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Abstract

We present a technique for static enforcement of declarative
information flow policies. Given a program that manipulates
sensitive data and a set of declarative policies on the data,
our technique automatically inserts policy-enforcing code
throughout the program to make it provably secure with
respect to the policies. We achieve this through a new ap-
proach we call targeted program synthesis, which enables the
application of traditional synthesis techniques in the context
of global policy enforcement. The key insight is that, given
an appropriate encoding of policy compliance in a type sys-
tem, we can use type inference to decompose a global policy
enforcement problem into a series of small, local program
synthesis problems that can be solved independently.
We implement this approach in Lifty, a core DSL for

data-centric applications. Our experience using the DSL to
implement three case studies shows that (1) Lifty’s central-
ized, declarative policy definitions make it easier to write
secure data-centric applications, and (2) the Lifty compiler
is able to efficiently synthesize all necessary policy-enforcing
code, including the code required to prevent several reported
real-world information leaks.

1 Introduction

From social networks to health record systems, today’s soft-
ware manipulates sensitive data in increasingly complex
ways. To prevent this data from leaking to unauthorized
users, programmers sprinkle policy-enforcing code through-
out the system, whose purpose is to hide, mask, or scram-
ble sensitive data depending on the identity of the user or
the state of the system. Writing this code is notoriously te-
dious and error-prone. Static information flow control tech-
niques [10, 23, 28, 32, 41, 51] mitigate this problem by allow-
ing the programmer to state a high-level declarative policy,
and statically verify the code against this policy. These tech-
niques, however, only address part of the problem: they can
check whether the code as written leaks information, but
they do not help programmers write leak-free programs in
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the first place. In this work, we are interested in alleviat-
ing the programmer burden associated with writing policy-
enforcing code.

In recent years, program synthesis has emerged as a power-
ful technology for automating tedious programming tasks [7,
14, 20, 39, 47]. In this paper we explore the possibility of us-
ing this technology to enforce information flow security by
construction: using a declarative policy as a specification,
our goal is to automatically inject provably sufficient policy-
enforcing code throughout the system. This approach seems
especially promising, since each individual policy-enforcing
snippet is usually short, side-stepping the scalability issues
of program synthesizers.

The challenge, however, is that our setting is significantly
different from that of traditional program synthesis. Exist-
ing synthesis techniques [3, 4, 15, 25, 33, 34, 39] target the
generation of self-contained functions from end-to-end spec-
ifications of their input-output behavior. In contrast, we are
given a global specification of one aspect of the program be-
havior: it must not leak information. This specification says
nothing about where to place the policy-enforcing snippets,
let alone what each snippet is supposed to do.
Targeted program synthesis. In this paper we demonstrate
how to bridge the gap between global policies and local en-
forcement via a new approach that we call targeted program
synthesis. Our main insight is that a carefully designed type
system lets us leverage error information from type-checking
the original unsafe program to infer local, end-to-end spec-
ifications for sufficient policy-enforcing snippets (or leak
patches). More specifically, (1) the location of a type error in-
dicates where to insert a leak patch and (2) the expected type
corresponds to the local specification for the patch. Moreover,
it is possible to guarantee that any combination of patches
that satisfy their respective local specifications yields a prov-
ably secure program. In other words, we show how to de-
compose the problem of policy enforcement into several
independent program synthesis problems, which can then
be tackled by state-of-the-art synthesis techniques.
Type system. The main technical challenge in making tar-
geted synthesis work is the design of a type system that, on
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Figure 1. Policy enforcement in Lifty.

the one hand, is expressive enough to reason about the poli-
cies of interest, and on the other hand, produces appropriate
type errors for the kinds of patches we want to synthesize.
For our policy language, we draw inspiration from the Jeeves
language [6, 49], which supports rich, context-dependent poli-
cies, where the visibility of data might depend both on the
identity of the viewer and the state of the system. For exam-
ple, in a social network application, a user’s location can be
designated as visible only to the user’s friends who are within
a certain distance of that location. In Jeeves, these policies
are expressed directly as predicates over users and states.
Our technical insight is that static reasoning about Jeeves-
style policies can be encoded in a decidable refinement type
system by indexing types with policy predicates. Moreover,
we show how to instantiate the Liquid Types framework [36]
to infer appropriate expected types at the error locations.
The Lifty language. Based on this insight, we developed
Lifty1, a core DSL for writing secure data-centric applica-
tions. In Lifty, the programmer implements the core func-
tionality of an application without having to worry about
information leaks. Separately, they provide a policy module,
which associates declarative policies with some of the fields
(columns) in the data store, by annotating their types with
policy predicates. Given the source program and the declara-
tive policies, Lifty automatically inserts leak patches across
the program, so that the resulting code provably adheres
to the policies (Fig. 1). To that end, Lifty’s type inference
engine checks the source program against the annotated
types from the policy module, flagging every unsafe access to
sensitive data as a type error. Moreover, for every unsafe ac-
cess the engine infers the most restrictive policy that would
make this access safe. Based on this policy, Lifty creates a
local specification for the leak patch, and then uses a variant
of type-driven synthesis [34] to generate the patch.
Evaluation. To demonstrate the practical promise of our
approach, we implemented a prototype Lifty-to-Haskell
compiler. We evaluated our implementation on a series of
small but challenging micro-benchmarks, as well as three

1Lifty stands for Liquid Information Flow TYpes.

case studies: a conference manager, a health record system,
and a student grade record system. The evaluation demon-
strates that our solution supports expressive policies, reduces
the burden placed on the programmer, and is able to gen-
erate all necessary patches for our benchmarks within a
reasonable time (26 seconds for our largest case study). Im-
portantly, the evaluation confirms that the patch synthesis
time scales linearly with the size of the source code (more
precisely, with the number of required leak patches), suggest-
ing the feasibility of applying this technique to real-world
code bases.

2 Lifty by Example

To introduce Lifty’s programming model, type system, and
the targeted synthesis mechanism, we use an example based
on a leak from the EDAS conference manager [1]. We have
distilled our running example to a bare minimum to simplify
the exposition of how Liftyworks under the hood; at the end
of the section, we demonstrate the flexibility of our language
through more advanced examples.

2.1 The EDAS Leak

Figure 2 shows a screenshot from the EDAS conference man-
ager. On this screen, a user can see an overview of all their
papers submitted to upcoming conferences. Color coding
indicates paper status: green papers have been accepted, or-
ange have been rejected, and yellow is used before author
notifications are out, indicating that the decision is still pend-
ing. An author is not supposed to learn about the decision
before the notifications are out, yet from this screen, the
user can infer that the first one of the pending papers has
been tentatively accepted, while the second one has been
tentatively rejected. They can make this conclusion because
the two rows differ in the value of the “Session” column
(which displays the conference session where the paper is
to be presented), and the user knows that sessions are only
displayed for accepted papers.

The EDAS leak is particularly insidious because it provides
an example of an implicit flow: the “accepted” status does
not appear anywhere on the screen, but rather influences
the output via a conditional. To prevent such leaks, it is
insufficient to simply examine output values; rather, sensitive
values must be tracked through control flow.

Fig. 3 shows a simplified version of the code that has
caused this leak. This code retrieves the title and status for
a paper p, then retrieves session only if the paper has been
accepted, and finally displays the title and the session to the
currently logged-in client. The leak happened because the
programmer forgot to insert policy-enforcing code that would
prevent the true value of status from influencing the output,
unless the conference is in the appropriate phase (notifica-
tions are out). It is easy to imagine, how in an application that
manipulates a lot of sensitive data, such policy-enforcing
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Figure 2. Author’s home screen in EDAS, shared with per-
mission of Agrawal and Bonakdarpour [1].

1 showPaper client p =

2 let row = do

3 t ← get (title p)

4 st ← get (status p)

5 ses ← if st = Accepted

6 then get (session p) else ""

7 t + " " + ses in

8 print client row

Figure 3. Snippet of the core functionality of a conference
manager (in Lifty syntax).

module ConfPolicy where

title :: PaperId→ Ref ⟨String⟩any

status :: PaperId→ Ref ⟨Status⟩λ(s,u).s[phase] = Done

session :: PaperId→ Ref ⟨String⟩any

Figure 4. Snippet from a policy module for a conference
manager.

code become ubiquitous, imposing a significant burden on
the programmer and obscuring the application logic.

2.2 Programming with Lifty

Lifty liberates the programmer from having to worry about
policy-enforcing code. Instead, they provide a separate policy
module that describes the data layout and associates sensitive
data with declarative policies. For example, Fig. 4 shows a
policy module for our running example.
The Lifty type system is equipped with a special type

constructor ⟨T ⟩π (“T tagged with policy π”), where π :
(Σ, User) → Bool is a predicate on contexts, i.e. pairs of
states and users. The type ⟨T ⟩π denotes values of type T
that are only visible to a user u in a state s such that π (s,u)
holds. For example, to express that a paper’s status is only

1 showPaper client p =

2 let row = do

3 t ← get (title p)

4 st ← let x0 = get (status p) in do

5 x1 ← get phase

6 if x1 = Done then x0 else NoDecision

7 ses ← if st = Accepted

8 then get (session p) else ""

9 t + " " + ses in

10 print client row

Figure 5. With a patch inserted by Lifty to protect against
the EDAS leak.

visible when the conference phase is Done, the programmer
defines its type as a reference to Status tagged with policy
λ(s,u).s[phase] = Done. Hereafter, we elide the binders (s,u)
from policy predicates for brevity, and simply write λ.p. The
predicate any = λ.True annotates fields as public (i.e. visible
in any context).
Given the code in Fig. 3 and the policy module, Lifty in-

jects policy-enforcing code required to patch the EDAS leak;
the result is shown in Fig. 5 with the new code highlighted.
This code guards the access to the sensitive field status with
a policy check, and if the check fails, it substitutes the true
value of status with a redacted value (a constant NoDecison).
Lifty guarantees that this code is provably correct with
respect to the policies in the policy module.

2.3 Targeted Program Synthesis

Can the code in Fig. 5—and its correctness proof—be syn-
thesized using existing techniques? Several synthesis sys-
tems [25, 34] can generate provably correct programs, but
require a full functional specification (which is not avail-
able for showPaper) and might fail to scale to larger functions.
Prior approaches to sound program repair [24] use fault local-
ization to focus synthesis on small portions of the program,
responsible for the erroneous behavior. These existing focus-
ing techniques, however, are not applicable in our setting,
because (1) they rely on testing, which is challenging for in-
formation flow security, and (2) they are not precise enough,
i.e. they would not be able to pinpoint get (status p) as the
unsafe term.
In this section we show how a careful encoding of infor-

mation flow security into a type system (Sec. 2.3.1) allows
us to instead use type inference for precise fault localiza-
tion (Sec. 2.3.2). Concretely, type-checking the code in Fig. 3
against the policy module, leads to a type error in line 5,
which flags the term get (status p) as unsafe, and more-
over, specifies the expected type, which can be used as the
local specification for patch synthesis (Sec. 2.3.3).

2017-11-29 11:22 page 3 (pp. 1-18) 3
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2.3.1 Type System

The Lifty type system builds upon existing work on security

monads [37, 41], where sensitive data lives inside a monadic
type constructor (in our case, ⟨·⟩), parameterized by a secu-
rity level; proper propagation of levels through the program
is ensured by the type of the monadic bind. In contrast with
prior work, our security levels correspond directly to policy
predicates, which allows Lifty programs to express com-
plex context-dependent policies directly as types, instead of
encoding them into an artificial security lattice.

Subtyping. Moreover, unlike prior work, Lifty features sub-
typing between tagged types, which is contravariant in the
policy predicate, i.e. ⟨T ⟩λ .p <: ⟨T ⟩λ .q iff q ⇒ p. This allows
a “low” value (with a less restrictive policy) to appear where
a “high” value (with more restrictive policy) is expected, but
not the other way around. Lifty restricts the language of
policy predicates to decidable logics; hence, the subtyping
between tagged types can be automatically decided by an
SMT solver.

Tagged primitives. The type error for the EDAS leak is
generated due to the typing rules for primitive operations
on tagged values, print and bind. The latter is present in
Fig. 3 implicitly: our Haskell-like do-notation desugars into
invocations of bind in a standard way [31] (see appendix
for the desugared version). The typing rule for bind can be
informally stated as follows: if we want a sequence of two
computations to produce a result visible in a given set of con-
texts, then both computations better produce results visible
at least in those contexts. The rule for print allows display-
ing messages tagged with any π that holds of the current
state and the viewer. We formalize these rules in Sec. 3.

Type inference. The Lifty type inference engine is based on
the Liquid Types framework [12, 36, 44]. As such, it uses the
typing rules to generate a system of subtyping constraints
over tagged types, and then uses the definition of contravari-
ant subtyping to reduce them to the following system of
implications or Horn constraints over policy predicates:

B ⇒ s[phase] = Done (1)
P ⇒ B (2)
u = client ∧ s = σ ⇒ P (3)

where P , B are unknown predicates that correspond to the
policies of print and bind2. Horn constraints are solved using
a combination of unfolding and predicate abstraction.
In this case, however, the system clearly has no solution,

since the consequent of (1), which represents the policy on
status, is not implies by the antecedent of (3), which is de-
rived from the invocation of print and reflects what we know
about the output context (i.e. that the viewer is client and

2There’s a separate unknown for each invocation of bind, but in this example
they are equivalent, and we simplify for readability.

the output state is the same as the current state, σ ). Intu-
itively, it means that the code is trying to display a sensitive
value in a context where its policy doesn’t hold.

2.3.2 Fault Localization

Unlike existing refinement type checkers [12, 36, 44], Lifty is
not content with finding that a type error is present: it needs
to identify the term to blame and infer its expected type.
Intuitively, declaring constraint (3) as the cause of the error
corresponds to blaming print for displaying its sensitive
message in too many contexts, while picking constraint 1,
corresponds to blaming the access get (status p) for re-
turning a value that is too sensitive. For reasons explained
shortly, Lifty decides to blame the access. To infer its ex-
pected type, it has to find an assignment to B, which works
for the rest of the program (i.e. is a solution to constraints (2)–
(3)). This new system has multiple solutions, including a
trivial one [P ,B 7→ ⊤]. The optimal solution corresponds
to the least restrictive expected type, in other words—due to
contravariance—the strongest solution for policy predicates:
[P ,B 7→ u = client ∧ s = σ ]. Substituting this solution into
the subtyping constraint that produced (1), results in the
desired type error:

get (status p) :
expected type: ⟨Status⟩λ .u = client ∧ s = σ

and got: ⟨Status⟩λ .s[phase] = Done

Note that picking constraint (3) as the cause instead, and
inferring the weakest solution to constraints (1)–(2) ([P ,B 7→
s[phase] = Done]) would give rise to a different patch: guard-
ing the whole message row with a policy check. This would
fix the leak but have an undesired side effect of hiding the
paper title along with the session. Data-centric applications
routinely combine multiple pieces of data with different poli-
cies in a single output; therefore, in this domain it makes
more sense to guard the access, which results in “redact-
ing” as little data as possible (and also mirrors the Jeeves
semantics). Hence, Lifty always chooses to blame negative
constraints (such as (1)), even though its inference engine
could support the alternative behavior as well.

2.3.3 Patch Synthesis

From the expected type, Lifty obtains a type-driven synthe-
sis problem [34]:

Γ ⊢ ?? :: ⟨Status⟩λ .u = client ∧ s = σ

Here Γ is a typing environment, which contains a set of
components—variables and functions that can appear in the
patch—together with their refinement types. A solution to
this problem is any program term t that type-checks against
the expected type in the environment Γ. As we show in
Sec. 4, any such t , when substituted for get (status p) in
Fig. 3, would produce a provably secure program; hence the
synthesis problem is local (can be solved in isolation).
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Even though any solution is secure, not all solutions are
equally desirable: for example, returning NoDecision uncon-
ditionally is a solution (and so is returning Accepted). Intu-
itively, a desirable solution returns the original value when-
ever allowed, and otherwise either redacts some information
from that value or returns a reasonable default. To synthesize
this solution, Lifty enumerates all terms of type ⟨Status⟩π
up to a fixed size and arranges them into a list of branches
according to the strength of their policies. To pick reasonable
default values, we require user annotations in the policy file
that essentially pick a single Status constructor to be added
to Γ. As a result, our running example generates only two
branches:

get (status s) :: ⟨Status⟩λ .s[phase] = Done

NoDecision :: ⟨Status⟩any

Next, for every branch, Lifty abduces a condition that
would make the branch type-check against the expected
type. For example, our first branch generates the following
abduction problem:

C ∧ u = client ∧ s = σ ⇒ s[phase] = Done

whereC is an unknown formula that cannot mention the pol-
icy parameters s and u. Lifty uses existing techniques [34]
to find the following solution C 7→ σ [phase] = Done. It
then uses the abduced condition to synthesize a guard, i.e. a
program that computes the monadic version of the condition.
In our case, the guard is bind (get phase) (x1 . x1 = Done).
Finally, Lifty combines the synthesized guards and branches
into a single conditional, which becomes the patch that re-
place the original unsafe access.

2.4 Scaling Up to Real-World Policies

In the rest of the section, we demonstrate more challeng-
ing scenarios, where (1) a function contains several un-
safe accesses, (2) the policy check itself uses sensitive data,
and hence proper care must be taken to ensure that policy-
enforcing code does not introduce new leaks, (3) the redacted
value is not just a constant, or (4) the policy check depends
on the eventual viewer and the state at the time of output
(which need not equal the state at the time of data retrieval).

2.4.1 Multiple Leaks

Consider a variant of our running example, where in addi-
tion to the paper’s title and session, we display its authors.
Also assume our conference is double-blind, so authors is a
a sensitive field with a policy similar to that of status. When
checking this extended version of showPaper, Lifty gener-
ates two type errors, one for get (status p) and one for
get (authors p), each with the same expected type (since
they flow into the same print statement). This gives rise
to two patch synthesis problems, which can be solved inde-
pendently, because their expected types only depend on the
output context, and are not affected by the rewriting. More

generally, local synthesis is possible in this example because
the correctness property of interest does not depend on the
content of the unsafe terms but only on their policy, and
hence the content can be freely replaced without affecting
the correctness of the rest of the program. As we detail in
Sec. 4, this does not hold in general, but it holds for our
intended use case.

2.4.2 Complex Policies

Continuingwith our extended example, assume that wewant
to allow a paper’s author to see the author list even before
the notifications are out. This is an example of a policy that
depends on a sensitive value; moreover, in this case the policy
is self-referential because it guards access to the field authors

in a way that depends on the value of authors. Enforcing
such complex policies manually is particularly challenging,
because the policy-enforcing code itself retrieves and com-
putes over sensitive values, and hence, while trying to patch
one leak, it might inadvertently introduce another.
In Lifty, the programmer expresses this complex policy

in a straightforward way:

authors :: p : PaperId→

Ref ⟨[User]⟩λ .s[phase] = Done ∨ u ∈s[authors p]

Note that the policy predicate can talk about the true value
of the author list using the refinement term s[authors p],
which is only available in specifications. Given this policy,
Lifty generates a provably correct patch:

auts ← let x0 = get (authors p) in do

c1 ← do x1 ← get phase; x2 ← x0

x1 = Done ∨ elem client x2

if c1 then x0 else []

Intuitively, this code is secure despite the fact that the policy
check c1 depends on the value of authors p, because for
any paper whose authors client is not allowed to see, c1
is always false—independently on the actual author list—
so it does not reveal any secrets. In Sec. 3 we show how a
novel downgrading construct enables Lifty to perform this
nontrivial reasoning automatically.

2.4.3 Nontrivial Patches

When sensitive data has more interesting structure, the opti-
mal redacted value can be more complex than just a constant.
Consider the example of an auction where bids are only re-
vealed once all participants have bid [37]. Now consider a
more interesting policy: once a participant has bid and before
all bids are fully revealed, they can see who else has bid, but
not how much. One way to encode this in Lifty is to store
the bid in an option type, Maybe Int, and associate different
policies with the option and its content:

bid :: User→ Ref ⟨Maybe ⟨Int⟩λ .s[phase] = Done⟩λ .s[bid u],∅
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With this definition, Lifty generates the following patch
inside a function showBid client p, which displays partici-
pant p’s bid to client:

1 b ← let x0 = get (bid p) in do

2 x1 ← get phase; x2 ← get (bid client); x3 ← x0

3 if x1 = Done

4 then x0

5 else if isJust x2

6 then mapJust ( λ _ . 0) x3

7 else Nothing

This patch has three branches, of which the second one (line
6) is the most interesting: whenever client has bid but the
bidding is not yet Done, Lifty only redacts the value that
might potentially be stored inside x3, but not whether x3 is
Nothing or Just. Note that Lifty reasons about this patch
based solely on the generic type of mapJust:

mapJust :: (α → β) → Maybe α → Maybe β

2.4.4 State Updates

Continuing with the auction example, consider the imple-
mentation of the function placeBid client b, which first re-
trieves everyone’s current bids, then calls set (bid client) b,
and finally displays all the bids to client. In this case, reusing
the patch from above would be wrong and would result in
hiding too much, since x3 would reflect client’s (missing)
bid at the time of retrieval; by the time of output, however,
client has already bid and has the right to see who else
did. Lifty would insert a correct repair, since it can reason
about how the call to set affects the state, and in this case
can statically determine that s[bid u] holds of the output
context.

3 The λL Type System
We now formalize the type system of a core security-typed
language λL , which underlies the design of Lifty. The main
novelty of this type system is representing security labels
as policy predicates. This brings two important benefits: on
the one hand, our type system directly supports context-
dependent policies; on the other hand, we show how to
reduce type checking of λL problems to liquid type infer-

ence [36]. As a result, our type system design enables au-
tomatic verification of information flow security against
complex, context-dependent policies, and requires no aux-
iliary user annotations. Moreover, Sec. 4 also demonstrates
how this design enables precise fault localization required
for targeted synthesis of policy-enforcing code.
Another novelty of the λL type system is its support for

policies that depend on sensitive values, including self-refe-
rential policies (Sec. 2.4.2). Until now, this kind of policies
were only handled by run-time techniques such as Jeeves [6,
49]. To support safe enforcement of these policies, λL in-
cludes a novel safe downgrading construct (Sec. 3.2), and

Program Terms

v ::= c | λx . e Values

e ::= v | x | e e | if e then e else e Expressions

| get x | bind e e | ⌊e⌋
s ::= skip | let x = e in s Statements

| set x x ; s | print x x ; s
Types

B ::= Bool | User | · · · | ⟨T ⟩π | Ref T Base types

T ::= {B | r } | T → T Types

Refinements

r ::= ⊤ | ⊥ | ¬r | r ⊕ r
| r [r ] | r [r := r ] | x | r r | · · ·
where ⊕ ∈ {= | ∧ | ∨ |⇒}

π ::= λ(s,u). r Policy predicates

Figure 6. Syntax of the core language λL .

features a custom security guarantee, which we call contex-
tual noninterference (Sec. 3.3).

This section introduces the syntax of λL (Sec. 3.1) and its
typing rules (Sec. 3.2), and shows that well-typed λL pro-
grams satisfy contextual non-interference (Theorem 3.2).
The runtime behavior of λL programs is straightforward; we
provide an operational semantics in Appendix A.2.

3.1 Syntax of λL

λL is a simple core language with references, extended with
several information-flow specific contructs. We summarize
the syntax of λL in Fig. 6.
Program terms. λL differentiates between expressions and
statements. Expressions include store read (get), monadic
bind (bind), and downgrading (⌊·⌋), which we describe in
detail below. A statement canmodify the store (set) or output
a value to a user (print). Keeping expressions pure avoids the
usual complications associated with implicit flows, which
in λL can be encoded by passing conditional expressions as
arguments to print.
Types. λL supports static information flow tracking via tagged
types. The type ⟨T ⟩π (“T tagged with π”) attaches a policy
predicate π : (Σ, User) → Bool to a type T (here Σ is the
type of stores, which map locations to values). A tagged
type is similar to a labeled type in existing security-typed
languages [35, 38, 41], except the domain of labels is not
an abstract lattice, but rather the lattice of predicates over
stores and users. Intuitively, a value of type ⟨T ⟩λ(s,u).p can
be revealed in any store s to any user u, such that p holds.
Here p is a refinement predicate over the program variables
in scope and the policy parameters s and u. The exact set
of refinement predicates depends on the chosen refinement
logic; the only requirement is that the logic be decidable to
enable automatic type checking. We assume that the logic at
least includes the theories of uninterpreted functions (x and
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r r ) and arrays (r [r ] and r [r := r ]), which λL uses to encode
policy predicates and store reads/writes, respectively.

Other types of λL include primitive types, references, func-
tion types, and refinement types, which are standard [26, 36].
In a refined base types {B | r }, r is a refinement predicate
over the program variables and a special value variable ν ,
which denotes the bound variable of the type.
Constants. To formalize the Lifty’s notion of policy mod-
ule, we assume that the syntactic category of constants, c ,
includes a predefined set of store locations and fields (func-
tions that return locations). The type of each constant c
is determined by an auxiliary function ty(c). For example,
in a conference manager we define ty(title) = PaperId→

⟨String⟩λ(s,u).⊤. Since λL programs do not allocate new refer-
ences at run time, the type of any location l is known a-priori
and can be obtained through ty(l), which is why our typing
rules do not keep track of a “store environment”. Besides
locations and fields, constants include values of primitive
types and built-in functions on them.

3.2 Typing rules for λL

Fig. 7 shows a subset of subtyping and type checking rules
for λL that are relevant to information flow tracking. Other
rules are standard for languages with decidable refinement
types [36, 44–46] and deferred to Appendix 11. In Fig. 7, a
typing environment Γ ::= • | Γ,x : T | Γ, r maps variables to
types and records path conditions r .
Subtyping. We only show subtyping rules for tagged types.
The rule <:-Tag1 allows to tag a pure type with any well-
formed policy. The rule <:-Tag2 specifies that tagged types
are contravariant in their policy parameter; this relation al-
lows “upgrading” a term with a less restrictive policy (more
public) into one with a more restrictive policy (more secret)
and not the other way around. The premise Γ � r ′ ⇒ r
checks implication between the policies under the assump-
tions stored in the environment (which include path condi-
tions and refinements on program variables). By restricting
refinement predicates to decidable logic, we make sure that
this premise can be validated by an SMT solver. To our knowl-
edge, λL is the first security-typed language that supports
both expressive policies and automatic upgrading.
Term typing. The rest of Fig. 7 defines the typing judgments
for expressions (Γ;σ ⊢ e :: T ) and statements (Γ;σ ⊢ e :: T ).
Since λL is stateful, both judgments keep keeps track of σ ,
the variable that stands for the current store. This variable
is used in the rule T-get and T-set to, respectively, relate
the retrieved value to the current store and record the effect
on the store. The rule for conditionals (P-If) is standard, but
we include it because verification of programs with policy
checks relies crucially on its path-sensitivity: note how the
branches are type-checked in an environment extended with
a path condition, derived from the refinement of the guard.

Subtyping Γ ⊢ T <: T ′

<:-Tag1
Γ ⊢ ⟨T ⟩π

Γ ⊢ T <: ⟨T ⟩π

<:-Tag2
Γ ⊢ T <: T ′ Γ � r ′⇒ r

Γ ⊢ ⟨T ⟩λ(s,u).r <: ⟨T ′⟩λ(s,u).r ′

Expression Typing Γ;σ ⊢ e :: T

T-get
Γ;σ ⊢ x :: Ref {B | r }

Γ;σ ⊢ get x :: {B | r ∧ ν = σ [x]}

T-If

Γ;σ ⊢ e :: {Bool | r }
Γ, [ν 7→ ⊤]r ⊢ e1 :: T Γ, [ν 7→ ⊥]r ⊢ e2 :: T

Γ;σ ⊢ if e then e1 else e2 :: T

T-bind
Γ;σ ⊢ e1 :: ⟨T1⟩π Γ;σ ⊢ e2 :: T1 → ⟨T2⟩π

Γ;σ ⊢ bind e1 e2 :: ⟨T2⟩π

T- ⌊ ·⌋
Γ;σ ⊢ e :: ⟨{Bool | ν ⇒ r }⟩λ(s,u).π [(s,u)]∧r

Γ;σ ⊢ ⌊e⌋ :: ⟨{Bool | ν ⇒ r }⟩π

Statement Typing Γ;σ ⊢ s

T-print

Γ;σ ⊢ x1 :: ⟨{User | π [(σ ,ν )]}⟩π
Γ;σ ⊢ x2 :: ⟨Str⟩π Γ;σ ⊢ s

Γ;σ ⊢ print x1 x2 ; s

T-set

Γ;σ ⊢ x1 :: Ref T Γ;σ ⊢ x2 :: T
Γ,σ ′ : {Σ | ν = σ [x1 := x2]} ; σ ′ ⊢ s σ ′ is fresh

Γ;σ ⊢ set x1 x2 ; s

Figure 7. Typing rules of λL .

The core of information flow checking in λL are the rules T-
bind and T-print, which, in combination with contravariant
subtyping, guarantee that tagged values only flow into al-
lowed contexts. To this end, T-bind postulates that applying
a sensitive function to a sensitive value, yields a result that
is at least as secret as either of them. According to T-print, a
print statement takes as input a tagged user (which may be
computed from sensitive data) and a tagged result. The rule
requires both arguments to be tagged with the same policy π ,
and crucially, π must hold of the viewer in the current store
(i.e. both the viewer identity and the message must be visible
to the viewer). Here π [(σ ,ν )] stands for “applying” the policy
predicate; formally (λ(s,u).p)[(σ ,ν )] � p[s 7→ σ ,u 7→ ν ].
Downgrading. The safe downgrading construct, ⌊e⌋, is a
novel feature of λL , which we introduced specifically to
support static verification of programs with self-referential
policies (Sec. 2.4.2). Informally, the idea is that we can we
can safely downgrade a tagged term (i.e. weaken its pol-
icy), whenever we can prove that the term is constant, since
constants cannot leak information. Whereas this property
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is hard to check automatically in the general case, a spe-
cial case where e is a tagged boolean turns out to be both
amenable to automatic verification and particularly useful
for self-referential policies. The rule T-⌊·⌋ allows tagging ⌊e⌋
with λ(s,u).p as long as there exists a refinement predicate
r over program variables, such that e can be tagged with
λ(s,u).p ∧ r and the value of e implies r . This operation is
safe because in any execution where r holds, the two policies
are the same; while any execution where r does not hold,
the value of e is guaranteed to be false (a constant).
To illustrate the application of this rule, consider a sim-

plified version of the patch form Sec. 2.4.2 where authors

has a self-referential policy π � λ.u ∈ s[authors p]. In this
case, to decide whether to show the author list to client,
the patch has to check whether client is on the list, i.e. com-
pute bind (get (authors p)) (x2 . elem client x2). Since
this term retrieves the author list, it has to be itself tagged
with π , preventing the patch form type-checking. Wrapping
the policy check in ⌊·⌋ breaks this circularity and allows
tagging it with λ.u = client ∧ s = σ , (since its value implies
client ∈ σ [authors p]), causing the patch to type-check.
Algorithmic type checking.As is customary for expressive
type systems, the rules in Fig. 7 are not algorithmic: they
require “guessing” appropriate policy predicates for inter-
mediate terms (when applying rules T-Print and T-Bind),
as well as the predicate r in T-⌊·⌋. Our insight is that we
can re-purpose liquid type inference [12, 36, 44], which has
been previously used to automatically discover unknown
refinements, to also discover these unknown predicates. To
this end, our typing rules are carefully designed to respect
the restrictions imposed by Liquid Types, such as that all
unknown predicates occur positively in specifications. As a
result, we obtain fully automatic verification for programs
with (decidable) context-dependent policies.

3.3 Contextual Noninterference in λL

We want to show that well-typed λL programs indeed do
not leak information. In the presence of context-dependent
policies, defining what exactly constitutes a leak is non-
trivial: we cannot directly apply the traditional notion of
noninterference because our policies can depend on the sen-
sitive values they protect. Instead, we enforce contextual

non-interference, a guarantee similar to that of the Jeeves
language. In the interest of space, this section formalizes
contextual non-interference in the absence of store updates
and omits proofs; the full version of our formalization can
be found in Appendix A.4.
Intuitively, we require that an observer o : User cannot

observe the difference between two stores that only differ in
locations secret from o. However, which locations are “secret”
depends on the store. Following Jeeves, we only require that
o cannot observe a difference in location l if l is secret in
both stores (e.g. it’s fine if I notice the difference between a
real paper status I can see and a default status NoDecision).

1: Enforce(Γ, e,T )
2: ê ← Localize(Γ ⊢ e :: T )
3: return Patch(ê)

4: Patch(let x = ⟨Te ▹Ta⟩d in e)
5: d ′← Generate([x0 : Ta], Γ,Te )
6: return let x = (let x0 = d in d ′) in Patch(e)
7: Patch(e)
8: recursively call Patch on subterms of e

9: Generate(ΓB , ΓG , ⟨T ⟩π )
10: ΓB ← ΓB∪ redaction functions for T
11: branches← Synthesize(ΓB ⊢ ?? :: ⟨T ⟩none)
12: (dflt : guarded) ← sort branches by policy
13: if Check(Γ ⊢ dflt :: ⟨T ⟩π ) then
14: patch← dflt

15: else fail

16: for b ← guarded do

17: ψ ← Abduce(ΓG , ?? ⊢ b :: ⟨T ⟩π )
18: Tд ← ⟨{ν : Bool | ν ⇔ ψ }⟩π

19: guard ← Synthesize(Γ ⊢ ?? :: Tд)
20: patch← bind(guard)(λд.if д then b else patch)

21: return patch

Figure 8. Policy enforcement algorithm

Definition 3.1 (observational equivalence). For some ob-
server o : User, two stores σ1,σ2 are o-equivalent—written
σ1 ∼o σ2—if they hold the same value at every location l
visible to o in either store:

∀l . ty(l) = Ref ⟨T ⟩π ∧
(
π [(σ1,o)]∨π [(σ2,o)]

)
⇒ σ1[l] = σ2[l]

Theorem 3.2 (contextual noninterference). Let s be a λL
program and let σ1,σ2 be two stores. Assume that running s on
σ1,2 produces outputs ⟨oi, j ,vi, j ⟩, for i ∈ 1..2, j ∈ 1..k , where
oi, j is the viewer of output vi, j .

For any observer o, if σ1 ∼o σ2, then for all j ∈ 1..k , o1, j =
o ⇔ o2, j = o and o1, j = o ⇒ v1, j = v2, j .

4 Targeted Synthesis for λL

We now turn to the heart of our system: the algorithm En-
force (shown in Fig. 8), which takes as input a type envi-
ronment Γ, a program e (in A-normal form), and a top-level
type annotationT , and determines whether policy-enforcing
code can be injected into e to produce e ′, such that Γ ⊢ e ′ :: T .
The algorithm proceeds in two steps. First, procedure Lo-
calize identifies unsafe terms (line 2), replacing them with
type casts to produce a “program with holes” ê (Sec. 4.1). Sec-
ond, procedure Patch traverses ê (line 3) replacing each type
cast with an appropriate patch, generated by the procedure
Generate (Sec. 4.2).
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4.1 Fault Localization

Type casts. For the purpose of fault localization, we extend
the values of λL with type casts:

v ::= · · · | ⟨T ▹T ′⟩

Statically, our casts are similar to those in prior work [26];
in particular, the cast ⟨T ▹ T ′⟩ has type T ′ → T . However,
the dynamic semantics of casts in λL is undefined. The idea
is that casts are inserted solely for the purpose of targeting
synthesis, and, if synthesis succeeds, are completely elim-
inated. We restrict the notion of type-safe λL programs to
those that are well-typed are free of type casts.
Sound localizations. Algorithm Localize first uses liquid
type inference [12, 36, 44] to reduce the problem of checking
the source program e against type T to a system of Horn
constraints. If the constraints have a solution, it returns e
unmodified; otherwise, instead of simply signaling an error
like existing liquid type checkers, it attempts to construct a
sound localization of e , which is a program ê that satisfies the
following properties: (1) ê is obtained from e by inserting
type casts, i.e. replacing one or more subterms ei in e by
⟨Ti ▹ T

′
i ⟩ei ; (2) it is type correct, i.e. Γ ⊢ ê :: T In particular,

note that (2) implies that each ei has type T ′i .

Lemma 4.1 (Localization). Replacing each subterm of the

form ⟨Ti ▹T
′
i ⟩ ei in a sound localization of e with a type-safe

term of type Ti , yields a type-safe program.

This lemma follows directly form (2) and a standard substi-
tution lemma for refinement types [26]. Crucially, it shows
that once a sound localization has been found, patch genera-
tion can proceed independently for each type cast.
Minimal localizations. Among sound localizations, not all
are equally desirable. Intuitively, we would like to make mini-
mal changes to the behavior of the original program. Formal-
izing and checking this directly is hard, so we approximate
it with the following two properties. A sound localization
is syntactically minimal if no type cast can be removed or
moved to a subterm3without breaking soundness. Picking
syntactically minimal localizations leads to patching smaller
terms, rather than trying to rewrite the whole program.

Once the unsafe terms are fixed, we can still pick different
expected types Ti . Intuitively, the more restrictive the Ti ,
the less likely are we to find the patch to replace the cast.
A minimal localization is syntactically minimal, and all its
expected types cannot be made any less restrictive with-
out breaking soundness. In general, there can be multiple
minimal localizations, and a general program repair engine
would have to explore them all, leading to inefficiency. For
the specific problem of policy enforcement, however, there
is a reasonable default, which we infer as shown below.

3In this context, the definition of a let-bound variable is considered a subterm
of the let body

Inferring the localization. Given an unsatisfiable system
of Horn constraints, Localize first makes sure that all con-
flicting clauses have been generated by implication checks
on policy predicate, and removes those clauses that were
generated by the smallest term. It then re-runs the fixpoint
solver [12, 36] on the remaining system, inferring strongest
solutions for policy predicates, after which it reset the non-
policy refinements of the removed terms to ⊤ and re-check
the validity of the constraints. If the constraints are satis-
fied, we have obtained a sound and minimal localization (the
expected types are the least restrictive because policies are
strongest, and other refinements are ⊤). If the constraints
are violated, it indicates that the program depends on some
functional property of the unsafe term we want to replace.
We consider such programs out of scope: if a programmer
wants to benefit form automatic policy enforcement, they
have to give up the ability to reason about functional proper-
ties of sensitive values, since our language reserves the right
to substitute them with other values.

4.2 Patch Generation

Next, we describe how our algorithm replaces a type-cast
⟨Te ▹Ta⟩ d with a type-safe term d ′ of the expected type Te ,
using the patch generation procedure Generate (line 5). At
a high level, the goal of this step is to generate a term from
a given refinement type Te , which is the problem tackled
by type-driven synthesis as implemented in Synqid [34].
Unfortunately, Generate cannot use Synqid out of the
box, because the expected type Te is not a full functional
specification: this type only contains policies but no type
refinements, allowing trivial solutions to the synthesis prob-
lem, such as unconditionally returning an arbitrary constant
with the right type shape.

To avoid such undesired patches, procedure Generate
implements a specialized synthesis strategy: first, it generates
a list of branches, which return the original term redacted to
a different extent; then, for each branch, it infers an optimal
guard (a policy check), that makes the branch satisfy the
expected type; finally, it constructs the patch by arranging
the properly guarded branches into a (monadic) conditional.
Synthesis of branches. In line 11, Generate uses Synqid
to synthesize the set of all terms up to certain size with
the right content type, but with no restriction on the policy
(here, none = λ.False). Note that branches are generated in a
restricted environment ΓB , which contains only the original
faulty term, the “default” value of type T , and a small set of
redaction functions for this type (such as mapJust for Maybe
in Sec. 2.4.3). This restriction makes the branch synthesis
both more predictable and more efficient.
Default branch. Once the branches have been generated,
we sort them according to their actual policy predicate, form
weakest to strongest (i.e. in the reverse order of how they
are going to appear in the program). In line 13, we check
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that the first branch can be used as the default branch, i.e. it
satisfies the expected type unconditionally. This property is
always satisfied as long as ΓB contains a value v of type T ,
since in our type systemT <: ⟨T ⟩π for any π . For this check,
we use the original liquid type checking unmodified.
Synthesis of guards. For each of the other branchesb (which
include at least the original term), Generate attempts to
synthesize the optimal guard that would make b respect the
expected type. At a high level, this guard must be logically
equivalent to a formulaψ , such that (1)ψ ∧ p ⇔ q, where
λ(s,u).p � π is the expected policy of the patch, and λ(s,u).q
is the actual policy of branch b; (2)ψ does not mention the
policy parameters s and u. This predicate can be inferred
using existing techniques, such as logical abduction [13]. In
particular, Generate relies on Synqid’s liquid abduction
mechanism [34] to inferψ in line 17.
The main challenge of guard synthesis, however, is that

the guard itself must be monadic, since it might need to
retrieve and compute over some data from the store. Since the
data it retrieves might itself be sensitive, we need to ensure
that two conditions are satisfied (1) functional correctness:
the guard returns a value equivalent toψ , and (2) no leaky
enforcement: the guard itself respects the expected policy π
of the patch. To ensure both conditions, we obtain the guard
via type-driven synthesis, providing ⟨{ν : Bool | ν ⇔ ψ }⟩π

as the target type.

Lemma 4.2 (Safe patch generation). If Generate succeeds,
it produces a type-safe term of the expected type ⟨T ⟩π .

Assuming correctness of Synthesize and Abduce, we
can use the typing rules of Sec. 3 to show that the invariant
Γ ⊢ patch :: ⟨T ⟩π is established in line 14 and maintained in
line 20. In particular, the type of bound variable д in line 20
is {ν : Bool | ν ⇔ ψ }, hence, then branch is checked under
the path conditionψ ⇔ ⊤, which implies ΓG ⊢ b :: ⟨T ⟩π .
We would also like to provide a guarantee that a patch

produced by Generate is minimal, i.e., in each concrete
execution, its return value retains the maximum information
allowed by π from the original term. We can show that, for
a fixed set of generated branches, the patch will always pick
the most sensitive one that is allowed by π , since the guards
characterize precisely when each branch is safe. Of course,
the set of generated branches is restricted to terms of certain
size constructed from components in ΓB . The original term,
however, is always in ΓB , hence we are guaranteed to retain
the original value whenever allowed by π .

4.3 Guarantees and Limitations

In this section we summarize the soundness guarantee of
targeted synthesis in λL and then discuss the limitations on
its completeness and minimality.

Theorem 4.3 (Soundness of targeted synthesis). If proce-
dure Enforce succeeds, it produces a program that satisfies

contextual noninterference.

Compilation time
Benchmark Localize Generate Total
Basic policy 0.04s 0.09s 0.14s
Self-referencing policy 0.00s 0.17s 0.19s
Implicit flow 0.01s 0.29s 0.30s
Filter by author 0.06s 0.61s 0.68s
Sort by score 0.03s 0.86s 0.90s
Send to multiple users 0.00s 0.34s 0.35s
Interleaved reads/writes 0.01s 0.72s 0.74s
Copy a private field 0.00s 0.19s 0.20s

Table 1. Micro-benchmarks, with compile-time statistics.
This is straightforward by combining Lemmas 4.1 and 4.2

with Theorem 3.2.
Completeness.When does procedure Enforce fail? Sec. 4.1
explains how Localize can fail when the inferred localiza-
tion is not safe. Generate can fail in lines 13, 17, and 19.
The first failure indicates that ΓB does not contain any suffi-
ciently public terms (in particular, there is no default value).
The second failure can happen if the abduction engine is not
powerful enough (this does not happen in our case studies).
The third failure is the most interesting one: it happens when
no guard satisfies both functional and security requirements,
indicating that the policy is not enforceable without leaking
some other sensitive information.
Minimality. We would like to show that the changes made
by Enforce are minimal: in any execution where e did not
cause a leak, e ′ would output the same values as e . Unfor-
tunately, this is not true, even though we have shown that
Localize produces least restrictive expected types and Gen-
erate synthesizes minimal patches. The reason is that even
the least restrictive expected type might over-approximate
the set of output contexts, because of the imprecisions of
refinement type inference. In these cases, Enforce is conser-
vative: i.e. it hides more information than is strictly necessary.
One example is if the state is updated in between the get

and the print by calling a function for which no precise re-
finement type can be inferred. Another example is when the
same sensitive value with a viewer-dependent policy is dis-
played to multiple users. In our case studies, we found that
in the restricted class of data-centric applications that Lifty
is intended for, these patterns occur rarely. One approach
to overcoming this limitation would be to combine targeted
synthesis with runtime techniques similar to Jeeves.

5 Evaluation

We implemented a set of microbenchmarks and larger case
studies and demonstrate the following.
Expressiveness of policy language. We use Lifty to im-
plement a conference manager, a grading application, and
a health portal4. The two authors who developed the case
4The first two applications are based on case studies for the policy-agnostic
Jacqueline system [48]. The health portal is based on theHealthWeb example
from the Fine paper [41].
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(a) Conference Management System Policy size (tokens): 345
Program size (tokens) Time

Policy enforcing Manual Auto
Benchmark Original Manual Auto Verify Localize Generate Total
Register user 10 0 0 0.00s 0.00s 0.00s 0.00s
View users 20 9 24 0.01s 0.01s 0.58s 0.59s
Paper submission 45 0 0 0.00s 0.00s 0.00s 0.00s
Search papers 77 96 82 0.90s 0.08s 7.03s 7.11s
Show paper record 53 46 82 0.34s 0.04s 7.89s 7.94s
Show reviews for paper 57 54 45 0.39s 0.07s 0.58s 0.66s
User profile: GET 66 0 0 0.03s 0.03s 0.00s 0.03s
User profile: POST 17 0 0 0.00s 0.00s 0.00s 0.00s
Submit review 40 0 0 0.00s 0.00s 0.00s 0.00s
Assign reviewers 47 0 0 0.01s 0.01s 2.25s 2.26s
Totals 432 205 233 1.71s 0.27s 18.36s 18.64s

(b) Gradr—Course Management and Interactive Grading System Policy size (tokens): 141
Program size (tokens) Time

Policy enforcing
Benchmark Original (Lifty) Localize Generate Total
Display the home page 12 0 0.00s 0.00s 0.00s
Student: get classes 13 0 0.04s 0.00s 0.04s
Instructor: get classes 13 0 0.00s 0.00s 0.00s
Get class information for a user 29 0 0.01s 0.00s 0.01s
View a user’s profile (owner) 23 0 0.00s 0.00s 0.00s
View a user’s profile (any user) 25 19 0.01s 0.04s 0.06s
Instructor: view scores for an assignment 36 17 0.00s 0.03s 0.05s
Student: view all scores for user 36 17 0.00s 0.03s 0.05s
Instructor: view top scores for an assignment 62 17 0.02s 0.03s 0.06s
Totals 253 70 0.13s 0.17s 0.31s

(c) HealthWeb—Health Information Portal Policy size (tokens): 194
Program size (tokens) Time

Policy enforcing
Benchmark Original (Lifty) Localize Generate Total
Search a record by id 23 293 0.00s 12.10s 12.11s
Search a record by patient 56 293 0.03s 13.10s 13.14s
Show authored records 45 0 0.02s 0.00s 0.02s
Update record 34 0 0.00s 0.15s 0.15s
List patients for a doctor 52 44 0.03s 0.09s 0.13s
Totals 216 630 0.10s 25.46s 25.57s
Table 2. Case studies: conference management, course manager, health portal.
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Figure 9. Scalability—N accesses in a single function.

studies were not involved in the development of Lifty. We

demonstrate that Lifty’s policy language supports the de-
sired policies for these systems.
Scalability.We demonstrate that the Lifty compiler is suffi-
ciently efficient at error localization and synthesis to use for
systems of reasonable size: Lifty is able to generate all neces-
sary checks for our conference manager (424 lines of Lifty)
in about 20 seconds. Furthermore, we show that synthesis
times are linear in the number of required patches.
Quality of patches. We compare the code generated by
Lifty to a version with manually written policy checks and
show that not only does Lifty allow for policy descriptions
to be centralized and concise, but also the compiler is able
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to recover all necessary checks, without reducing the func-
tionality.

5.1 Microbenchmarks and Case Studies

We implemented the following code using Lifty.
Microbenchmarks. To exercise the flexibility of our lan-
guage, we implemented a series of small but challenging
microbenchmarks, described in Tab. 1.
Conference manager. We implemented two versions of a
basic academic conference manager: one where the program-
mer enforces the policies by hand and one where Lifty is
responsible for injecting the policy checks. The manager han-
dles confidentiality policies for papers in different phases
of the conference and different paper statuses, based on the
role of the viewer. Policies depend on this state, as well as
additional properties such as conflicts with a particular pa-
per. The system provides features for displaying the paper
title and authors, status, list of conflicts, and conference in-
formation conditional on acceptance. Information may be
displayed to the user currently logged in or sent via various
means to different users. The system contains 888 lines of
code in total (524 Lifty + 364 Haskell).
Course manager. We implemented a system for sending
grades to students based on their course enrollment and
assignment status. An example policy is that a student can
see their own scores, whereas instructors can see scores for
all of their students.
Health portal. Based on the HealthWeb example for the
Fine language [41], we implemented a system that supports
the enforcement of information flow policies in the context
of viewing and searching over health records. The complex-
ity of the policies and functions of this case study make it
interesting. We describe it in more detail in Appendix A.5.

5.2 Performance Statistics

We show running times for the microbenchmarks in Tab. 1,
and for the case studies in Tab. 2. We break them down into
fault localization (including type checking) and patch syn-
thesis. For the conference manager, we show a comparison
between the version with manual policy checks and a ver-
sion with automatically generated checks. For the version
that contains manual checks, we show only verification time,
as Lifty skips the other phases. Notice that Lifty is able to
determine that six of our benchmarks required no patches
at all: in particular, all store updates are safe.

Scaling. Because of the way targeted synthesis works, syn-
thesizing patches for each function is independent. Cross
effects arise only from (1) interactions between policies and
(2) having more generic components in scope, as the synthe-
sizer needs to search over this space. For this reason, Lifty
scales linearly with respect to the number of functions in
the program. For a stress test, we created a benchmark test

that performs N reads (of the same field, for convenience)
and then a print to an arbitrary user. Lifty’s job is to patch
all of the get locations with a conditional. We show in Fig. 9
that patch generation time is linear in N . Verification (includ-
ing error localization) is still quadratic in N . This currently
dominates the compilation time.

5.3 Measuring the Quality of Patches

We compared the two versions of our conference manager
(Tab. 2). The size of the checks confirms our hypothesis
that for data-centric applications, much of the programming
burden is in policy-enforcing code. Our results reveal that
while manual checks are more concise than Lifty-generated
checks, the bloat in the generated code comes from unnec-
essary verbosity, and affects neither its functionality nor
performance. The manual and automatic checks were se-
mantically equivalent across our benchmarks.

6 Related Work

Program synthesis and repair. Our approach differs from
existing program synthesis techniques [2–4, 15, 16, 22, 27, 30,
33, 34, 39], which synthesize programs from scratch, from
end-to-end functional specifications, while Lifty performs
synthesis for the cross-cutting program concern of infor-
mation flow. Our goal is similar to that of sound program
repair [24], but in the specific setting of policy enforcement,
Lifty is able to perform a much more precise fault local-
ization, and synthesize all patches locally, which makes it
more scalable. Prior work on rewriting programs based on
security concerns [17, 18, 21, 40] does not involve reasoning
about expressive information-flow policies.
Information flow control. Lifty provides a high-level pro-
gramming interface to support security guarantees based
on a long history of work in language-based information
flow [38]. Both static and dynamic label-based approaches [5,
8, 11, 19, 29, 32, 35, 50, 51] allow programmers to label data
with security levels and check programs for unsafe flows.
Labels are, however, low level: they trust the programmer
to correctly express high-level policies in terms of label-
manipulating code. More importantly, none of these ap-
proaches address the issue of or programmer burden: static
approaches simply prevent unsafe programs from compiling;
the dynamic approaches raise exceptions or silently fail.

Lifty takes a policy-agnostic approach [6, 48, 49] and fac-
tors information flow out from core program functionality,
allowing programmers to implement policies as high-level
predicates over the program state. Prior work uses runtime
enforcement, which yields nontrivial runtime overheads and
makes it difficult to reason about program behavior. Lifty
addresses these issues by providing a synthesis-driven ap-
proach to support the Jeeves semantics statically, supporting
an analogous security property.
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Type systems. Lifty’s type system, as well as the monadic
encoding for information flow, are inspired by other value-
dependent type systems [9, 10, 23, 41, 42]. The key difference
is the decidability of both type inference, which yields auto-
mated verification and fault localization, crucial for targeted
synthesis. Lifty’s type inference engine is built on top of
the Liquid Types framework [12, 36, 44–46], and extends it
with a fault localization mechanism tailored towards security
types. Our technique for using types for program rewriting
resembles both hybrid type checking [26] and type-directed
coercion insertion [43]. Both our types and rewriting ca-
pabilities are more advanced and thus can handle global,
cross-cutting concerns such as information flow.
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A Appendix

A.1 Desugaring do-notation

This is code from Fig. 3 with the do-notation desugared into
invocations of bind.

showPaper client p =

let row =

bind (get (title p)) ( λ t .

bind (get (status p)) ( λ st .

bind (if st = Accepted

then get (session p) else return "") ( λ ses .

return (t + " " + ses))))

print client row

A.2 Operational Semantics of λL

The runtime behavior of λL programs is straightforward and
is summarized in Fig. 10. Expression evaluation happens in
the context of a store σ : (Loc→ Value) ∪ (User→ Value),
which has two components, mapping location to values and
users to their corresponding output. The statements set and
print modify the two components of the store respectively.
The dynamic semantics of tagged primitives is not very

interesting, which is not surprising, since λL only tracks
policies statically. ⌊·⌋ simply returns its argument, while
bind calls its second argument on the first. At runtime a
tagged computation is indistinguishable from a computation
on untagged values (in fact, you might have noticed that
bind corresponds to the bind of the identity monad).

A.3 The λL Type System

We show the full typing rules in Fig. 11.

A.4 Contextual Noninterference with Store Updates

In the presence of store updates, there is an additional sub-
tlety in the definition of contextual noninterference. As the
program executes and writes to the store, some previously
secret locations can become visible, hence we only require
that o cannot observe a difference in location l if l is secret
throughout both program executions (e.g. it’s fine if I notice
the difference in paper status if the phase advanced halfway
through the program execution and it became visible).

Definition A.1 (observational equivalence). For some ob-
server o : User and a set of stores ∆ = {∆1, · · · ,∆n}, two
stores σ1,σ2 are ⟨o,∆⟩-equivalent — written σ1 ∼o,∆ σ2 — if

∀l ,p. ty(l) = Ref ⟨T ⟩p ∧
( ∨

∆i ∈∆ p(∆i ,o)
)
⇒ σ1[l] = σ2[l]

That is: at every location l visible to o in any ∆i , the stores
hold the same value.

When ∆ is omitted, it means ∆ = {σ1,σ2}.

In order to discuss the privacy properties of the language,
we need to add some annotation to program terms.

DefinitionA.2 (semantic annotations). λ ⟨L⟩ is the language
obtained from λL by adding one more case to v :

v ::= · · · | ⟨v⟩p

The operational semantics rules remain the same, ignor-
ing and bypassing any ⟨·⟩p annotations. The rule for let is
slightly changed so that the substituted value is annotated
with p whenever the type of the bound variable is ⟨T ⟩p .

DefinitionA.3 (observational equivalence for program terms).
For two terms t1, t2 (either expressions or statements), and
for an observer o and stores ∆ as before, the terms are ⟨o,∆⟩-
equivalent — t1 ∼o,∆ t2 — when:
• They are syntactically identical, except at annotated
values;
• For corresponding annotated values v̂1 = ⟨v1⟩p , v̂2 =
⟨v2⟩

p′ they agree on the tag p = p ′, and( ∨
∆i ∈∆ p(∆i ,o)

)
⇒ v1 = v2

We formalize our contextual noninterference theorem as
follows.

First we state the full theorem, which includes writes and
reasons about λL programs containing set statements.

Theorem A.4 (contextual noninterference). Let s be a λL
program and let σ1,σ2 be two stores. Observe the two λ ⟨L⟩-
traces of s on these stores:

σj , s −→ σ (1)j , s
(1) −→ σ (2)j , s

(2) −→ · · · −→ σ (k )j , s
(k )

(notice that the traces must be of equal length) and define

∆ =
⋃

j ∈{1,2},i ∈1..k {σ
(i)
j }.

If σ1 ∼o,∆ σ2, then σ
(i)
1 ∼o,∆ σ

(i)
2 for all i ∈ 1..k .

Notice that this generalizes our previous handling of print
statements, since the output displayed to each observer can
be modeled by an array of Refs, one per user, with the policy
that only that user can see them, such that print appends to
these stores.

We now prove four lemmas, one for expressions, and one
for each type of statements. In all of them, we implicitly
assume terms are well-typed. The proofs are rather boring
so only a brief sketch is given.

Lemma A.5 (contextual noninterference for expressions).
Let

• σ1,σ2,∆ stores such that σ1 ∼o,∆ σ2;
• e1, e2 expression such that e1 ∼o,∆ e2;
• Γ,y,T ,p such that Γ;y ⊢ ej :: ⟨T ⟩p for j ∈ {1, 2} and i
such that p(∆i ,o);
• σj , ej −→

∗ c j for j ∈ {1, 2};
then c1 = c2.

Proof.This lemma constitutes the core of the non-interference
property.We the standard technique of Pottier and Simonet [35]:
define an auxiliary language λL2 where every tagged value
has two components, one for each of σj , and show that a term
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Expression Evaluation σ , e −→ e

e-β
σ , (λx :T . e1) e2 −→ [x 7→ e2]e1

e-get
σ , get l −→ σ [l]

e-true
σ , if true then e1 else e2 −→ e1

e-false
σ , if false then e1 else e2 −→ e2

e-bind
σ , bind ex (λx : T .e) −→ [x 7→ ex ]e

e-downgrade
σ , ⌊e⌋ −→ e

e-ctx
e −→ e ′

C[e1] −→ C[e2]

where C ::= • | C e | e C | λx :T . C | get C | if C then e1 else e2 | bind e C

Statement Execution σ , s −→ σ , s

let
σ , e −→∗ v

σ , let x = e in S −→ σ , [x 7→ v]S

set
σ , set l v ; S −→ σ [l := v], S

print
σ , print u v ; S −→ σ [u +=v], S

Figure 10. λL operational semantics.

visible to the observer o will evaluate to a value with equal
components, assuming that the stores hold equal values at
references visible to o.

We omit the full formalization because it is mostly tedious.
We just note that it relies crucially on the λL2 definition of the
tagged primitives bind and ⌊·⌋; in particular, bind v f exe-
cutes f on both components of v , and ⌊·⌋ increases visibility
exactly for those cases where both components are known
to be equal. The subtyping rules make sure that “upcasts”
can only strengthen the policy tag p, so tagged values with
non-equal components can never become visible again.

Lemma A.6 (contextual noninterference for “print” state-
ments). Let σ1 ∼o,∆ σ2,

sj = print ⟨uj ⟩
p ⟨vj ⟩

p ; tj for j ∈ {1, 2},
such that s1 ∼o,∆ s2 and σj , sj −→ σ ′j ; s

′
j .

Assume σ1,2,σ
′
1,2 ∈ ∆.

Then σ ′1 ∼o,∆ σ
′
2 and s

′
1 ∼o,∆ s ′2.

Proof. The semantics of print is that it modifies the location
uj in the store. From the typing rules for print we know
that p(σj ,uj ). So if either u1 = o or u2 = o, we get p(σj ,o),
therefore from ⟨o,∆⟩ equivalence u1 = u2 = o and v1 = v2.
By statement execution rules, s ′j = tj which are sub-

statements of sj and equivalence follows from the definition.

Lemma A.7 (contextual noninterference for “set” state-
ments). Let σ1 ∼o,∆ σ2,

sj = set l ⟨vj ⟩
p ; tj such that ty(l) = Ref ⟨T ⟩p for

j ∈ {1, 2},
such that s1 ∼o,∆ s2 and σj , sj −→ σ ′j ; s

′
j .

Assume σ1,2,σ
′
1,2 ∈ ∆.

Then σ ′1 ∼o,∆ σ
′
2 and s

′
1 ∼o,∆ s ′2.

Proof. Notice that in this case the location itself is not
tagged so both executions alter the same key in the store. If
p(∆i ,o) for some i , then we know that v1 = v2; otherwise
the mutated location is not observed hence the values are
insignificant.

As in the print case, s ′j = tj and the rest is the same.

Lemma A.8 (contextual noninterference for “let” state-
ments). Let σ1 ∼o,∆ σ2,

sj = let x = ej in tj for j ∈ {1, 2},
such that s1 ∼o,∆ s2 and σj , sj −→ σ ′j ; s

′
j .

Assume σ1,2,σ
′
1,2 ∈ ∆.

Then σ ′1 ∼o,∆ σ
′
2 and s

′
1 ∼o,∆ s ′2.

Proof. If x does not have a tagged type, the theorem is trivial.
Otherwise, let x :: ⟨T ⟩p . From Lemma A.5, if p(σj ,o) holds
(for either j ∈ {1, 2}) then e evaluates to the same value on
both stores; otherwise two tagged values ⟨c j ⟩p are created
and substituted into sj , and sincep(σj ,o) this does not violate
⟨o,∆⟩ equivalence.
In both cases, let does not mutate the store, so σ ′j = σj ,

and obviously σ ′1 ∼o,∆ σ
′
2 .

Proof by induction on i , starting at i = 0 denoting the
initial state. For each derivation step, either Lemma A.6, A.7,
or A.8 applies.

With Theorem 3.2 we can be certain that if the permis-
sions are set correctly, then no information flow can violate
the policy throughout the execution of the program. The re-
quirement is that any value that becomes public at any point,
should be equal on the two initial stores. This is important
because policies depend on the state of the store; so if a pro-
gram grants permission to view a field that previously was
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Well-formedness Γ ⊢ r Γ ⊢ B Γ ⊢ S

WF-r
Γ ⊢ r : Bool

Γ ⊢ r
WF-Tag

Γ ⊢ T Γ,y : Store,u : User ⊢ r

Γ ⊢ ⟨T ⟩λy .λu .r

Subtyping Γ ⊢ T <: T ′ Γ ⊢ B <: B′

<:-Sc
Γ ⊢ B <: B′ Γ � r ⇒ r ′

Γ ⊢ {B | r } <: {B′ | r ′}
<:-Fun

Γ ⊢ T ′x <: Tx Γ ⊢ T <: T ′

Γ ⊢ Tx → T <: T ′x → T ′

<:-Tag1
Γ ⊢ ⟨T ⟩p

Γ ⊢ T <: ⟨T ⟩p
<:-Tag2

Γ ⊢ T <: T ′ Γ � r ′⇒ r

Γ ⊢ ⟨T ⟩λy .λu .r <: ⟨T ′⟩λy .λu .r ′

<:-Refl
Γ ⊢ B <: B

Expression Typing Γ;y ⊢ e :: T

T-C
Γ;y ⊢ c :: ty(c)

T-Var
x :T ∈ Γ

Γ;y ⊢ x :: T
T-λ

Γ ⊢ Tx Γ,x : Tx ;y ⊢ e :: T
Γ;y ⊢ λx . e :: Tx → T

T-App
Γ;y ⊢ e1 :: Tx → T Γ;y ⊢ e2 :: Tx

Γ;y ⊢ e1 e2 :: T
T-get

Γ;y ⊢ x :: Ref {B | r }
Γ;y ⊢ get x :: {B | r ∧ ν = y[x]}

T-If

Γ;y ⊢ e :: {Bool | r }
Γ, [ν 7→ ⊤]r ⊢ e1 :: T Γ, [ν 7→ ⊥]r ⊢ e2 :: T

Γ;y ⊢ if e then e1 else e2 :: T
T-bind

Γ;σ ⊢ e1 :: ⟨T1⟩π Γ;σ ⊢ e2 :: T1 → ⟨T2⟩π

Γ;σ ⊢ bind e1 e2 :: ⟨T2⟩π

T- ⌊ ·⌋
Γ;σ ⊢ e :: ⟨{Bool | ν ⇒ r }⟩λ(s,u).π [(s,u)]∧r

Γ;σ ⊢ ⌊e⌋ :: ⟨{Bool | ν ⇒ r }⟩π
T-<:

Γ;y ⊢ e :: T ′ Γ ⊢ T ′ <: T
Γ;y ⊢ e :: T

T∀
Γ,α ;y ⊢ e :: S
Γ;y ⊢ e :: ∀α . S T -Inst

Γ;y ⊢ e :: ∀α . S Γ ⊢ T

Γ;y ⊢ e :: [α 7→ T ]S

Statement Typing Γ;y ⊢ s

T-let
Γ;y ⊢ e :: T Γ,x : T ;y ⊢ s

Γ;y ⊢ let x = e in s
T-print

Γ;y ⊢ x1 :: ⟨{User | p(y,ν )}⟩p
Γ;y ⊢ x2 :: ⟨Str⟩p Γ;y ⊢ s

Γ;y ⊢ print x1 x2 ; s

T-set

Γ;y ⊢ x1 :: Ref T Γ;y ⊢ x2 :: T
Γ,y ′ : {Store | ν = y[x1 := x2]} ; y ′ ⊢ s y ′ is fresh

Γ;y ⊢ set x1 x2 ; s
T-skip

Γ;y ⊢ skip

Figure 11. λL static semantics.

secret, and this field had two different values, then clearly
the result of the program would differ.

A.5 Health Portal Case Study

Our health portal case study, based on the HealthWeb case
study in the Fine [41] paper, is particularly interesting be-
cause it showcases many Lifty capabilities and because of
its complex policies guarding health records. We show the
type signatures for some of the functions in Figure 12. As

you can see, the policy on a health record is quite complex,
depending on both the identity of the viewer, whether they
are a patient, whether there is a withholding relationship
on the record, and whether there is a psychologist and treat-
ment relationship between the viewer and the patient whose
record it is. For this example, the complexity of the policy
makes the generated policy check significantly larger than
the size of the original code.
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getRecord :: rid : RecordId→ Ref ⟨RecordId⟩λ(s,u).u=author (s[r id ])∨

(isPatient s u∧u=patient s[r id ]∧¬(shouldWithhold u s[r id ]))∨

(isDoctor s u∧¬(shouldWithhold u s[r id ]))∨

(isPsychiatrist s u∧isTreating u s[r id ]∧isPsychiatristRecord s[r id ]∧¬(shouldWithhold u s[r id]))

getIsTreating :: u : User→ w : User→ Ref ⟨Bool⟩λ(s,v).isPsychiatrist s v ∧ v=u

getAuthoredRecordIds :: User→ Ref ⟨[RecordId]⟩any

Figure 12. Function signatures from the HealthWeb case study.

The health portal code takes advantage of Lifty’s ability
to generate checks as close to the data source as possible. One
view function, showRecordsForPatientView, uses a filter over
the list of all records to find the records that have a specified
patient, and then outputs the result. The repair works as
expected: the repaired version of the function generates a
complex check (corresponding to the above) and runs it on
each element of the list, so that only those records that pass
the check will be shown.
We also found Lifty to handles sensitive values in poli-

cies appropriately. The policy for getIsTreating depends
on the result of isTreating, but our getIsTreating function
has a policy of its own that says that the patients of a psy-
chiatrist can only be seen by that psychiatrist. However,

the generated policy check still works fine, because in the
getRecord’s policy, the isTreating predicate is checked only
after isPsychiatrist is checked.

The showAuthoredRecordsView function is also interesting
because it demonstrates how relying on automatic patch
generation can potentially reduce the number of checks nec-
essary in the code. In our code, the showAuthoredRecordsView
function first gets all the IDs of records authored by the
session user. The getRecord policy says that a record may
always be seen by its author. Because Lifty can verify this
policy against the code, it is able to determine that the
showAuthoredRecordsView function satisfies policies without
even needing to add a check.
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