Maxwell's equations are: tex2html_wrap167 , tex2html_wrap168 , tex2html_wrap169 , tex2html_wrap170 . Introduce a vector potential: tex2html_wrap171 , and tex2html_wrap172 . The A and tex2html_wrap173 have some gauge freedom. tex2html_wrap174 preserves the tex2html_wrap175 . In order to preserve tex2html_wrap176 , you must set tex2html_wrap177 . The lorentz condition is a specification of the gauge: tex2html_wrap178 . This is a lorentz covariant gauge. Define tex2html_wrap179 , then tex2html_wrap180 is a lorentz scalar. Define tex2html_wrap181 , then you get tex2html_wrap182 and tex2html_wrap183 . Define tex2html_wrap184 then tex2html_wrap185 in the lorentz gauge. Note that tex2html_wrap186 . This is conservation of charge. In integral form this is: tex2html_wrap187 . Then tex2html_wrap188 and tex2html_wrap189 . Define tex2html_wrap190 as the field strength tensor.




source psfile jl@crush.caltech.edu index