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Abstract

We present an improved bound on the dif-
ference between training and test errors for
voting classifiers. This improved averag-
ing bound provides a theoretical justifica-
tion for popular averaging techniques such
as Bayesian classification, Maximum Entropy
discrimination, Winnow and Bayes point ma-
chines and has implications for learning algo-
rithm design.

1. Introduction

Averaging is a standard technique in applied machine
learning for combining multiple classifiers to achieve
greater accuracy. Examples include Bayesian classifi-
cation [4], boosting [7], bagging [2], Winnow [13], Maz-
imum Entropy discrimination [11], and Bayes point
machines [9]. Despite the prevalence of this technique
there is only weak theoretical justification so far for
the practice. This paper provides a new stronger the-
oretical justification for the practice of averaging. In
particular, we state and prove a bound on the gap be-
tween the training set error rate and the predictive
error rate which improves as more hypotheses are av-
eraged over.

Until 1998, theoretical bounds such as the Occam’s ra-
zor bound [3] suggested that averaging was wrong be-
cause it increased the description length of the result-
ing hypothesis.! The Occam’s razor bound only sug-
gests that averaging may be bad since there is no cor-
responding lower bound. Schapire, Freund, Bartlett
and Lee [16] showed a great improvement on the naive

We note, however, that it is the minimum description
length that should be used in the bound.

bound for an average-of-classifiers hypothesis. Loosely
speaking, their margin bound states that if the aver-
age has a small empirical error rate (i.e., it is accurate
on most training examples) and has a large “margin”
(defined in 2.1), then its true error rate is also small.
The proof itself works in a very intuitive manner by
showing that the accuracy of a large margin classifier
is close to the accuracy of a simple classifier, for which
standard bounds are tight.

The problem with this result is that the value of the
bound depends only on the empirical margin which
does not necessarily improve with an average over a
larger number of hypotheses. This bound suggests us-
ing the simple criteria: choose the average to maximize
the margin. However, empirical results [8] indicate
that this procedure is not optimal.

In this paper, we prove a new bound on the true er-
ror rate, which suggests a new optimization criterion,
namely, optimize for a large margin and for a uniform
average over as many hypotheses as possible.

The layout of this paper is as follows:

1. Discussion of the relationship with prior relevant
results.

2. Development of a simple improved theoretical
bound.

3. A proof of the bound.

4. An example of the benefit of the new bound on a
toy problem.

5. Discussion of implications of the new bound on
prior work.



2. The setting and important earlier
results

2.1 The setting

We first explain the setting, which is the same as the
one used in [16].

An input space X is given, where the members of X
are also referred to as examples. The set X x {—1,1}
is the space of labeled examples. A base hypothesis h
is a mapping from the input space X into {—1,1}. A
(possibly infinite) space H (the hypothesis space) is
given and the goal is to construct an averaging clas-
sifier ¢ : X — {—1,1} as a weighted average of base
hypotheses:

c(z) = Sign_ztbhj () (zeX),

where ¢; > 0, j = 1,...,k, and Ele ¢ = 1. The
fundamental assumption here is that labeled training
examples are drawn independently, with replacement,
from some probability distribution D over X x{—1,1}.
In all the theorems we discuss, D is assumed to be un-
known to the procedure which constructs the classifier,
and the results hold for all D. Probabilities and ex-
pectations over D will be denoted by the subscript D;
for example, the true error of an averaging classifier is
denoted by:

ep(¢) = Ep[I(c(z) # y)] = E(ay)~plI(c(z) # y)]-
(1)
Here, I(-) is the indicator function, which is 1 if its
argument evaluates to true and 0 otherwise. Proba-
bilities with respect to D are written as Prp.

With S, we denote a sample {(z;,y;)|¢ = 1,...,m}
drawn independently and identically distributed
(i.i.d.) from D(z,y). The i.i.d assumption is the one
fundamental assumption we make in this work. The
subscript S denotes empirical expectation or proba-
bility over S, for example the empirical error of an
averaging classifier is given by:

m
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m <
i=1

es(c) = Es[I(c(x) # y)]
Probabilities with respect to S are written as Prg.

2.2 Quantities used in the bound

The basic learning model needs to be augmented with
a few definitions for the analysis.

Given a subset {h1,...,ht} C H, the set {q1,...,qr}
can be interpreted as a probability distribution over

the set 7.2 This distribution will be denoted by Q. We
will also often use the unsigned version of the classifier:

k
(@) = Bnvqlh(@)] =) ajhj(@) -
j=1

It is important to note that we make no assumption
about how the weights q¢1, ..., qr are obtained, so our
results are applicable to many algorithms.

The derived bounds depend on the powerful concept of
the margin, t(z,y), of a labeled example with respect
to a classifier, namely,

k
tz,y) =y quhj(w) =yf(z) .

The margin is a quantitative measure of how decided
the average is. Obviously, -1 < #(z,y) < 1. If
t(z,y) = 1 (resp. t(z,y) = —1), then all the base hy-
potheses classify correctly (resp. incorrectly). When
t(z,y) is close to zero, the classifier is, in some sense,
undecided. Note that ¢(z) = y iff t(z,y) > 0.

2.3 Earlier results

The new averaging bound arises from improving one
critical step in the proof of the original margin bound,
which we state here for reference.

Theorem 1 (Margin Bound [16]) Let § € (0,1).
With probability at least 1 — & over random samples
S from D we have that for all distributions QQ =
(q1,---,qK) over the finite hypothesis space H and all
margin thresholds 6 € (0,1]:

Prplyf(z) < 0] < Prslyf(z) < 0]

) —1
+0<\/0 1n|7-{|1(;im+ln5 )

(3)

where f(z) = Ep~glh(z)] = 32, ¢ih;(z).

Here, the notation b(m) = O(a(m)) means there exists
a constant C' such that b(m) < C-a(m) for all m. This
margin bound implies that if most training examples
have a large margin 6 (i.e. t(z,y) > 0 for most (z,y) €
S) and the hypothesis space is not too large, then the
generalization error cannot be large.

In the case of finite or countably infinite #, this is
achieved by assigning all hypotheses outside the subset
the weight zero. If H is finite, we will usually work with
H = {h1,...,hi} for simplicity. For uncountable spaces,
we define ) as Ej q;0(h,hj), where §(h,h;) is the delta
distribution centered on h;.



We will improve on this bound in Section 3.1 by em-
ploying the PAC-Bayes bound from McAllester [14].
In the PAC-Bayes setting, a classifier is also defined
by a distribution @) over the hypothesis space. How-
ever, each classification?® is carried out according to a
hypothesis sampled from ) rather than by the aver-
aging classifier ¢ defined by ). We are interested in
the gap between the expected generalization error and
the expected empirical error, where both expectations
are taken with respect to ). We need to introduce the
relative entropy (or Kullback-Leibler (KL) divergence;

e.g., [9]):

q(h)]
D(Q||P) = Epeg |In —% | , 4
(QUP) = Bug [1n 20) (@)
where ¢, p denote the probability densities of the dis-
tributions @, P. If H is finite, we have*

k
DQIP)=> ¢ L, (5)
= P

where Q = (¢1,---,q%), P = (p1,---,pr)- The relative
entropy is an asymmetric distance measure between
probability distributions, with D(Q||P) = 0 if and only
if Q = P almost everywhere.

Theorem 2 (PAC-Bayes [14]) Let P be any prior
distribution over H and § € (0,1). With probability
at least 1 — § over random samples S from D we have

that for all distributions Q over the hypothesis space
H:

Prp qlh(z) # y] < Prsq[h(z) # y]

\/D(Q||P) +Iné~' +Inm+2
+
2m —1

Here, Prp g[] is short for Ep.g[Prp[]], and Prg g[]
stands for Ep.g[Prg[]]. This theorem holds for finite
and infinite hypothesis spaces. The PAC-Bayes theo-
rem guarantees a tighter bound (except at low order)
than earlier results such as the following Occam’s razor
theorem.

Theorem 3 (Occam’s Razor [3]) Let P be a dis-
tribution over a hypothesis space H and § € (0,1).
With probability ot least 1 — & over random samples S
from D, for all hypotheses h € H.:

Prplh(z) # y] < Prs[h(z) # y]
N \/ln(l/p(h)) +Ind1t . (6)

2m

3Such classifiers are called Gibbs classifiers (e.g. [10]).
“Here and elsewhere, we agree on the definition 0log 0 =
limt_>0+ t logt =0.

Note that, for finite # and up to low order terms,
theorem 3 is a special case of theorem 2, where we
choose delta distributions @ = (0,...,0,1,0,...,0) in
theorem 2. The essence of our improvement of the
standard margin bound comes from the application
of the PAC-Bayes bound instead of the Occam’s razor
bound within the standard proof of the margin bound.

3. An improved averaging bound

In this section, we state and prove our main result,
a PAC-Bayes generalization error bound for averaging
classifiers. Before we do this, we provide a discus-
sion of a special case in order to put across an in-
tuition of how our bound can improve upon theorem
1. In this discussion, we limit ourselves to a finite
H = {hi,...,h;}, while the main result will be stated
for arbitrary H. Our bound relies on a “posterior”
distribution @ = (q1,---,qx) over H, from which the
average f(x) is defined as f(z) = >, qrhx(z). The
“posterior” () may depend on the training sample S
in an arbitrary way.?

The entropy H(Q) (e.g. [5]) of @ is defined as H(Q) =
—Y.:4ilng;. It measures the “uncertainty” in @, in
that delta distributions @ = (0,...,0,1,0,...,0) have
minimum entropy 0 and the uniform distribution has
maximum entropy In k. We can state a special case of
our main result as follows.

Theorem 4 (Special Case) Let § € (0,1). With
probability at least 1 — & over random samples S from
D, for all distributions @) over the hypothesis space H
and for all margin thresholds 6 € (0,1]:

Prplyf(z) < 0] < Prglyf(z) < 0]
0 (\/02(111 [H]— H(Q))Inm + Inm +1n61) .

m

This theorem is just a simplification of theorem 5 to
finite hypothesis spaces with a uniform prior P.

How much can the improvement help us? About the
best case we could hope for is a uniform average over
half the hypothesis space®. In that case, the complex-
ity term (In|H| — H(Q)) lnm is quite small: InmIn2.
In the worst case, when the average is over only a num-
ber of hypotheses k similar to the number of examples

5 An example is, in Bayesian classification, the posterior
distribution over . The corresponding averaging classifier
f(z) is called Bayes classifier or Bayes-optimal classifier
(e.g- [10]).

SAn average over a subset of the hypothesis space
includes only those hypotheses h; with coefficients g; sig-
nificantly different from zero.



m, there is no significant improvement over the origi-
nal margin bound.

It is easy to generalize the improved averaging bound
to continuous spaces with arbitrary priors by carefully
applying the PAC-Bayes bound.

Theorem 5 (Main Theorem) Let P be any contin-
uous probability distribution over H and let § € (0,1).
With probability ot least 1 — & over random samples S
of D, for all margin thresholds 8 > 0 and for every
distribution @ over H.:

Prp [yf(z) < 0] < Prs[yf(z) < 6]
o <\/92D(QIIP) YR )

m

(8)
where f(z) = Ep~glh(2)].

The proof is given in 3.1.

Theorem 5 holds also for the case of bounded real-
valued hypotheses, without any loss in the tightness
of the bound. The theorem can also be tightened in
several quantitatively important ways. Details can be
found in [12].

There exists an alternative approach for deriving a
bound similar to Theorem 5 which needs to be men-
tioned. Essentially, starting with the covering number
based approach of [1] we can use the covering number
results from theorem 3.6 of [18] to arrive at a similar
bound. The principle advantage of our approach over
this one is simplicity of argumentation combined with
quantitatively tighter results.

The continuous form of the improved averaging bound
applies to arbitrary averages over continuous hypothe-
sis spaces, the finite averages defined in subsection 2.2
are special cases. Note that in this setting, the average
needs to be an integral over an uncountably infinite set
of hypotheses, otherwise the KL-divergence does not
converge. In practice, this is not a significant prob-
lem because machine learning algorithms over large
hypothesis spaces typically have some parameter sta-
bility. In other words, a small shift in the parameters
of the learned model produces a small change in the
prediction of the hypothesis. With hypothesis stabil-
ity, we can convert any average over a finite set of
hypotheses into an average over an infinite set of hy-
potheses without significantly altering the predictions
of the average.

3.1 Proof of main theorem

The proof has the same structure as the original mar-
gin bound proof 1 with one step replaced by the ap-

plication of the PAC-Bayes theorem 2.

Our averaging classifier is specified by

c(x) =sign Epglh(z)] .

Let N be any natural number; later, the choice of N
will be optimized. For every distribution ), we con-
struct a random function g = g¢g as follows. Draw N
hypotheses i.i.d. from @ and define

1 N
9(e) = 5 Dohylo). ©)

The set of all possible g’s is denoted

N
iy ={ 3 L nst@)

and we denote the distribution of g (i.e., over the set
Hn) by QY. Note that for a fixed pair (z,y), the
quantities h;(z) in the expression for g(z) (see (9))
are i.1.d. Bernoulli variables (over {—1,1}) with mean

YEn;~qlhi(2)] = yf(z) . (11)

Therefore, yE, o~ [g9(z)] = yf(x). Since g(x) is the
average over N i.i.d. Bernoulli variables, Hoeffding’s
bound (see [6], p.122) applies. Thus, for every = €
X, y € {—1,+1}, the probabilities with respect to the
sampling of Ay, ..., hy satisfy

Pr,qs [y(9(a) — /@) > d < e 3N

For every 8 > 0 and for every (fixed) g € Hn, the
following simple inequality holds:

Prplyf(z) < 0]

=Prplyg(z) < 30, yf(z) < 0]

+ Prplyg(z) > 36, yf(z) < 0]

< Prplyg(z) < 56]+ Prplyg(z) > 36|y f(z) <0].

(13

h; € H}, (10)

62

(12)

)

Note that the left-hand side does not depend on g. By
taking the expectation over g ~ @V (and exchanging
the order of expectations in the second term on the
right-hand side), we arrive at

Prplyf(z) <0] < E,.q~ [Prplyg(z) < 36]]
+ Ep [Py~ [yg(z) > 30 |yf(z) < 0]].
(14)

As discussed above, we are now ready to apply
Hoeffding’s inequality (12) with e = /2. For any fixed
(z,y) we have

Pryonlyg(z) > 10| yf(z) <0] <e sN (15)
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Prplyf(z) < 0] < Eyngn [Profyg(z) < 36]]+e 3N

(16)
We would like to apply the PAC-Bayes theorem 2 to
the right-hand side. For simplicity we stated theorem 2
for the common zero-one loss I(h(x) # y), but it holds
more generally for arbitrary binary loss functions (see
[14]). Here we use the loss function I(yg(z) < 6/2).
Recall that theorem 2 applies for any fixed hypothesis
space and “prior” distribution. The hypothesis space
here will be Hp. We use as the “prior” the distribution
PN over Hyn, which is constructed from the prior P
over H exactly as QY is constructed from Q (see (9)).
It is easy to see that D(Q™||PN) = ND(Q||P).”

It follows from Theorem 2 that with probability at
least 1 — § over random choices of S, for every @,

Eyqv [Prolyg(z) < 50]]
< Eyov [Prslyg(z) < 56]] (17)
ND(Q||P) + lnm + In(1/6) +
2m —1

By the same argument as in (13), for every g € Hn:

Prs[yg(z) < 36]

< Prslyg(z) < 30, yf(x) > 6] + Prs[yf(z) < 6]

< Prslyg(x) < 50|y f(x) > 6] + Prslyf(z) < 6].
(18)

Again, we take expectations over g ~ Q" on both
sides, interchange the order of the expectations and
apply Hoeflding’s inequality (12) with e = /2:

J] <e s,

(19)

Es [Py on [yg(z) < 50| yf(z) >0
to arrive at

Es [Pyugn[yg(z) < 36]) < e 5N +Prs[yf(z) <6].

(20)
Combining (16), (17) and (20), we conclude that with
probability at least 1 — §, for every @

Prp[yf(x) <0] —Prsfyf(z) <] < P

\/ND QIIP) +nm +n(i/5) +2 (21)
2m —1

"Note that this reveals a tradeoff between N and
D(Q||P). Namely, for large N, g ~ Q" will be a close ap-
proximation to the averaging classifier f, which keeps (15)
small, but if D(Q||P) is not very small, Q~ will be rather
far from PY in terms of relative entropy, as a consequence
of the strict factorized forms of the two distributions (they
are constructed using i.i.d. samples of size V).

This bound holds for any fixed N and 8, which is not
yet what we need here, since we want to allow these
to depend on the data S. We apply a standard tech-
nique to resolve this problem. In essence, the bound
we proved so far is a statement about certain events,
parameterized by N and €, namely the probability of
each event is smaller than §. However, we need to
prove that the probability of the union of all these
events is smaller than §. To this end, we first observe
that this union is contained in the union of a count-
able number of events. Note that if g € Hy (see (9)),
then g(z) € {(2k—N)/N|k=0,1,...,N}. Thus, even
with all the possible (positive) values of 8, there are
no more than N + 1 events of the form {yg(z) < 6/2}.
Denote by k(6, N) the largest integer k < N such that
k/N < 6/2. We observe that for every § > 0, every
g € Hn and every distribution over (z, y):

Prlyg(z) <0/2] = Prlyg(z) <k(0,N)/N]. (22)

This means that the middle step in the proof above,
i.e. the application of theorem 2, depends on (NV,6)
only through (N, k). Since the other steps, i.e. the
applications of Hoeffding’s inequality, are true with
probability one, we see that we can restrict ourselves to
the union of countably many events, indexed by (N, k).
Now, we “allocate” parts of the confidence quantity §
to each of these events, namely (N, k) receives dn,; =
§/(N(N+1)?), N=1,2,...; k=0,...,N. It follows
easily that the union of all these events has probability
at most » Nk On,r = 0. Therefore we have proved that
with probability at least 1 — § over random choices of
S, for all N and all 6 > 0,

Prp [yf(z) < 0] —Prs[yf(z) < 0]
< 90 iNO® ND(Q||P) +1lnm + In(1/0n k) +
2m —1
< 2~ 5V’
ND(Q||P) +1lnm +In(1/6) + 3In(N + 1) + 2
2m — 1

(23)

where k = k(6, N). The asymptotic bound stated in
the theorem can be derived by choosing N (with re-
spect to § and @) so as to approximately minimize the
bound we have derived above. We can choose

= [40—2111 WW .

4. Implications

We wish to apply the preceding theory to two
general learning methods: Maximum Entropy



discrimination[11] and Bayes as well as Bayes Point
Classifiers [15] [9]. We choose these two learning meth-
ods because the average in these cases is over many
hypotheses, so that the low order terms in the bound
are not very significant. We begin with a simple toy
example that illustrates the bound application.

4.1 Example

A quick example will illustrate the advantage of the
improved bound. Suppose the input space is X =
{-1,1}", and let H = {hy,..., hn}, where for every
= (x1,.-..,%n) € X, hi(z) =x5,i=1,...,n. Fixa
parameter 0 < 0 < 1.

The setting falls within the naive Bayes probability
model. The probability distribution D can be de-
scribed as follows: First, the value of y is 1 with prob-
ability 0.5, and —1 with probability 0.5. Given y, the
entries of an instance (z1,...,%Tn,y) € X x {—1,1}
are (conditionally) independent. For every i, x; equals
y wigh probability 1 + 36, and —y with probability
3~ af-

It follows, that for every i, yh;(z) = 1 (i-e., h; predicts
correctly) with probability % + %0, so the expected
value of yhi(z) is 3 + 30 — (3 — 360) = 6. Thus, the
expected value of t(z,y) = Y. ; ¢i(yhi(z)) is also 6.
For a large number of independent hypotheses, with
uniform weights g;, the value of ¢t(z,y) is probably ap-

proximately 6.

What will the old margin bound suggest using? The
old margin bound depends purely on the proportion of
examples at some margin so it suggests averaging over
the few hypotheses which happen to do better than
expected on this particular sample set.

What does the improved averaging bound suggest?
The improved averaging bound will include many more
hypotheses because it becomes tighter with a more uni-
form average over the hypothesis space.

We implemented two quick learning algorithms to ex-
plore the implications of this bound to this problem.

The first algorithm, which motivated the development
of the original margin bound, is Adaboost [7]. Our Ad-
aboost implementation uses a weak learning algorithm
which simply selects the hypotheses with smallest er-
ror under the distribution over examples and we set
the number of rounds to 100.

The second algorithm is a Gibbs averaging algorithm.
The Gibbs averaging algorithm picks a weight for each
hypothesis proportional to

ees(W)/T

where T is a “temperature” parameter. Motivated by
the variance of a binomial distribution, we set T =
1/4/n. After finding the weights of all hypotheses we
create an averaging classifier by taking the sign of the
expectation with respect to the Gibbs distribution.

In real world examples, the number of hypotheses is
typically much larger than the number of examples so
we use examples with 10000 hypotheses/features and
10 to 150 examples. For all experiments we set the
true margin in data generation to 0.5.

Adaboost ——
Gibbs

®
T

complexity

IS
T

% " number of exaniples™
This is a plot of the complexity D(Q||P) of the av-
eraging hypotheses returned by Adaboost and Gibbs-
averaging versus the number of examples. All error
bars are at one standard deviation.

140 160

Adaboost just picks one hypothesis (the one which
happens to get every example correct) when the num-
ber of examples is small and eventually limits to a
near uniform distribution over as many hypotheses as
it has iterations. The Gibbs-averaging hypothesis in-
stead always controls complexity well. The error bars
are very small everywhere except for 30 and 40 exam-
ples where Adaboost suddenly starts using more then
one hypothesis.

This example is arranged so the “right” answer is to
use every hypothesis with the same weight. In general,
the goals of complexity control and error minimization
are often opposed and the averaging bound suggests
how to trade off between these goals.

4.2 Maximum Entropy Discrimination

Maximum Entropy discrimination (MED) is tailor-
made to take advantage of our new bound. This is
especially interesting because it was proposed before
the averaging bound was developed. Consequently,
the application of the improved averaging bound to
the MED framework provides an additional motiva-
tion for its use.



Maximum Entropy discrimination (MED) is founded
on Minimum Relative Entropy discrimination
(MRED) which is equivalent to MED when the prior
happens to be uniform. In the MRED paradigm,
one starts with some prior distribution P over the
hypothesis space and the goal is to find a distribution
@) which minimizes the KL-divergence D(Q||P) to
the prior subject to classification constraints (further
explained below). The latter are stated in terms of
the expectation over @) of the so-called discriminant
function (see below).

For each hypothesis h, the discriminant function
L(z) = L(z|h) assigns real numbers to examples
z € X. The value of L(z|h) can be interpreted as
a “confidence-rated” classification. Thus, if L(z|h) is
large, the hypothesis h places great confidence on the
classification of z as positive.

For every h, the discriminant function L(-|h) is deter-
mined by a parameter triple % = {6 6" bh}. It
is derived from some parameterized family P(-|6) of
probability distributions over the set X'. The discrim-

inant function is:

P(al6})
P(z|o")

h

L(z|h) =In +b

Intuitively, P(-|6%) (resp. P(-|6")) is the posterior dis-
tribution over X, given a “positive” (resp. “negative”)
classification. Thus, the discriminant is a “biased” (by
b") log-likelihood ratio with respect to the distribu-
tions P(-|6%) and P(:|6"). Every distribution Q over
‘H induces an average over the discriminant functions
of the individual hypotheses. The constraints imposed
on () guarantee a desired margin 6:

Va,y € S y/ L(z|h) dQ(R) > 6 .
H

Classification is then done in the MED framework
by calculating the expected value of the discriminant
function under the distribution :

o(z) = sign /H L(z|h) dQ(R) .

For details on how to find ) subject to these con-
straints see [11].

How does our theoretical result apply to MRED? The
latter averages over real-valued discriminant functions
L(z|h) instead of binary hypotheses h, as in our set-
ting. As already mentioned above, our main theorem 5
holds also for spaces H of bounded real-valued hypothe-
ses, without further loss. If the L(z|h) in an MRED
application are bounded, our result therefore applies,

using the hypothesis space {L(z|h)|h € H} instead of
‘H directly. However, in most MRED applications, the
discriminant functions are not bounded, and an ex-
tension of our result to this case is subject to future
work.

The algorithm directly motivated by the averaging
bound would be “Minimum Relative Entropy Clas-
sification” (MREC) which is identical to the MRED
framework except that instead of averaging over real-
valued discriminants the average is done over binary
valued classifiers. It is unclear whether the MREC cri-
teria is actually better then the MRED framework in
practice for either accuracy or ease of solution.

4.3 Bayes and Bayes Point Classifiers

In the Bayesian approach to classification, given an
i.i.d. training sample S, a posterior distribution @) over
the hypotheses is derived according to Bayes law:

_ Pr(S|h) dPr(h)

dQ(h) = dPx(hIS) = T5, (G1hT aPr(h) -

Here, Pr(S|h) is the likelihood of the sample S, given
the hypothesis h, and Pr(h) is a prior distribution over
H. The classification for a new example z is done by
calculating the expectation over @), as in the MRED
classifier above:

c(z) = sign/Hh(x) dQ(h) .

The Bayes (optimal) classifier is an average over many
classifiers, and so our improved averaging bound ap-
plies with a prior P, given by P(h) = Pr(h), and a
“posterior” @, which in this case is the Bayesian pos-
terior distribution.

One significant drawback of this technique is that it
is very often intractable. Bayes Point classifiers at-
tempt to address this intractability by finding a single
hypothesis hgp(x) € H, which is close to the Bayes
(optimal) classifier ¢(x). Thus, if hgp(x) is a good
approximation to ¢(z), then the improved averaging
bound will approximately apply to the Bayes Point
classifier as well.

5. Conclusion and Future Work

We have presented a simple qualitative improvement
to the margin bound, which motivates the techniques
of several learning algorithms and validates the intu-
ition that “averaging is good”. There are many direc-
tions for interesting future work including the follow-
ing:



1. The improved averaging bound has some messy
low order constants, which are probably remov-
able with an improved argument.

2. Can we give a stronger theoretical motivation of
the Maximum Entropy discrimination framework
with unbounded discriminant functions?

3. Empirical application of the bound. When apply-
ing this bound in the boosting framework, can we
get quantitatively interesting results on real world
problems?

ACKNOWLEDGMENTS

We thank Ralf Herbrich, Chris Williams, Robert
Schapire, David McAllester, and mysterious reviewer
2 for helpful discussion and thought. MS is sup-
ported through a research studentship from Microsoft
Research Ltd.

References

[1] Peter Bartlett, “The sample complexity of pattern
classification with neural networks: the size of the
weights is more important than the size of the net-
work.” IEEE transactions on information theory,
1998

[2] L. Breiman, ”Bagging Predictors” Machine Learn-
ing, Vol. 24, No. 2, pp. 123-140.

[3] A.Blumer, A. Ehrenfucht, D. Haussler, and M. K.
Warmuth, “Occam’s Razor” Information Process-
ing Letters, 24:377-380, April 1987

[4] P. Chesseman, J. Kelly, M. Self, J. Stutz, W. Tay-
lor, and D. Freeman. Autoclass: A Bayesian classi-
fication system. In Proc. Fifth Intl. Conf. Machine
Learning, pages 54-64, 1988.

[5] Thomas Cover and Joy Thomas, “Elements of In-
formation Theory” Wiley, New York 1991

[6] L. Devroye, L. Gyorfi and G. Lugosi “Applications
of Mathematics: Stochastic Modelling and Applied
Probability” Springer 1996

[7] Yoav Freund and Robert E. Schapire, “A Decision
Theoretic Generalization of On-line Learning and
an Application to Boosting” Eurocolt 1995

[8] Adam J. Grove and Dale Schuurmans “Boosting
in the limit: Maximizing the margin of learned en-
sembles” In Proceedings of the Fifteenth National
Conference on Artificial Intelligence 1998

[9] Ralf Herbrich, Thore Grapel, and Colin Camp-
bell, “Bayes Point Machines: Estimating the Bayes
Point in Kernel Space”, IJCATI 1999 pages 23-29.

[10] David Haussler, Michael Kearns, and Robert
Schapire, “Bounds on the Sample Complexity of
Bayesian Learning Using Information Theory and
the VC Dimension” , Machine Learning 1994 14:83-
113

[11] T. Jaakkola, M. Meila, T. Jebara, ” Maximum En-
tropy Discrimination” NIPS 1999.

[12] J. Langford, M. Seeger, “Bounds for Averag-
ing Classifiers”, Technical report, Carngeie Mellon,
2001, CMU-CS-01-102

[13] Nick Littlestone. Redundant noisy attributes, at-
tribute errors, and linear threshold learning using
winnow. In COLT-91, pages 147-156, 1991.

[14] David McAllester, “PAC-Bayesian Model Aver-
aging” COLT 1999

[15] Thomas Minka, “Expectation Propagation for ap-
proximate Bayesian inference”, thesis.

[16] Robert E. Schapire, Yoav Freund, Peter Bartlett,
and Wee Sun Lee, “Boosting the Margin: A new
explanation for the effectiveness of voting meth-
ods” The Annals of Statistics, 26(5):1651-1686,
1998.

[17] John Shawe-Taylor, Peter Bartlett, Robert
Williamson and Martin Anthony, “A framework
for Structural Risk Minimization”, COLT-96 pages
68-76

[18] Tong Zhang, “Analysis of Certain Regularized
Linear Function Classes with Special Emphasis on
Classification”, IBM Research Report RC-21572



