These are some random examples of
group
s:
Continuous
group
s
Z,+
infinite
abelian
Z,* not a
group
. violates
inverse
R,* not a
group
. violates
inverse
for 0
R,+
infinite
abelian
R*=R-{0},*
infinite
abelian
R*=R-{0},+ not a
group
. violates
identity
Finite
group
s
{e}
order
1
cyclic
group
dihedral
group
Z mod n,+
Conjugacy classes
source
jl@crush.caltech.edu
index
symmetric_group
group_division
unitary_group
group
SO