
Appendix A

Machine Vision for Navigation

The need for sensing in any truly autonomous robot is ubiquitous. Among the various
sensors that can be applied, one of the most powerful and inexpensive is that of machine
vision. Color-based region segmentation, where objects in the world are identified by specific
color (but not necessarily uniquely), has proved popular in robotics and automation, because
color coding is a relatively unobtrusive modification of the environment. With the coding,
balls, goals, obstacles, other robots, as well as other object can be detected. As the primary
sensory process for many mobile robots, vision goes hand-in-hand with navigation. A system
may use a camera on a robot to detect relative obstacles for navigation, or in the case of
many small robots, a camera fixed in the world space to detect both robots and nearby
obstacles.

Although popular as a sensor due to low hardware cost, vision has sometimes proved difficult
due to high processing requirements and a large input stream to sift through in order to
generate perceptual information for higher levels in the system. Thus the problem is that
of mapping an input video stream to a perceptually more salient representation for other
parts of the agent. The representation popular in hardware and domain-specific approaches
to this problem is to segment the video stream into colored regions (representing all or part
of a colored object). This is the representation we also choose, as it has proved successful in
many applications [50].

153



A.1 CMVision: The Color Machine Vision Library

A.1.1 Color Image Segmentation

By far the most popular approach in real time machine vision processing has been color
segmentation. It is currently popular due to the relative ease of defining special colors as
markers or object labels for a domain, and has proved simpler than other methods such as
the use of geometric patterns or barcodes. Among the many approaches taken in color seg-
mentation, the most popular employ single-pixel classification into discrete classes. Among
these, linear and constant thresholding are the most popular. Other alternatives include
nearest neighbor classification and probability histograms.

Linear color thresholding works by partitioning the color space with linear boundaries (e.g.
planes in 3-dimensional spaces). A particular pixel is then classified according to which
partition it lies in. This method is convenient for learning representations such as artificial
neural networks (ANNs) or multivariate decision trees (MDTs) [13].

A second approach is to use nearest neighbor classification. Typically several hundred pre-
classified exemplars are employed, each having a unique location in the color space and
an associated classification. To classify a new pixel, a list of the K nearest exemplars are
found, then the pixel is classified according to the largest proportion of classifications of the
neighbors [15]. Both linear thresholding and nearest neighbor classification provide good
results in terms of classification accuracy, but do not provide real-time performance using
off-the-shelf hardware.

Another approach is to use a set of constant thresholds defining a color class as a rectangular
block in the color space [50]. This approach offers good performance, but is unable to take
advantage of potential dependencies between the color space dimensions.

A final related approach is to store a discretized version of the entire joint probability distri-
bution. So, for example, to check whether a particular pixel is a member of the color class,
its individual color components are used as indices to a multi-dimensional array. When the
location is looked up in the array the returned value indicates probability of membership.
This technique enables a modeling of arbitrary distribution volumes and membership can be
checked with reasonable efficiency. The approach also enables the user to represent unusual
membership volumes (e.g. cones or ellipsoids) and thus capture dependencies between the
dimensions of the color space. The primary drawback to this approach is its associated high
memory cost.

154



A.1.2 Color Spaces

The color space refers to the multidimensional space the describes the color at each discrete
point, or pixel, in an image. The intensity of a black and white image is a segment of single
dimensional space, where the value varies from its lowest black value to its highest at white.
Color spaces generally occupy three spaces, although can be projected into more or fewer
to yield other color representations. The common RGB color space consists of a triplet of
red, green, and blue intensity values. Thus each color in the representation lies in a cube
with black at the corner (0,0,0), and pure white at the value (1.0,1.0,1.0). Here we will
describe the different color spaces we considered for our library, including RGB, a projection
or RGB we call fractional YRGB, and the YUV color space used by the NTSC and PAL
video standards, among other places.

In our choice of appropriate color spaces, we needed to balance what the hardware provides
with what would be amenable to our threshold representation, and what seems to provide
the best performance in practice. At first we considered RGB, which is a common format for
image display and manipulation, and is provided directly by most video capture hardware.
It’s main problem lies in the intensity value of light and shadows being spread across all
three parameters. This makes it difficult to separate intensity variance from color variance
with a rectangular, axis aligned threshold. More complex threshold shapes alleviate this
problem, but that was not possible in our implementation. An equally powerful technique
is to find another color space or projection of one that is more appropriate to describe using
rectangular thresholds.

This limitation lead us to explore a software transformed RGB color space we called fractional
RGB. It involves separating the RGB color into four channels, intensity, red, green, blue. The
color channels in this case are normalized by the intensity, and thus are fractions calculated
using the following definition:

Y ′ = (R+G+B)
3

(A.1)

R′ = R
Y ′ (A.2)

G′ = G
Y ′ (A.3)

B′ = B
Y ′ (A.4)

The main drawback of this approach is of course the need to perform several integer divides
or floating point multiplications per pixel. It did however prove to be a robust space for
describing the colors with axis-aligned threshold cubes. It proves useful where RGB is the
only available color space, and the extra processing power is available.

155



Figure A.1: A video image and its YUV color classified result

The final color space we tried was the YUV format, which consists of an intensity (Y) value,
and two chrominance (color) values (U,V). It is used in video standards due to its closer
match with human perception of color, and since it is the raw form of video, it is provided
directly by most analog video capture devices. Since intensity is separated into its own
separate parameter, the main cause of correlations between the color component values has
been removed, and thus is a better representation for the rectangular thresholds. This is
because the implementation requires axis aligned sides for the thresholds, which cannot model
interactions among the component color values. Thus YUV proved to be robust in general,
fast since it was provided directly by hardware, and a good match for required assumptions
of component independence in our implementation. An example YUV histogram, with a
threshold shown outlining a target yellow color is given in figure A.2

One color space we have not tried with our library is HSI, or hue, saturation, intensity. In its
specification, hue is the angle on the color wheel, or dominant spectral frequency, saturation
is the amount of color vs. neutral gray, and I is the intensity. Although easy for humans to
reason in (hence its use in color pickers in painting programs), it offers little or no advantage
over YUV, and introduces numerical complications and instabilities. Complications primar-
ily arise from the angle wrapping around from 360 to 0, requiring thresholding operations
work on a modular number values. More seriously, at low saturation values (black, gray,
or white), the hue value becomes numerically unstable, making thresholds to describe these
common colors unwieldy, and other calculations difficult [74]. Finally, HSI can be approx-
imated by computing a polar coordinate version of the UV values in YUV. Since YUV is
available directly from the hardware, it is simplest just to threshold in the pre-existing YUV
space, thus avoiding the numerical problems HSI poses.

156



Figure A.2: A YUV histogram with a threshold defined

157



A.1.3 Thresholding

The thresholding method described here can be used with general multidimensional color
spaces that have discrete component color levels, but the following discussion will describe
only the YUV color space, since generalization of this example will be clear. In our approach,
each color class is initially specified as a set of six threshold values: two for each dimension
in the color space, after the transformation if one is being used. The mechanism used
for thresholding is an important efficiency consideration because the thresholding operation
must be repeated for each color at each pixel in the image. One way to check if a pixel is a
member of a particular color class is to use a set of comparisons similar to

if ((Y >= Ylowerthresh)
AND (Y <= Yupperthresh)
AND (U >= Ulowerthresh)
AND (U <= Uupperthresh)
AND (V >= Vlowerthresh)
AND (V <= Vupperthresh))
pixel_color = color_class;

to determine if a pixel with values Y, U, V should be grouped in the color class. Unfortu-
nately this approach is rather inefficient because, once compiled, it could require as many as
6 conditional branches to determine membership in one color class for each pixel. This can
be especially inefficient on pipelined processors with speculative instruction execution.

Instead, our implementation uses a boolean valued decomposition of the multidimensional
threshold. Such a region can be represented as the product of three functions, one along each
of the axes in the space (Figure A.3). The decomposed representation is stored in arrays,
with one array element for each value of a color component. Thus class membership can be
computed as the bitwise AND of the elements of each array indicated by the color component
values:

pixel_in_class = YClass[Y]
AND UClass[U]
AND VClass[V];

The resulting boolean value of pixel in class indicates whether the pixel belongs to the
class or not. This approach allows the system to scale linearly with the number of pixels
and color space dimensions, and can be implemented as a few array lookups per pixel. The
operation is much faster than the naive approach because the the bitwise AND is a significantly
lower cost operation than an integer compare on most modern processors.

158



U

V

Y

U

Y

VVClass

UClass

YClass

Binary Signal Decomposition of Threshold

Visualization as Threshold in Full Color Space

Figure A.3: A 3D region of the color space represented as a combination of 1D binary
functions.

To illustrate the approach, consider the following example. Suppose we discretized the
YUV color space to 10 levels in each each dimension. So “orange,” for example might be
represented by assigning the following values to the elements of each array:

YClass[] = {0,1,1,1,1,1,1,1,1,1};
UClass[] = {0,0,0,0,0,0,0,1,1,1};
VClass[] = {0,0,0,0,0,0,0,1,1,1};

Thus, to check if a pixel with color values (1,8,9) is a member of the color class “orange”
all we need to do is evaluate the expression YClass[1] AND UClass[8] AND VClass[9],
which in this case would resolve to 1, or true indicating that color is in the class “orange.”

One of the most significant advantages of our approach is that it can determine a pixel’s
membership in multiple color classes simultaneously. By exploiting parallelism in the bit-
wise AND operation for integers we can determine membership in several classes at once. As
an example, suppose the region of the color space occupied by “blue” pixels were represented
as follows:

YClass[] = {0,1,1,1,1,1,1,1,1,1};
UClass[] = {1,1,1,0,0,0,0,0,0,0};
VClass[] = {0,0,0,1,1,1,0,0,0,0};

159



Rather than build a separate set of arrays for each color, we can combine the arrays using
each bit position an array element to represent the corresponding values for each color. So,
for example if each element in an array were a two-bit integer, we could combine the “orange”
and “blue” representations as follows:

YClass[] = {00,11,11,11,11,11,11,11,11,11};
UClass[] = {01,01,01,00,00,00,00,10,10,10};
VClass[] = {00,00,00,01,01,01,00,10,10,10};

Where the first (high-order) bit in each element is used to represent “orange” and the second
bit is used to represent “blue.” Thus we can check whether (1,8,9) is in one of the two
classes by evaluating the single expression YClass[1] AND UClass[8] AND VClass[9]. The
result is 10, indicating the color is in the “orange” class but not “blue.”

In our implementation, each array element is a 32-bit integer. It is therefore possible to
evaluate membership in 32 distinct color classes at once with two AND operations. In contrast,
the naive comparison approach could require 32× 6, or up to 192 comparisons for the same
operation. Additionally, due to the small size of the color class representation, the algorithm
can take advantage of memory caching effects.

A.1.4 Connected Regions

After the various color samples have been classified, connected regions are formed by examin-
ing the classified samples. This is typically an expensive operation that can severely impact
real-time performance. Our connected components merging procedure is implemented in
two stages for efficiency reasons.

The first stage is to compute a run length encoded (RLE) version for the classified image. In
many robotic vision applications significant changes in adjacent image pixels are relatively
infrequent. By grouping similar adjacent pixels as a single “run” we have an opportunity
for efficiency because subsequent users of the data can operate on entire runs rather than
individual pixels. There is also the practical benefit that region merging need now only look
for vertical connectivity, because the horizontal components are merged in the transformation
to the RLE image.

The merging method employs a tree-based union find with path compression. This offers
performance that is not only good in practice but also provides a hard algorithmic bound that
is for all practical purposes linear [82]. The merging is performed in place on the classified

160



2: Scanning adjacent lines, neighbors are merged

y

x

y

yy

x x

x

4: If overlap is detected, latter parent is updated

1: Runs start as a fully disjoint forest

3: New parent assignments are to the furthest parent

Figure A.4: An example of how runs are grouped into regions

161



RLE image. This is because each run contains a field with all the necessary information;
an identifier indicating a run’s parent element (the upper leftmost member of the region).
Initially, each run labels itself as its parent, resulting in a completely disjoint forest. The
merging procedure scans adjacent rows and merges runs which are of the same color class
and overlap under four-connectedness. This results in a disjoint forest where the each run’s
parent pointer points upward toward the region’s global parent. Thus a second pass is needed
to compress all of the paths so that each run is labeled with its the actual parent. Now each
set of runs pointing to a single parent uniquely identifies a connected region. The process is
illustrated in Figure A.4).

A.1.5 Extracting Region Information

In the next step we extract region information from the merged RLE map. The bounding
box, centroid, and size of the region are calculated incrementally in a single pass over the
forest data structure. Because the algorithm is passing over the image a run at a time,
and not processing a region at a time, the region labels are renumbered so that each region
label is the index of a region structure in the region table. This facilitates a significantly
faster lookup. A number of other statistics could also be gathered from the data structure,
including the convex hull and edge points which could be useful for geometric model fitting.

After the statistics have been calculated, the regions are separated based on color into
separate threaded linked lists in the region table. Finally, they are sorted by size so that
high level processing algorithms can deal with the larger (and presumably more important)
blobs and ignore relatively smaller ones which are most often the result of noise.

A.1.6 Density-Based Region Merging

In the final layer before data is passed back up to the client application, a top-down merging
heuristic is applied that helps eliminate some of the errors generated in the bottom up region
generation. The problem addressed here is best introduced with an example. If a detected
region were to have a single line of misidentified pixels transecting it, the lower levels of the
vision system would identify it as two separate regions rather than a single one. Thus a
minimal change in the initial input can yield vastly differing results.

One solution in this case is to employ a sort of grouping heuristic, where similar objects
near each other are considered a single object rather than distinct ones. Since the region
statistics include both the area and the bounding box, a density measure can be obtained.

162



The merging heuristic is operationalized as merging pairs of regions, which if merged would
have a density is above a threshold set individually for each color. Thus the amount of
“grouping force” can be varied depending on what is appropriate for objects of a particular
color. In the example above, the area separating the two regions is small, so the density
would still be high when the regions are merged, thus it is likely that they would be above
the threshold and would be grouped together as a individual region.

A.1.7 Performance

CMVision was tested at several resolutions using pre-captured data from an overhead cam-
era. For the test setup, a 60-image sequence was taken at 3 resolutions, up to a maximum
of 640x240 (interlaced NTSC video), and stored in a memory buffer so that the library
performance could be isolated from image capture overhead. The YUV colorspace col-
orspace (native NTSC YCrCb422 format) was used for image capture and thresholding.
The thresholding, connected components, region extraction, and region sorting methods
were run (density-based region merging was disabled) were run 1000 times to generate aver-
aged timings. The tests were run on a 2.4 GHz Athlon computer, and compiled using g++
with optimization enabled. The results are shown in Table A.1.7. As can be seen, CMVision
can run quickly on a modern computer, leaving plenty of processing time for other tasks.
Multiple 60 Hz video sequences can be processed on a single machine, and are limited by the
bandwidth between the capture cards and main memory1 instead of the vision processing
itself. Alternatively, it can be applied on lower-speed embedded processors such as those
likely to be found onboard small robots.

Frame Size Processing Time Throughput
(w x h) (ms) (frames/sec)
640x240 0.968333 1032.70
320x240 0.498148 2007.44
160x120 0.126860 7882.71

Table A.1: Performance of the CMVision low-level color vision library at various resolutions

1Bandwidth for a single steam of digitized NTSC video can reach 18 MB/s without counting overhead.
The maximum theoretical bandwidth of a PCI bus is 127 MB/s, although typically much less can be achieved
in practice with multiple PCI devices.

163



A.1.8 Summary of the CMVision Library

The CMVision library is a system to accelerate low level segmentation and tracking using
color machine vision. In creating it, we evaluated the properties of alternative approaches,
choosing color thresholding as a segmentation method, and YUV or fractional YRGB as
robust color spaces for thresholding. The created system can perform bounded computation,
full frame processing at camera frame rates. The system can track up to 32 colors at
resolutions up to 640x480 and rates at 30 or 60Hz without specialized hardware. Thus the
primary contribution of this system is that it is a software-only approach implemented on
general purpose, inexpensive, hardware. This provides a significant advantage over more
expensive hardware-only solutions, or other, slower software approaches. The approach
is intended primarily to accelerate low level vision for use in real-time applications where
hardware acceleration is either too expensive or unavailable.

Building on this lower level, CMVision has been applied to several applications, including
Carnegie Mellon’s RoboCup small-size league team entries (since 2000), as well as the Sony
legged (Aibo) league entries (1999-2005). As applied in the CMDragons system, CMVision
has been used to track robots one two cameras at 60Hz on a single computer, while leaving
sufficient processing time available for robot behaviors and motion planning. The next
section describes the pattern detection system built for the CMDragons robot system.

A.2 Pattern Detection

Fast pattern detection and identification is a fundamental problem for many applications of
real-time vision systems. The desirable characteristics for a solution are that it requires little
computation, localizes a pattern robustly and with high accuracy, and can identify a large
number of unique pattern identifiers so that many of these markers can be tracked within a
field a view. We will present a system that can accurately track a broad class of patterns
both accurately and quickly, when used with a suitable low level vision system that can
return calibrated coordinates of regions in a image. Both pattern design and the detection
algorithm are considered together to find a solution meeting the above criteria. Along the
way, assumptions are verified to make informed choices without relying on guesswork, and
allowing similar systems to be designed on a solid experimental and statistical basis.

Object identification and tracking is one of the most important current applications of ma-
chine vision. Much work has focused on object detection and tracking for complex or variable
objects, such as faces, cars, and doors. While much progress has been made, many of the

164



algorithms require substantial amounts of processing and are less accurate than can be
achieved with patterns specifically designed for detection. Thus many current applications
of vision-based object detection and tracking use customized patterns, such as in automated
part placement or package routing systems. Although the use of customized patterns pre-
vents the system from being usable in every environment, in many cases requiring a pattern
to be used is not a major limitation. Of course, if the pattern can be specified in order to
suit the capabilities and limitations of the machine vision system and detection algorithm,
in return we expect very high performance from that system. Specifically, the detection for
the pattern should be fast and highly accurate; especially when compared to more general
object detection and tracking systems. We will describe such a system in the following sec-
tions. For low level vision, we will employ the freely available [17] CMVision [18] library. It
performs color segmentation and connected components analysis to return colored regions
at real time rates without special hardware or dedicating the entire CPU to the task.

Figure A.5: The CMDragons’02 Robots. More recent robots use use the same marker
pattern.

The environment in which most of this work has been done is the RoboCup [55] F180 ”Small
Size” League, where robots up to 18cm in diameter play soccer on a 2.8m by 2.3m carpeted
soccer field. The game is played with two teams with five robots each, and uses an orange
golf ball for the ball. One team must have a 40mm blue colored circle centered on the top
of its robot while the other team must have a 40mm yellow patch. Teams may add extra
patches and colors to the top of their robot to aid in tracking, so long as those colors are
differentiable from the three standard colors (orange golf ball, yellow and blue team patches).
The robots from our team, CMDragons’02 [22], can be seen in Figure A.5. Each team can

165



control its robots either onboard, or offboard, and cameras are allowed to be placed above
the field. Thus, most teams use a single overhead camera, with an offboard PC interpreting
the camera signal and sending commands to the robots via a radio link.

This environment thus poses a tracking problem for up to 11 small objects in known planes
(in this case the possibly different, but known, heights above a ground plane). Few other
environments currently demand accurate, multiple pattern detection at very high speed, but
one such environment is Virtual or Augmented Reality. For these environments, patterns
are tracked in order to localize head mounted displays and locate objects in the physical
environment that are mapped into the virtual environment [26, 27]. Detection must be fast
and accurate to minimize observable lag and jitter in the visualization. Due to work in these
two environments, fast, accurate, multiple pattern detection has become better understood
and more practical. Thus we expect many more applications for such tracking systems in
the future.

Another aspect that makes the RoboCup F180 environment challenging is the high speeds of
the tracked objects, since the robots move quite quickly relative to their size. Robot speeds
peaking in excess of 2m/s are not uncommon, and ball speeds (via robot kicking mechanisms)
can reach up to 5m/s. Thus we feel this is a good testbed for a tracking system. Two other
vision tracking and identification systems for the F180 league have been described in [78]
and [45]. Each describes a working system used by a team, but neither motivates the choice
of pattern by a thorough analysis of the underlying feature error, or attempts to generalize
detection to other similar patterns in order to compare their performance. In this paper
we will outline the choices and trade-offs made in designing an identification and tracking
pattern by gathering real and simulated data at each step so that informed tradeoffs can be
made. We hope that this will help others to implement similar high performance tracking
systems both within RoboCup and in many other environments where a similar problem
exists. Such designs should not have to rely on any guesswork.

In the first section, we will motivate the type of patches chosen from which to build patterns,
and examine their error distributions when viewed from a camera. In the second section, we
will describe several common patterns and a broad class that includes most of the patterns.
We will motivate the use of this most popular class for its simplicity and accuracy, and
for which an efficient generic detection algorithm can be created. In the following section,
the performance of several such patterns will be examined in simulation. Finally the best
performing pattern from simulation will be evaluated on a real-time vision system.

166



A.2.1 Single Patches

In order to build up a detection pattern, we must have some simpler building block on which
to build. We will use simple colored patches whose position can be calculated accurately. To
detect orientation, multiple patches can be employed. For single patches, the simplest design
to detect is to use a regular geometric shape of a single color. Detection in the vision system
can be carried out on a binary or multiclass threshold image from which connected regions
of common color class can be extracted. This approach is common, and is known to be quite
efficient, so this is the approach we will use. The next variable to determine is patch shape.
We chose circles, because they guarantee rotational invariance, and analytical corrections
for the projective distortions of their image centroids are known [44]. In addition, they are
compact, minimizing the length of the border with other regions, where thresholding is most
difficult. In experiments, other regular shapes such as squares, hexagons, and octagons,
perform roughly on par with circles. However, they do not offer any benefits to motivate
their use in light of the analytical guarantees for circles.

The more difficult parameter to determine is what size of patch to use. When the dimensions
of the overall pattern are known, this still leaves the question of whether it is better to have a
pattern with a few large patches, or more patches where each is of a smaller size. To address
this, we created a test setup where a small moving platform would carry three different sized
white patches 2 meters across the field of view of a camera looking down from 3 meters. The
platform moved at a slow constant speed (about 23mm/sec) allowing large amounts of data
to be gathered from a variety of locations across the field. Using this setup, we gathered
positional data at 30 samples/sec for 40mm, 50mm, and 60mm circles. A total of 5 runs
were gathered, each one having about 2570 data points. As a convention, we labelled the
dimension along the primary direction of travel as x, and the dimension perpendicular to
the direction of travel as y.

Although there is no ground truth from which to measure true error, the error can be
estimated by smoothing the data with a large Gaussian kernel (σ = 10) and then comparing
single samples with the smoothed version of the signal. The aggregate errors appear to follow
a Gaussian distributions quite well, as can be seen in Figure A.6. However, more outliers
occurred than would be expected in a pure Gaussian distribution, and the variance seemed
to change noticeably between runs, and even varied over different segments in the course of
a single run. The most surprising result however, is that the size of the patch had very little
effect. The overall standard deviations were around 0.52mm in both x and y for all sizes
with only slight (although significant) variation. The cumulative distributions of absolute
error in x and y are shown in Figure A.7.

The estimated standard deviations for each patch size can be found in Table A.2, along

167



−3 −2 −1 0 1 2 3
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Aggregate Error Histogram

Error (mm)

B
in

 C
ou

nt

Figure A.6: Aggregate error distribution for all samples including all three patch diameters.
This is actual data collected from the vision system.

168



0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (mm)

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Cumulative Distribution of Error Along Direction of Travel

40 mm
50 mm
60 mm

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (mm)

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Cumulative Distribution of Error Orthogonal to Direction of Travel

40 mm
50 mm
60 mm

Figure A.7: Cumulative distributions of absolute error. Note that patch size does not have
a large effect on error. Along the direction of travel, the largest patch size decreases error
somewhat, but does worse than the smallest patch size perpendicular to the direction of
travel.

169



Table A.2: The estimated standard deviations and 95% confidence intervals by patch size.
Diameter σx σy

40 mm 0.553, [0.546− 0.561] 0.473, [0.467− 0.480]
50 mm 0.543, [0.535− 0.550] 0.504, [0.497− 0.511]
60 mm 0.489, [0.482− 0.496] 0.533, [0.526− 0.541]

with 95% confidence intervals for the standard deviation. For hypothesis testing, we used
the non-parametric Wilcoxon signed-rank test due to its robustness to outliers and lack
of strong assumptions about the distributions being tested. The significant results (in all
cases, p < 0.0001) were that along the direction of travel (x), the 60mm diameter circle
had significantly less error than both the 50mm and 40mm patches. Perpendicular to travel
(y) however, error increased with patch size, with all means being significantly different.
Combined error in x and y indicated that the 50mm patch was slightly worse than the other
two, with p = 0.02 against each of the other patches. Given the number of data points
(over 10,000) however, we do not consider a difference at p = 0.02 ultimately conclusive.
In addition, the difference in error from best to worst is less than 5%, which is much less
variation than expected since the largest patch has 2.25 times the area of the smallest patch.

Thus the conclusion we can draw are that patches should be large enough they can be
detected reliably, but need not be made any larger for purposes of accuracy. This is important
in that it is contrary to conventional wisdom about region detection. It seems that other
factors, such as quantization at edges due to pixels, play a larger part in determining the
error than the area of the region. As we will show later, we can do somewhat better by
adding more patches rather than using fewer patches and increasing their size.

A.2.2 Patterns and Detection

Butterfly Simple TriangleLinear

Figure A.8: Examples of common tracking patterns from the RoboCup F180 environment.

Now that the basis for choosing patches has been established, we can use this knowledge to
evaluate tracking patterns. One source for many different ideas are the various patterns used
by the over 20 teams in the RoboCup F180 League. The rules for the patterns on the top

170



of the robots in that league has naturally led to many tracking and identification patterns
being tried. Examples of some of the more popular designs can be seen in Figure A.8.
The approaches taken thus far generally fall into one of three broad categories. By far the
most common type is like that shown above, which we call patch based, where in addition
to the team marker patch in the center, one or more additional circular or rectangular
patches are used to encode position and orientation. Patch based systems have the advantage
that position and orientation detection can combine several features (patches in this case)
with sub-pixel accuracy. One alternative to this is to have a key patch marking the center
of the pattern, surrounded by radial “pie slices” of two or more colors. Orientation and
identification can be performed by scanning at some constant radius from the central patch
[45]. Unfortunately, by depending on features (color edges in this case) that are difficult to
quickly detect with sub-pixel accuracy, it is difficult to get very accurate orientation using
this method. Another type of tracking pattern that has been tried is to use a central patch
with an nearby line feature. By finding the edge points of that feature, a least squares fit
can be made to get an accurate orientation measurement. Unfortunately, both these classes
of patterns do not offer a straightforward way to improve the position estimate. For a given
pattern size, we would like to make the most of the space. Ideally, we would like all of the
patches to contribute to position, orientation, and identification detection. In this regard,
patch based systems tend to do quite well, which has led to them becoming the most common
class of pattern used for tracking.

If we look again at Figure A.8, we can notice similarities that can aid in creating a generic
detection algorithm. All are keyed by a colored patch (in the center of the pattern) indicating
the presence of a pattern. Each patch occurs at some unambiguous angle radially from the
key patch. Thus there is a distinct circular ordering of the non-key patches that can be
calculated even in the presence of moderate noise. This means a generic detection algorithm
can start by searching for the key patch, and then detecting and sorting the additional patches
radially. All that needs to be done after that is to find the rotational correspondence of the
additional patches with the geometric model of the pattern. In the case of the Simple pattern,
the correspondence is trivial. For the Linear and Triangle patterns, the colors of patches can
be used to disambiguate geometrically similar correspondences. Finally, in the case of the
Butterfly pattern, geometric asymmetry can be used to find the rotational correspondence,
assuming the distances between patches can be measured accurately enough. As shown in the
previous section, this boils down to the difference of two Gaussians. When we consider the
standard deviations determined in the previous section, distances that differ by over 10mm
should be differentiated correctly with very high certainty. Using geometric asymmetry offers
the benefit of freeing up the patch colors to encode only identification, rather that both
identification and rotational correspondence. This gives the butterfly pattern (or any other
geometrically asymmetric pattern) an identification advantage over symmetric patterns, as
shown in Table A.3.

171



Table A.3: The number of uniquely identifiable patterns that can be detected using a certain
number of colors (excluding the key patch and key patch color)

Pattern 2 colors 3 colors 4 colors n colors
Butterfly 16 64 256 4n

Simple 2 3 4 n
Linear 1 3 6 n · (n− 1)/2

Triangle 2 6 12 n · (n− 1)

Once the correspondence is established, the position and orientation estimates must be
made. What we would like is to get near optimal detection but without resorting to iterative
methods or other time consuming operations. Here we take a simple approach that turns
out to be not only fast but in practice nearly indistinguishable from optimal formulations.
First, the mean location of the patches is determined. This is an optimal estimate, although
for many patterns this location is offset from the actual location we want to report (so it is
not an optimal estimator of that point). After this mean position has been determined, we
get displacement vectors between a pre-specified set of “orientation pairs” from the patches.
These pairs should be well separated (because error decreases with distance), and different
pairs that share a patch should be as orthogonal as possible (to avoid correlated errors). For
the butterfly pattern, we use vectors between the four non-key patches. For the Triangle
pattern we Similarly take the triangle edges formed by the pattern’s three external patches.
For the Linear and Simple pattern, only one nearly orthogonal pair exists. For the Linear
pattern we choose the longest option of the opposite patches because this will minimize the
error compared to the two shorter vectors that include the central key-patch. After the
separation vectors are determined, they can be rotated into a consistent frame of reference
because their angle relative to forward is known from the model of the pattern. Once all
the vectors are lined up by the model, they can be added to form a single vector, and the
arctangent calculated to get the angle measurement.

The motivation for adding the vectors comes from the observation that the angular error of a
vector is roughly proportional to the separation of the patches when the separation distance
(d) is much larger than the positional standard deviation (σ), or:

σθ ≈
√

2σ2

d

The term
√

2σ2 comes from the subtraction of two Gaussians (since the separation distance
is large this is roughly a 1D subtraction). The division by d is the result of arctangent being
linear near the origin. In practice, we’ve found this approximation works well when d > 10σ.
Finally, once the angle estimate is made, we can use this to project the mean of the patches
to the coordinates of the patch that are to be reported (normally the origin of the patch

172



model coordinate system).

For comparison, we also derived an iterative Maximum Likelihood (ML) estimation method
that co-optimizes position and angle estimates assuming Gaussian positional error for the
patches. Its full derivation is omitted here for brevity. First, it is a well known fact that
minimizing sum-squared-error in 1D is identical to maximizing the log likelihood (and thus
likelihood) of samples from a Gaussian error distribution. Since in the 2D case variances
can be added, this correspondence carries over into the 2D case. Thus by minimizing the
sum-squared-error of the measured position of patches from their model positions given the
estimated pattern position and orientation, we can obtain an ML estimate. So for a pattern
with n patches, we define the current estimate of robot position as r, marker locations as
vi . . . vn, and patch locations from the pattern model as pi . . . pn. If we let s = sin (rθ) and
c = cos (rθ), then we have following derivatives for sum-squared-error E:

xi = rix + cpix − spiy − vix

yi = riy + spix + cpiy − viy

∂E

∂rix

=
∑

i=1..n

2xi

∂E

∂riy

=
∑

i=1..n

2yi

∂E

∂rθ

=
∑

i=1..n

2xi · (−spix − cpiy) + 2yi · (cpix − spiy)

These partial derivatives, along with the obvious implementation of the error function itself,
can be used to create an iterative ML estimation method using Newton’s method.

A.2.3 Pattern Comparison

In order to evaluate the patch-based patterns introduced earlier, a small simulator was
created that would generate patch positions using a Gaussian error model for a pattern at
random positions and orientations. Then the detection algorithm was run on the patches,
and the resulting position and orientation measurements compared to the true values used to
generate the input patches. The results for the simulation are shown in Figure A.9, plotted
as pattern position and orientation standard deviation vs. input patch positional standard
deviation. Each data point was generated from 100,000 simulated detections. One can

173



easily see that multi-patch patterns have a distinct advantage for both position and angle
measurements. The Simple pattern can fair no better than a single patch using the generic
detection algorithm described in the previous section. It could perhaps benefit more from
maximum likelihood detection, but this would make detecting the Simple pattern slower
than detecting the more complicated patterns. The Butterfly pattern has the most accurate
position estimation, followed by Triangle and Linear at somewhat decreased accuracy. For
angular error, the Butterfly pattern again shows the lowest error, with Triangle close behind.
With their multiple patches allowing several well separated orientation pairs to be used, they
both perform much better than Linear or Simple, each of which only have a single orientation
pair. Linear fares better than the Simple pattern because the separation distance for its
orientation pair is twice that of the Simple pattern. Another dimension along which we
might compare is execution time. The simple pattern’s position could be identified the
fastest, taking 0.5µs on a 900MHz Athlon, while the Butterfly pattern required 2.67µs. As
expected, the time was nearly proportional to the number of patches and orientation pairs.
However, these times negligible compared to the roughly 1000µs it takes to threshold and
segment a frame of video.

Since the Butterfly pattern worked best for both positional and angular error in simulation,
we decided to make further tests to evaluate its performance using the iterative maximum
likelihood detection and then measure the pattern’s performance on a real vision system. To
compare our generic detection algorithm with the ML estimate, we ran each of the detection
methods in simulation. Even after 100,000 samples, no statistically significant differences
could be detected with a Kolmogorov-Smirnov test, leading to the conclusion that at least
for complicated patterns, the simple detection algorithm was indistinguishable in terms of
accuracy from the ML estimation.

Finally, we evaluated the Butterfly pattern on a real vision system. We ran 5 runs similar
to those for single patches but this time with a pattern being tracked rather than individual
patches. The overall standard deviations were σx = 0.3766mm, σy = 0.3432mm, and σθ =
0.0070rad. This was significantly better than a single patch (p < 0.0001), although not as
low as predicted by simulation. The error was about 70% higher than predicted, which is
most likely explained by some correlation in the patches’ error (such as error from camera
jitter). The pattern error was more consistent with a patch standard deviation of around
0.8mm, and thus could also have been due to outliers affecting the measurements.

Another possible problem (but one that is easily measurable) is correlation of errors over time.
Typically filters assume that all readings are independent measurements, however this may
not be the case for some sources of error. In Figure A.10, we show 2D scatter plots of adjacent
readings for a single patch (top) and for a full pattern (bottom). The single patch shows
structure indicating that errors are likely to repeat (the center diagonal stripe) or jump up or

174



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Scaling of Pattern Positional Error with Patch Error

Patch Standard Deviation (mm)

P
at

te
rn

 P
os

iti
on

al
 S

ta
nd

ar
d 

D
ev

ia
tio

n 
(m

m
)

Butterfly
Simple
Linear
Triangle

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.01

0.02

0.03

0.04

0.05

0.06
Scaling of Pattern Angular Error with Patch Error

Patch Standard Deviation (mm)

P
at

te
rn

 A
ng

ul
ar

 S
ta

nd
ar

d 
D

ev
ia

tio
n 

(r
ad

)

Butterfly
Simple
Linear
Triangle

Figure A.9: Comparison of the positional and angular error of different patterns as the
error of individual patches vary. For relatively small patch standard deviations, a linear
relationship exists between the two, although the number of patches and layout of the pattern
vary the factor.

175



down by a fixed amount (the upper and lower diagonal stripes). As best we could determine,
this appears to be due to the binary color segmentation; As the patch moves across the
camera image, pixels switch from background color to patch color (and back to background)
abruptly, changing the location of the centroid by fixed amounts. The full pattern (bottom)
does not display this structure (most likely because combining 5 patches made the structured
error of individual patches small enough to make it unnoticeable). However the plot is still
not an unbiased circular cloud, so adjacent readings are still somewhat correlated. With a
few time steps separating readings, no observable correlations are present. Thus, assuming
measurements are independent for patterns seems to be a reasonable simplification, although
increasing the standard deviation to a more conservative estimate may be prudent. Assuming
independence for patches may be more problematic, so for tracking single patches the extra
complexity of modeling error correlation may be necessary.

A.2.4 Summary of Pattern Vision

This section presents the derivation of an efficient and highly accurate detection algorithm
along with an analysis of the performance of many different patch-based patterns. It is
designed to be paired with a low-level vision system (such as CMVision) to construct a
global vision system for a multi-robot system. We first look at the performance of single
patch detection, noting that size, although important for robust detection, does not have a
large effect on the accuracy of the positional measurement of a patch. We presented a fast
patch based detection algorithm along with an iterative ML variant, which perform similarly
in terms of accuracy. We compared several patterns in simulation to find out how accurate
their detection scaled with the error of the patches form which they were made. We then
tested a pattern on a real vision system with positive results, and examined the assumption
of independence on which higher levels of an object tracking system rely. In particular, the
data supports the common assumption of objects with additive Gaussian noise on position,
and provides measurements to guide the design of error tolerance into decision and navigation
systems for robot agents.

176



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Error at x[t−1]

E
rr

or
 a

t x
[t]

Correlation of Adjacent Errors

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Error at x[t−1]

E
rr

or
 a

t x
[t]

Correlation of Adjacent Errors

Figure A.10: 2D scatter plots of adjacent readings for single patches (top) and for a full
Butterfly pattern (bottom). Uncorrelated readings would show up as a circular 2D Gaussian
cloud. Note the structure in the plot for a single patch, and the unstructured but non-circular
distribution for the full pattern.

177



178


