given the task of traveling from the
leftmost open area to the rightmost open area, and back again for four iterations. Each robot
has separate goal point separated from the others by slightly more than a robot diameter.
Because the individual robots have differing path lengths to traverse, after a few traversals
robots start interacting while trying to move in opposed directions. Figure 5.8 shows an
example situation in the middle of a test run. On average, four full traversals by all of the
robots took about 30 seconds of simulated time.

129

Figure 5.8: Multiple robots navigating traversals in parallel. The outlined circles and lines
extending from the robots represent the chosen command followed by a maximum rate stop.

130

For the evaluation metric, we chose interpenetration depth with obstacles multiplied by
the time spent in those unsafe states. This captures both the frequency and severity of
collisions in a single metric. To more closely model a real system, varying amounts of position
sensor error were added, so that the robot’s reported position was a Gaussian deviate of its
actual position 4. This additive random noise represents vision error from overhead tracking
systems. It also stresses the system by testing the random search; with Gaussian noise the
stopping action is not guaranteed to be safe, and thus a search is required to return the
system to safety. Velocity sensing and action error were not modelled in the simulation for
simplicity; these errors depend heavily on the specifics of the robot and currently lack an
accurate model with wide applicability.

For the first test, we compare two options which both use ERRT and a motion control
system, but enable or disable the safety search. Each data point is the average of 40 runs
(4 robots, each with 10 runs), representing about 20 minutes of simulated run time. The
results are shown in Figure 5.9. It is evident that the safety search significantly decreases
the total interpenetration time. Without the safety search, increasing the vision error makes
little difference in the length and depth of collisions. Ideally the plotted curve without safety
search would be smooth, but due to the random nature of the collisions it displays extremely
high variance, and many more runs would be needed to demonstrate a dependence on vision
noise. However, even with the noise, it is clear that the curve is significantly worse than
when safety search is used. Next, we evaluated only the system with safety search enabled,
but using varying extra margins of 1− 4mm around the 90mm safety radius of the robots,
plotted against increasing vision error (see Figure 5.10). As one would expect, with little or
no vision error even small margins suffice for no collisions, but as the error increases there
is a benefit to higher margins for the safety search, reflecting the uncertainty in the actual
position of the robot. Thus this supports adding an extra margin of safety around the robots
based on the expected noise. Such an approach was adopted for the real CMDragons robots.

The other variable of interest is the cost in running time of planning and the safety search.
In the tests above, the ERRT planner was limited to 1000 nodes, and the safety search was
limited to 500 randomly sampled velocities. The system executed with an average run time
of 0.70ms per control cycle without the velocity safety search, and 0.76ms with it. Thus
safety search does not add a noticeable overhead to the navigation. Since this is a real-time
system however, we are most interested in times near the worst case. Looking at the entire
distribution of running times, the 95th percentiles are 1.96ms without safety search and
2.04ms with it. In other words, for 95% of the control cycles, runtime was less than 2.04ms
with safety search, and the execution time was only 4% longer than without safety search.
Thus, for systems with an existing execution time budget for path planning, adding the

4A description of the CMDragons vision system, including experiments to determine the error model and
the appropriate magnitudes appear in Appendix A. The particularly relevant section is A.2

131

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.5 1 1.5 2 2.5 3 3.5 4

In
te

rp
en

et
ra

tio
n

(m
m

 *
 s

ec
)

Vision Standard Deviation (mm)

No Search
Safety Search (1mm)

Figure 5.9: Comparison of navigation with and without safety search. Safety search signifi-
cantly decreases the metric of interpenetration depth multiplied by time of interpenetration.

132

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

In
te

rp
en

et
ra

tio
n

(m
m

 *
 s

ec
)

Vision Standard Deviation (mm)

 1mm
 2mm
 3mm
 4mm

Figure 5.10: Comparison of several margins under increasing vision error. The four different
margins used are listed in the key, while increasing vision standard deviation is plotted
against the collision metric of interpenetration depth multiplied by time of interpenetration.

133

safety search is a small additional overhead.

Next, to measure the scalability of the safety search approach, the same traversal task was
repeated while varying the number of robots from 1 to 10. With increasing numbers of
agents in a fixed-size environment, we can hope to gauge how well the algorithm performs
under increasing amounts of clutter due to moving objects. The timing results for safety
search are shown in Figure 5.11. The function appears to scale in a roughly linear fashion
for more than one agent, though it is too noisy to determine with any certainty. The most
important observation is that it does not scale in a particularly super-linear fashion, which
would cause difficulties for moderately large teams. As shown earlier, the worst case for
DSS is O(n2), but such cases do not appear to arise in the experiment. The runtime cost of
DSS demonstrates that it is applicable to control of agents at high rates of replanning. An
equivalent method using joint state-space planning would need to encode at least position
and velocity, resulting in a 40 dimensional problem for ten robots. The author is not aware
of any current method which could approach 60 Hz replanning in the joint state-space.

5.6.2 Real Robot Evaluation

On the physical robots, objective measurement has proven difficult, although we have quali-
tatively noted that the frequency of collisions between teammates goes from several times a
minute to once every several minutes, for regular soccer play, while it drops very significantly
for tasks with highly conflicting navigation goals. In order to demonstrate the effect of DSS,
a test domain was created where two pairs of robots would swap positions in a 2.8m traver-
sal across a RoboCup field. An image sequence in Figure 5.12 shows the robots traversing
the field without additional obstacles, while Figure 5.13 shows a traversal with five static
obstacles in the environment. A video of this test is available on the supplemental materials
web page [21]. During 60 seconds of testing, a only a single collision occurred between the
moving robots. Minor contact also occurs between a robot and a static obstacle in the second
stage of the test. By comparison, this test could not be run with DSS disabled due to the
risk of damage to the robots. In limited testing with a decreased speed, the robots could not
complete a single traversal without a collision while DSS was disabled.

A second application of DSS was as a post-process to a user tele-operation program. The
driving program allows a user to set the target velocity for a robot using a joystick. DSS can
be used as a post-process to the user specified command to maintain safety while trying to
achieve the target velocity. This allows a safe method for tele-operation, even for novices 5.

5Having a novice operator damage a robot during tele-operation at a demo was one of the original
motivations for implementing DSS

134

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
tim

e
(m

s)

Number of robots

Raw
Mean

Figure 5.11: Average execution time of safety search for each agent, as the total number of
agents increases. For each robot count, 100 trials of the left-right traversal task were run.
Both the raw data and means are shown.

Figure 5.12: A sequence captured while running DSS with four CMDragons robots. All
agents completed their 2.8m traversal within 3.1 seconds.

135

Figure 5.13: A sequence captured while running DSS with four CMDragons robots and five
small static obstacles. All agents completed their 2.8m traversal within 2.8 seconds.

A video of this system is available in the supplemental materials [21]. At first, DSS is enabled
and the user navigates among a field of static obstacles, with minimal avoidance required on
the part of the user. In the second half of the video, DSS is disabled and an expert operator
attempts to replicate the motions while avoiding obstacles. With DSS enabled, one collision
occurs during 45 seconds of operation, while with DSS disabled, 18 collisions occur during
the same time period.

In the RoboCup competitions, there is one impartial source of measurement for the safety
of navigation systems. In the small-size league rules, a penalty can be called by a referee
against a robot for pushing or hitting an opponent excessively, as well as for a non-goalie
robot entering the team’s own defense area. The DSS algorithm has been used by our teams
for the past two years in the international RoboCup competition; An early version of the
DSS algorithm was adopted for the 2005 team entry CMRoboDragons, and the version as
described in this chapter was adopted for the 2006 entry CMDragons. In two years of play
(13 games), our team received only a single navigational penalty, which occurred while DSS
was disabled 6. During this time, our team finished fourth and first in the tournament.
None of the first place teams in 2003-2005 were able to complete the tournament without a
pushing penalty.

In terms of execution time, the DSS algorithm has proved efficient when applied on the real
robots. When applied during either the traversal task or soccer gameplay, the safety search
contributed to less than 1% to overall navigation execution time. This is because the in
the more open RoboCup environment, close proximity between agents and with obstacles is
rare, allowing DSS to avoid its random search in most cases.

Although the algorithm seeks to guarantee that no collisions occur, on the real robots colli-
sions do still arise. The remaining collisions generally appear to be a result of our imperfect

6A behavior for attempting to steal the ball from an opponent mistakenly disabled DSS while driving
backwards with the ball, and resulted in a penalty when the robot entered its own defense zone.

136

model of the robots while operating at high speed, and the resulting errors in tracking. This
is particularly true for latency, which while nominally 100ms, varies up to a whole cycle
due to occasional radio packet transmission errors, and more frequently up to 10ms due
to variations in scheduling and processing time on the controlling host computer. A robot
travelling at 1.8m/s covers 30mm in 10ms, thus resulting in “glancing” collisions such as
occur in the traversal video.

5.7 Conclusion

This chapter described a novel real-time control system for multiple robots acting cooper-
atively while moving near the limits of their dynamics. The Dynamic Safety Search (DSS)
algorithm has the following properties:

• It extends the Dynamic Window Approach to multiple cooperating agents

• It can guarantee safety for robots which operate without any error

• It does not guarantee completeness

• It allows agents to change goals every control cycle

• It scales at O(n2) with the number of agents, and linearly in practice

• It works well on real robots even with modelling error

• It can be used to create an intuitive safe tele-operation system

It is hoped that DSS offers a practical solution for the safe centralized control of multiple
coordinating agents. The primary contribution is to demonstrate theoretical and practical
safety for a class of robot systems, to serve as a successful model and example for similar
problem domains, and as a starting point for future work which relaxes some of the as-
sumptions. It is hoped that the algorithm can be extended in the future, in particular for
distributed control of multiple agents. While the current solution is centralized, relying on
perfect communication of world state and actions, the system purposely does not rely on
additional communication other than the broadcast of world state and actions. Thus commu-
nication is bounded and linear in the number of agents, and in particular, no communication
is required for deliberation or other explicit coordination.

137

138

