Chapter 6

Related Work

6.1 Motion Planning

Motion planning is one of the most studied problems in mobile robotics. Latombe [62] gives a
thorough overview of early approaches, while Reif [76] establishes the exponential complexity
of the general path planning problem. This complexity has inspired many approximation
methods, such as local minima free grid-based potentials [56], and common application of
the A* algorithm [72] on cost grid representations of the robot’s state space. Stentz’s D*
algorithm [80] builds on A* to create a variant which only recalculates portions of the problem
where costs change, achieving significant speedup for domains where the environment changes
slowly over time. Much recent work has centered around the idea of randomized sampling
for approximation, such as LaValle and Kuffner’s RRT algorithm [64,65], and planners based
on Kavraki et al.’s Probabilistic Roadmap (PRM) framework [53,54]. RRT grows random
trees in configuration space to solve single-query problems efficiently, and was extended
by Bruce [23] to work efficiently in unpredictably changing domains by using continuous
replanning with a bias from past plans. PRM separates planning into a learning and query
phase. In the learning phase, a random subgraph of the configuration space is build by
sampling points and connections between points to find free locations and paths, respectively.
In the query phase, this graph can be used with ordinary graph search methods such as A*
to solve the path planning problem. It relies on largely static domains to achieve efficiency,
since an in an unchanging workspace the learning phase need only be computed once. Boor
et al. [9] changed the sampling method of PRM to focus on the boundaries of free space
in their Gaussian PRM approach. Amato and Wu [1,2] create another modified sampling
approach called Obstacle PRM, and Hsu [47] created a bridge test to bias sampling to difficult

139

narrow passages. Isto [49] looked at applying complex local planners to PRM, replacing the
commonly used “straight-line” method for local planning to connect two points. It was found
to significantly improve graph connectivity for difficult problems resulting in more reliable
planning.

Our particular domain contains multiple moving objects, which must be treated as obstacles
for safe navigation. Edrman and Lozano-Perez [32] look at the effects of multiple moving
objects on the planning problem and offer some early solutions by adding time to the con-
figuration space. Latombe [62] provides background and investigates the effects of moving
obstacles on the planning problem. Fiorini and Shiller [36] focus on using relative velocity to
simplify the planning problem from each agent’s point of view, leading to a more tractable
problem for mobile robots. Their work was extended to construct explicit velocity obstacles,
first for linear paths and then for arbitrary nonlinear paths [37,61]. The approach assumes
that the complete obstacle paths are known in advance. More recently, Hsu [46] applied
randomized planning to domains with moving obstacles, and tested the system on physical
robots. This approach assumes constant velocity obstacles, but recovers via replanning when
a change in velocity is detected.

6.1.1 Scope and Categorization

One could not hope to cover every path planning method that has been developed, so
our attention will be instead restricted to several representative approaches. Some are from
recent research while others are classical approaches that have proved popular in applications.
They can be compared against the desirable attributes useful for control of a mobile robot.
We’d like for an approach to be complete, meaning that if a feasible path exists it is always
found. However, path planning has been shown to be PSPACE-hard [76], indicating that
any complete planner will likely be exponential in the the number of degrees of freedom.
This has led to research into approximate algorithms with relaxed notions of completeness.
One relaxation is resolution completeness, where a planning algorithm with a resolution is
complete for a particular input given a sufficient finite resolution. An example of this is
a planner using a grid approximation of the environment; with a sufficiently fine grid a
solution can be found if one exists. However, for problems with no solution, such planners
are typically not capable of indicating that no path exists with a finite resolution. Another
form of relaxation is probabilistic completeness, where an algorithm has a nonzero probability
of finding a path if one exists. Many randomized sampling based planners have this property.
Another important property of planners is what notions of optimality a they can capture.
Since all any search can cover a finite number of cases, one way of viewing path planners
is in how they reduce the continuous domain problem down to a finite graph for searching.

140

This aids in analyzing what kind of optimality the algorithm can provide. The reduction to
a graph can (and usually does) impose limits on most metrics for optimality (such as length
optimality). In addition, given a graph, an algorithm may or may not return an optimal
result given its graph representation.

While the previous two properties apply to most planning domains, mobile robots benefit
from additional properties since they execute the plan. During execution, new information
about the environment is obtained, which can force updates the robots model of reachable
free space, as well as changing the ultimate goal the robot is trying to reach. Thus for
efficiency, we would like planners to have an efficient method for updating the environment
or the query. Of course efficiency is a relative measure and not very meaningful without
clarification of its definition within this context. One useful measure is to look at the speed
relative to the size in a change in the environment or requested goal. A large change in the
problem would be expected to take the same time as a new problem, while a small change in
the problem should ideally only require a short update. Thus if a planning algorithm has a
large speed component that is proportional to the amount of change in the environment since
the last plan was calculated, then we can say it allows for efficient environment updates. We
can define efficient goal updates similarly; running time should mostly depend on how far
the goal has been moved.

The final property we will consider is if the planner is capable of planning for non-holonomic
robots or robots with dynamics constraints. A robot is said to be holonomic if the actuated
degrees of freedom match the robot’s total degrees of freedom; or alternatively phrased, that
the robot can begin accelerating along any degree of freedom at any time. Normally a robotic
arm is considered holonomic, as well as some mobile robots with special omnidirectional drive
systems. Robots with motion constraints are said to be non-holonomic, such a car-like robot,
or a robot with two independently driven wheels on a common axis (called a differential-
drive robot). Planning for a non-holonomic robot is in general substantially more difficult.
Another similar difficulty is dealing with dynamics constraints such as bounded accelerations
and velocities. A planner that can deal with both kinematic and dynamics constraints is
referred to as a kinodynamic planner [65].

6.1.2 Graph and Grid Methods

One of the most classical approaches for low dimensional planning are grid methods, where
the workspace and configuration space are represented with uniform rectangular grids. Com-
mon approaches involve using Dijkstra’s algorithm or A* to plan discrete actions on the
grid [72]. Using Dijkstra’s algorithm filling Cgee outward from the goal generates a minima-

141

free distance on the grid, called a Navigation Function [56]. Such a function has only one
global minimum at the goal point, so the robot can follow the gradient downward to reach
the goal. Although A* can deal with arbitrary edge costs, while Dijkstra’s is limited to unit
length costs, the latter has a significant speed advantage when implemented on regular grids.
Specifically, a queue can be used in place of a priority queue, along with several other mi-
nor optimizations. Thus for mobile robot applications with frequent replanning, navigation
functions have proved popular. However, A* can be extended to efficiently propagate edge
cost changes, as shown by the D* algorithm [80] and the related Incremental A* or “D*
Lite” [57]. These algorithms maintain dependency information so that the solution can be
updated when edge costs can change. Starting from vertices bordering edges with updated
costs, changes are propagated to only the affected nodes, thus saving the cost of a total
replan as would be required with A*. Both algorithms are guaranteed to return a path with
the same cost as A*, so cost optimality is maintained. Thus D* and its variants support
efficient updates to the environment model without affecting optimality. If backwards plan-
ning is used, the initial position can be changed efficiently (which is important for mobile
robots), while if forward planning is used, the goal position can be moved efficiently. To
a limited extent, the other endpoint can be moved in each case by shifting every obstacle
and the opposite endpoint (in effect, changing a goal move into a start location move, and
vice-versa). This may or may not be more efficient than replanning from scratch for a given
environment and representation. In terms of optimality, A* and D* are optimal with respect
to edge weight, while a navigation function is optimal with respect to the number of edges
in a path only (or alternatively viewing all edges as equal weight). The primary problems
of grid methods is that they not scale well with the degrees of freedom, and cannot directly
plan non-holonomic actions.

Another problem with grid methods is that they are traditionally limited to motion along
the directions of the grids or diagonals (four connected or eight connected grids), resulting
in paths which are not as straight as they could be, and thus non-optimal in a continuous
sense. In the case of an eight-connected grid, paths can be up to 8% longer than optimal [34].
To address this issue, a variant of D* called Field D* has been developed [34,35]. Field D*
modifies traditional grid based planners by allowing edges to traverse at intermediate angles.
First, it modifies the search graph by moving the search vertices to the corners of the cost
grid cells. This allows edges connecting from an adjacent cell to a neighboring cell to pass
through only one cost region (instead of two when the vertices are at the center of cost cells).
While the D* algorithm will generate path lengths for each vertex, Field D* also estimates
the cost of traversing to any point along the edge of a cell, using interpolation between the
two neighboring vertices. This heuristic can fail in certain situations, since the cost variation
may not be linear between nodes. As a result Field D* is not guaranteed to find a path with
a cost at least as low as D*. In most problem instances the heuristic works well however, and
results in significantly straighter paths which are approximately 4% shorter than D* or A*,

142

while less than doubling the planning time [34]. Thus it works quite well in practice however,
and has been applied to many robotic domains to replace classical grid-based planners [35].

6.1.3 Visibility Graph

Due to the high space requirements for grids with more than a couple degrees of freedom,
much of the modern work in path planning has tried to use randomization to create “sum-
mary graphs” of a workspace using randomized sampling techniques. These summaries are
referred to as roadmaps [62]. One well known 2D roadmap method is the visibility graph
method [69], which noted that a point robot following an optimal trajectory in a field of
convex obstacles is always either: (1) following a boundary of an object or (2) following a
tangent between two objects (the initial and goal configurations are treated as objects with
radius zero). Thus a finite graph could be created that still contained the optimal (mini-
mum length) path in from continuous space. Unfortunately, this method does not generalize
to higher dimensions, nor does it scale well with the number of obstacles. It also cannot
optimize other metrics, such as those that encourage safety margins around obstacles. In
fact, without postprocessing, the plan will skim every obstacle along the path. Thus this
simple, optimal method works very well, but only for a very limited environment. It can-
not be extended for additional capabilities and thus is the algorithmic equivalent of a local
maximum.

6.1.4 Randomized Path Planner (RPP)

Due to the limitations of the classical approaches such as grids and exact roadmap methods,
alternative approaches were explored. Randomization has proved a powerful tool in this
pursuit. One of the first randomized planners was RPP (Randomized Path Planner) [62]. It
constructed a navigation function in the workspace, which may however contain local minima
in the configuration space. The planner proceeds by following the navigation function until
it reaches a local minimum, and then executes random motions in an attempt to escape the
attraction well of the minimum. It records each minimum so it can determine if a random
motion escaped the attraction well. A list of minima along the current path is maintained
so that the search can backtrack to a random configuration if the last minima cannot be
escaped after several iterations. RPP is capable of solving difficult problems, but by relying
on both grids and randomization it is only probabilistically resolution complete. It does not
guarantee any form of optimality if a local minima is reached during the search, and does not
offer any efficient environment or query updates. It scales well with the degrees of freedom

143

of the robot, but not with workspace dimensions. In its plain form it does not deal with
holonomic or dynamic constraints.

6.1.5 Rapidly Exploring Random Trees (RRT)

target target

P o P

g-init g-init g-init

Figure 6.1: Algorithm steps in RRT

One of the relatively recently developed randomized planning approaches are those based on
Rapidly-exploring random trees (RRTs) [64]. RRTs employ randomization to explore large
state spaces efficiently, and can form the basis for a probabilistically complete though non-
optimal kinodynamic path planner [65]. Their strengths are that they can efficiently find
plans in high dimensional spaces because they avoid the state explosion that discretization
faces. Furthermore, due to their incremental nature, they can maintain complicated kine-
matic constraints if necessary. A basic planning algorithm using RRTs is as follows: Start
with a trivial tree consisting only of the initial configuration. Then iterate: With probability
p, find the nearest point in the current tree and extend it toward the goal g. Extending
means adding a new point to the tree that extends from a point in the tree toward g while
maintaining whatever kinematic constraints exist. In the other branch, with probability
1 — p, pick a point x uniformly from the configuration space, find the nearest point in the
current tree, and extend it toward x. Thus the tree is built up with a combination of ran-
dom exploration and biased motion towards the goal configuration. Search efficiency can be
improved by using bidirectional search growing a tree both from the initial and goal configu-
rations [51]. RRT planners do not support efficient environment or query updates. However
they are fast enough that realtime rates can be achieved for relatively simple problems, and
with additional extensions quite reasonable performance can be achieved.

144

target

ot =
B~
Wy

® o 2.

Start with g-init

step 1 step 2

step 4 step 8

Figure 6.2: Example Growth of RRT

6.1.6 RRT Variants

Two variants of RRT exist which attempt to tackle the replanning problem. The first, called
Reconfigurable Random Forest (RRF) [66], extends RRT-Connect by allowing a forest of
random trees instead of just the two rooted at the initial and goal configurations. For an
initial plan, RRT-Connect is executed as normal, but for replans, search starts with the
existing trees. First, all the vertices and edges which may be affected by a change in the
environment are checked for collisions, and those that are no longer in Cfe. are removed.
Removing edges can “orphan” parts of the search tree, and those subsets are considered as
new trees and added to a list of trees to use during search. RRT-Connect proceeds as normal,
extending the initial and goal trees, but the Connect operation is replaces with a Merge-Tree
operation. The Merge-Tree operation attempts to connect a newly added node to all other
trees on the search list, and if the connection succeeds those two trees are re-parented into
a single tree. Search continues until some maximum number of iterations, or the initial
and goal trees have been connected. Because RRF continues adding nodes with each new
query, eventually the search tree may become too large. Thus RRF introduces a pruning

145

GD r
Moy, A

Ignore invalid extension Record valid extension

Figure 6.3: RRT extensions with obstacles

operation to decrease the number of nodes to a more reasonable number while maintaining
good coverage. While RRF offers good coverage of domains, it suffers from two drawbacks.
The first problem is that its runtime tends to by cyclic, increasing as nodes are added, rising
dramatically when pruning occurs, and the dropping to a lower level. This could be addressed
with continuous online pruning, but at the expense of even more algorithm complexity. The
second problem is that despite good coverage, the tree representation means there is always
a unique path between any two vertices in the tree. In configuration spaces with loops, this
can result in highly non-optimal paths being returned. RRT, by growing a new tree outward
from the initial and goal points each query, tends to avoid this problem.

The second extension of RRT for replanning is Dynamic Rapidly-Exploring Random Trees
(DRRT) [33]. This work can be seen as a more conservative version of RRF which aims to
be a continuous planner analogous to D* on grids. For an initial query, DRRT grows a tree
backward from the goal configuration using the standard RRT algorithm until the initial
configuration is reached. To handle an environment update, all possibly affected vertices
and edges are checked for collisions and removed if they are no longer in Cj,.. Unlike RRF
however, DRRT removes the subtree of any such node, thus preventing orphaned trees from
being created. Replanning queries proceed from the existing tree, and thus can be quite
efficient when updates occur near the initial configuration. DRRT works best when the
sample distribution for search is biased toward areas where obstacles have been updated.
The drawbacks of DRRT are that it does not support moving the goal configuration, that
obstacle changes near the goal can invalidate large parts of the tree, and that for efficiency
it needs to be notified explicitly of which areas of the environment have changed and which
have remained static.

146

g-init g-init

goal goal

Figure 6.4: RRT as a motion planner

6.1.7 Probabalistic Roadmaps (PRM)

Figure 6.5: Uniformly Sampled PRM Example

Finally, a widely researched planner for static workspaces with higher dimensionality are
those based on the concept of Probabilistic Roadmaps, or PRMs [53,54]. PRMs have two
distinct planning phases; The learning phase where a roadmap is built from the configuration
space, and the query phase where it is used to solve a particular problem. The learning phase
needs to be run whenever the environment changes, to create the summary that the planning
stages use. First, free configurations are found through some sampling distribution (such as

147

uniform). Then, connections are made among these configurations using a “local planner’. A
simple straight line planner is often used, which checks if one configuration could be linearly
interpolated to another configuration without hitting an obstacle. In figure 6.5 a workspace
is shown first after sampling for free configurations using uniform sampling, and then after
connections have been made to create the roadmap. The connections in this example are
attempted with a simple straight line planner. At the end of the learning phase, we have a
graph where the free configurations are the vertices, and the successful local plans are the
edges. If the local plan weights are recorded as weights in the graph, we can apply A* or
any other graph searching method to get from one configuration in the graph to any other
configuration in the same connected graph component. In the query phase, the initial and
goal position are added to the graph, by trying to connect them to nearby vertices using
the local planner, then the graph search algorithm is used to find the actual path. The
planner fails if it cannot connect the initial or goal configurations to the graph, or if the
graph sections they connect to are not connected by the roadmap. Taken together, these
two phases comprise the basic PRM planning algorithm. It is probabilistically complete,
and when using A* can offer optimal plans (with respect to the roadmap, which is an finite
approximation of the paths in free space). It does not allow efficient environment updates,
because the learning stage and query stage must both be recomputed (i.e. it starts from
scratch). Query updates however tend to be very efficient, because only the graph search is
required and PRM graphs can be relatively small when compared to grids. In addition, if
the graph is large enough that speed becomes a problem, D* could be used since it applies to
general weighted graphs [80]. PRM has good scalability with degrees of freedom thanks to
its random sampling techniques. The plain version of PRM does not handle non-holonomic
constraints. It can be extended to solve some non-holonomic problems using specialized local
planners that satisfy the constraints [81].

6.1.8 PRM Variants

The PRM approach is a flexible one, allowing modification of various components while
maintaining its basic capabilities. This has led to a large number of variants which try
to address limitations or improve efficiency. The three major variables are the sampling
strategy, the roadmap construction method, and the local planner used. For sampling, it
has been found that a uniform distribution generally does not perform as well as modified
distributions that are a more complicated function of free space. Obstacle PRM [1,2] is a
variant which generates samples on the boundary of free space. It first generates samples
on the surface of one obstacle, and uses rejection sampling to remove those samples that are
inside other obstacles. The bridge test [47] sampling method is a rejection sampling method
that accepts free configurations that lie on the midpoint of two non-free configurations. The

148

length of the bridge is varied with a Gaussian distribution. Finding these bridges is very
time consuming due to the higher fraction of candidate samples being rejected. However
when combined with a small uniform distribution to fill free space, relatively few nodes are
needed to describe fairly complicated environments with narrow passages. Thus it is very
efficient for connecting the roadmap configurations and in the query phase.

The next kind of modification of PRM is to change the roadmap construction approach, such
as which sampled configurations we try to connect, and when we check them. Connected
components analysis is used in some PRM variants, for example, to speed roadmap construc-
tion by only trying to connect configurations from different components. While a significant
speedup, this also means no redundant paths are found, thus the resulting roadmap is a
tree. These are most useful for problems where path length optimality is not an issue. An-
other optimization trades slower queries to gain a faster learning phase. In Lazy PRM [7,8],
collision checks are not done while constructing the roadmap; instead of testing if an edge
can be added it is added as a “potentially free” local path. During the query, the graph is
searched to find the shortest potentially free path. Then the path is checked and any edges
that are not free are removed. If no edges were removed, the path is a valid solution, while
if edges are removed the query is repeated with the pruned graph. Eventually a free path
will be found if it exists in the graph, and only a minimal number of edges will have to be
checked for collisions.

The third kind of modification of PRM is to replace the local planner, which tries to connect
two configurations when building the roadmap or connecting the query configurations to
the roadmap. For non-holonomic problems for which a local planner exists (which can fail
in some circumstances, but must work when no obstacles are present), PRM can use that
local planner to become a non-holonomic global planner. Such a local planner has been
derived for car-like robots in [81]. Isto showed in [49] that increasing the power of the
local planner improves the overall performance of PRM on most benchmarks. Specifically,
allowing the local planner to slide along obstacles after contact, or using discretized heuristic
planners improved roadmap compactness and connectedness. Finally, some planners combine
powerful local planners with advanced construction methods. Probabilistic roadmaps of trees
(PRT) [6] is a PRM planner that uses RRT as the local planner to connect a relatively small
number of configurations. It has been shown to work for high dimensional problems of at
least 18 degrees of freedom. A related approach is the previously mentioned Reconfigurable
RRT Forest [67], where a tree is maintained by using RRT-Connect to connect a forest and
merging the trees together by re-parenting. It can be thought of as a PRM variant instead of
an RRT derivative in many respects. Unfortunately the tree representation of the roadmap
means that only one path can ever be found in the graph search, and it will generally be far
from optimal.

149

6.1.9 Randomized Forward Planners

In contrast to the RRT and PRM approach of “pulling” a search graph by choosing random
samples and then trying to connect a path to those points, some planners “push” samples by
first choosing some vertex to expand, and then extending it using a random action. These
algorithms can be thought of as modern descendents of the RPP algorithm. One of the
first descendents was Hsu’s Expansive Configuration Space Planner (ECSP) [48]. ECSP
initializes its search with the initial and goal configuration as roots of two search trees. It
then executes and Ezpand operation on each tree, where a vertex v is chosen at random
with probability 1/w(v). The weight w(v) is derived from a local density estimate of the
search tree. The chosen configuration v has a number of random points v' sampled around
it, which are kept with probability 1/w(v’) if a free direct path between v and v’ exists. After
each tree has been expanded, a Connect operation is employed which tries to link all pairs
of vertices in each tree if they are below some distance threshold. If the link is a free path,
the trees have been connected and search can terminate. Otherwise, search continues until
some time limit has been reached. ECSP has not found broad application due to efficiency
that is generally less than PRM or RRT, but it inspired much additional research.

The Guided Expansive Space Tree planner [73] extended ECSP through the addition of a
goal distance heuristic to bias search, much in the way A* uses a heuristic to limit search
on finite graphs. It also made use of the forward planning possible with ECSP to sample
actions, thus allowing highly non-holonomic problems to be solved. The PDST-Explore [59]
planner takes this further, planning exclusively in action space using forward simulation.
Local density estimates are calculated in a coarse way using KD-trees, and nodes are chosen
for expansion deterministically, based on the volume of the KD-tree cell containing the
node, and the number of times the node has been chosen. However, instead of expanding
that specific node, PDST-Explore samples a point randomly along the continuous path from
the initial configuration to that node’s configuration, which it then extends using a random
action. As a result, PDST-Explore can converge to uniform coverage of control space, and
thus is probabilistically complete even for non-holonomic problems. It has been applied
successfully to non-holonomic problems with drift and under-actuation [60]. However, it
does not currently have a variant tailored for replanning.

150

6.2 Safety Methods

6.2.1 Dynamic Window

Though not a path planner in the same sense as the other algorithms, the dynamic window
approach [38] is a search method for controlling mobile robots in light of both kinematic
and dynamics constraints. It is a local method, in that only the next velocity command
is determined, however it can incorporate non-holonomic constraints, limited accelerations,
and the presence of obstacles into that determination, guaranteeing safe motion. The search
space is the velocities of the robot’s actuated degrees of freedom. The two developed cases
are for synchro-drive robots with a linear velocity and an angular velocity, and for holonomic
robots with two linear velocities [12,38]. A grid is created for this velocity space, reflecting
an evaluation of velocities falling in each cell. First, the obstacles of the environment are
considered, by assuming the robot travels at a cell’s velocity for one control cycle and then
attempts to brake at maximum deceleration while following that same trajectory. If the robot
cannot come to a stop before hitting an obstacle along that trajectory, the cell is given an
evaluation of zero. Next, due to limited accelerations, velocities are limited to a small window
that can be reached within the acceleration limits over the next control cycle (for a holonomic
robot this is a rectangle around the current velocities). Finally, the remaining velocities are
scored using a heuristic distance to the goal. Like all local methods, the dynamic window
approach is incomplete, but it demonstrated practical applicability on real robots moving at
relatively high speeds. In addition, when combined with a navigation function for mid-level
planning, a non-optimal but resolution complete planner was developed and tested at speeds
up to 1m/s in cluttered office environments with dynamically placed obstacles [12].

6.3 Algorithm Summary

Taken together, these algorithms and approaches solve many variants of the path planning
problem. Many have limitations when viewed A summary of all related algorithms mentioned
in this section is shown in Table 6.1.

151

Table 6.1: Comparison of related planning algorithms

Efficient Efficient

_ _ Good dof Non-

Approach Complete Optimal Environ. Query Scalability Holonomic
Updates Updates
Grid A* res grid no no no no
Grid D* res grid yes yes no no
Field D* res no local part no no
Nav Func res grid no no no no
RPP prob-+res no no no no yes
RRT prob no no no yes yes
RRF prob no yes yes yes no
DRRT prob no local part yes no
PRM prob,res graph no yes yes some
Lazy PRM prob graph yes yes yes no
PRT prob no no yes yes no
ECSP unkn no no no maybe no
Guided ECSP unkn no no no yes yes
PDST-Explore prob no no no yes yes
Dynamic Win no res no no no yes
Key | Term Meaning
res | resolution complete path is found if the resolution is sufficiently small

prob | prob. complete path is found with nonzero probability
unkn | unknown completeness | depends on unproven conjecture
grid | grid optimal shortest path on grid is always found
graph | graph optimal shortest path in roadmap is always found
local | local environ. updates | efficient updates supported near the initial configuration
part | partial query updates | initial configuration can change, but not goal
some | some variants specialized variants support non-holonomic planning

152

