Rotation operators are matrices constructed from generators.

tex2html_wrap155 in a spinorial basis tex2html_wrap156 jm tex2html_wrap157 (2j+1 dimensional)

A 3-d representation of of spinors is a family of cones.

This satisfies:

The cone has an x-y length of tex2html_wrap161 and a hypoteneuse length of

tex2html_wrap162

Relation to tex2html_wrap163 in coordinate space:

You can represent tex2html_wrap164 in tex2html_wrap165 and tex2html_wrap166

Since tex2html_wrap167 Then use lowering operator to get other tex2html_wrap163 .

For rotation of an wavefunction, tex2html_wrap169 .

rotations in s= tex2html_wrap185 space

Rotations generated by total angular momentum: tex2html_wrap186 for tex2html_wrap187 the pauli spin matrices. This means tex2html_wrap188 . For electrons tex2html_wrap189 , tex2html_wrap190 commute with everything, so CSCO is tex2html_wrap191 . This means a general eigenfunction is tex2html_wrap192 . and tex2html_wrap193 . tex2html_wrap194 . rotating tex2html_wrap195 about tex2html_wrap196 you get tex2html_wrap197



source
psfile jl@crush.caltech.edu index
tensor_operator_rotation
orbital_angular_momentum
rotation_matrices
operator_rotation
angular_momentum
particle_spin