
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft

No
t fo
r d
ist
rib
uti
on

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

Enforcing Declarative Policies

with Targeted Program Synthesis

Nadia Polikarpova
University of California, San Diego

npolikarpova@eng.ucsd.edu

Jean Yang
Carnegie Mellon University

jyang2@cs.cmu.edu

Shachar Itzhaky
Technion

shachari@cs.technion.ac.il

Travis Hance
Carnegie Mellon University

thance@cs.cmu.edu

Armando Solar-Lezama
Massachusetts Institute of Technology

asolar@csail.mit.edu

Abstract

We present a technique for static enforcement of declarative
information flow policies. Given a program that manipulates
sensitive data and a set of declarative policies on the data,
our technique automatically inserts policy-enforcing code
throughout the program to make it provably secure with
respect to the policies. We achieve this through a new ap-
proach we call targeted program synthesis, which enables the
application of traditional synthesis techniques in the context
of global policy enforcement. The key insight is that, given
an appropriate encoding of policy compliance in a type sys-
tem, we can use type inference to decompose a global policy
enforcement problem into a series of small, local program
synthesis problems that can be solved independently.
We implement this approach in Lifty, a core DSL for

data-centric applications. Our experience using the DSL to
implement three case studies shows that (1) Lifty’s central-
ized, declarative policy definitions make it easier to write
secure data-centric applications, and (2) the Lifty compiler
is able to efficiently synthesize all necessary policy-enforcing
code, including the code required to prevent several reported
real-world information leaks.

1 Introduction

From social networks to health record systems, today’s soft-
ware manipulates sensitive data in increasingly complex
ways. To prevent this data from leaking to unauthorized
users, programmers sprinkle policy-enforcing code through-
out the system, whose purpose is to hide, mask, or scram-
ble sensitive data depending on the identity of the user or
the state of the system. Writing this code is notoriously te-
dious and error-prone. Static information flow control tech-
niques [10, 23, 28, 32, 41, 51] mitigate this problem by allow-
ing the programmer to state a high-level declarative policy,
and statically verify the code against this policy. These tech-
niques, however, only address part of the problem: they can
check whether the code as written leaks information, but
they do not help programmers write leak-free programs in

Unpublished working draft. Not for distribution

Draft, 2017, USA

2017. ACM ISBN . . . $15.00
https://doi.org/

the first place. In this work, we are interested in alleviat-
ing the programmer burden associated with writing policy-
enforcing code.

In recent years, program synthesis has emerged as a power-
ful technology for automating tedious programming tasks [7,
14, 20, 39, 47]. In this paper we explore the possibility of us-
ing this technology to enforce information flow security by
construction: using a declarative policy as a specification,
our goal is to automatically inject provably sufficient policy-
enforcing code throughout the system. This approach seems
especially promising, since each individual policy-enforcing
snippet is usually short, side-stepping the scalability issues
of program synthesizers.

The challenge, however, is that our setting is significantly
different from that of traditional program synthesis. Exist-
ing synthesis techniques [3, 4, 15, 25, 33, 34, 39] target the
generation of self-contained functions from end-to-end spec-
ifications of their input-output behavior. In contrast, we are
given a global specification of one aspect of the program be-
havior: it must not leak information. This specification says
nothing about where to place the policy-enforcing snippets,
let alone what each snippet is supposed to do.
Targeted program synthesis. In this paper we demonstrate
how to bridge the gap between global policies and local en-
forcement via a new approach that we call targeted program
synthesis. Our main insight is that a carefully designed type
system lets us leverage error information from type-checking
the original unsafe program to infer local, end-to-end spec-
ifications for sufficient policy-enforcing snippets (or leak
patches). More specifically, (1) the location of a type error in-
dicates where to insert a leak patch and (2) the expected type
corresponds to the local specification for the patch. Moreover,
it is possible to guarantee that any combination of patches
that satisfy their respective local specifications yields a prov-
ably secure program. In other words, we show how to de-
compose the problem of policy enforcement into several
independent program synthesis problems, which can then
be tackled by state-of-the-art synthesis techniques.
Type system. The main technical challenge in making tar-
geted synthesis work is the design of a type system that, on

2017-11-29 11:22 page 1 (pp. 1-18) 1

https://doi.org/

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft

No
t fo
r d
ist
rib
uti
on

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

Draft, 2017, USA Nadia Polikarpova, Jean Yang, Shachar Itzhaky, Travis Hance, and Armando Solar-Lezama

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

program

policies

expected type
synth

synth

synth

expected type

expected type

patch

patch

patch

type
checker

Figure 1. Policy enforcement in Lifty.

the one hand, is expressive enough to reason about the poli-
cies of interest, and on the other hand, produces appropriate
type errors for the kinds of patches we want to synthesize.
For our policy language, we draw inspiration from the Jeeves
language [6, 49], which supports rich, context-dependent poli-
cies, where the visibility of data might depend both on the
identity of the viewer and the state of the system. For exam-
ple, in a social network application, a user’s location can be
designated as visible only to the user’s friends who are within
a certain distance of that location. In Jeeves, these policies
are expressed directly as predicates over users and states.
Our technical insight is that static reasoning about Jeeves-
style policies can be encoded in a decidable refinement type
system by indexing types with policy predicates. Moreover,
we show how to instantiate the Liquid Types framework [36]
to infer appropriate expected types at the error locations.
The Lifty language. Based on this insight, we developed
Lifty1, a core DSL for writing secure data-centric applica-
tions. In Lifty, the programmer implements the core func-
tionality of an application without having to worry about
information leaks. Separately, they provide a policy module,
which associates declarative policies with some of the fields
(columns) in the data store, by annotating their types with
policy predicates. Given the source program and the declara-
tive policies, Lifty automatically inserts leak patches across
the program, so that the resulting code provably adheres
to the policies (Fig. 1). To that end, Lifty’s type inference
engine checks the source program against the annotated
types from the policy module, flagging every unsafe access to
sensitive data as a type error. Moreover, for every unsafe ac-
cess the engine infers the most restrictive policy that would
make this access safe. Based on this policy, Lifty creates a
local specification for the leak patch, and then uses a variant
of type-driven synthesis [34] to generate the patch.
Evaluation. To demonstrate the practical promise of our
approach, we implemented a prototype Lifty-to-Haskell
compiler. We evaluated our implementation on a series of
small but challenging micro-benchmarks, as well as three

1Lifty stands for Liquid Information Flow TYpes.

case studies: a conference manager, a health record system,
and a student grade record system. The evaluation demon-
strates that our solution supports expressive policies, reduces
the burden placed on the programmer, and is able to gen-
erate all necessary patches for our benchmarks within a
reasonable time (26 seconds for our largest case study). Im-
portantly, the evaluation confirms that the patch synthesis
time scales linearly with the size of the source code (more
precisely, with the number of required leak patches), suggest-
ing the feasibility of applying this technique to real-world
code bases.

2 Lifty by Example

To introduce Lifty’s programming model, type system, and
the targeted synthesis mechanism, we use an example based
on a leak from the EDAS conference manager [1]. We have
distilled our running example to a bare minimum to simplify
the exposition of how Liftyworks under the hood; at the end
of the section, we demonstrate the flexibility of our language
through more advanced examples.

2.1 The EDAS Leak

Figure 2 shows a screenshot from the EDAS conference man-
ager. On this screen, a user can see an overview of all their
papers submitted to upcoming conferences. Color coding
indicates paper status: green papers have been accepted, or-
ange have been rejected, and yellow is used before author
notifications are out, indicating that the decision is still pend-
ing. An author is not supposed to learn about the decision
before the notifications are out, yet from this screen, the
user can infer that the first one of the pending papers has
been tentatively accepted, while the second one has been
tentatively rejected. They can make this conclusion because
the two rows differ in the value of the “Session” column
(which displays the conference session where the paper is
to be presented), and the user knows that sessions are only
displayed for accepted papers.

The EDAS leak is particularly insidious because it provides
an example of an implicit flow: the “accepted” status does
not appear anywhere on the screen, but rather influences
the output via a conditional. To prevent such leaks, it is
insufficient to simply examine output values; rather, sensitive
values must be tracked through control flow.

Fig. 3 shows a simplified version of the code that has
caused this leak. This code retrieves the title and status for
a paper p, then retrieves session only if the paper has been
accepted, and finally displays the title and the session to the
currently logged-in client. The leak happened because the
programmer forgot to insert policy-enforcing code that would
prevent the true value of status from influencing the output,
unless the conference is in the appropriate phase (notifica-
tions are out). It is easy to imagine, how in an application that
manipulates a lot of sensitive data, such policy-enforcing

2 2017-11-29 11:22 page 2 (pp. 1-18)

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft

No
t fo
r d
ist
rib
uti
on

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

Enforcing Declarative Policies
with Targeted Program Synthesis Draft, 2017, USA

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

Figure 2. Author’s home screen in EDAS, shared with per-
mission of Agrawal and Bonakdarpour [1].

1 showPaper client p =

2 let row = do

3 t ← get (title p)

4 st ← get (status p)

5 ses ← if st = Accepted

6 then get (session p) else ""

7 t + " " + ses in

8 print client row

Figure 3. Snippet of the core functionality of a conference
manager (in Lifty syntax).

module ConfPolicy where

title :: PaperId→ Ref ⟨String⟩any

status :: PaperId→ Ref ⟨Status⟩λ(s,u).s[phase] = Done

session :: PaperId→ Ref ⟨String⟩any

Figure 4. Snippet from a policy module for a conference
manager.

code become ubiquitous, imposing a significant burden on
the programmer and obscuring the application logic.

2.2 Programming with Lifty

Lifty liberates the programmer from having to worry about
policy-enforcing code. Instead, they provide a separate policy
module that describes the data layout and associates sensitive
data with declarative policies. For example, Fig. 4 shows a
policy module for our running example.
The Lifty type system is equipped with a special type

constructor ⟨T ⟩π (“T tagged with policy π”), where π :
(Σ, User) → Bool is a predicate on contexts, i.e. pairs of
states and users. The type ⟨T ⟩π denotes values of type T
that are only visible to a user u in a state s such that π (s,u)
holds. For example, to express that a paper’s status is only

1 showPaper client p =

2 let row = do

3 t ← get (title p)

4 st ← let x0 = get (status p) in do

5 x1 ← get phase

6 if x1 = Done then x0 else NoDecision

7 ses ← if st = Accepted

8 then get (session p) else ""

9 t + " " + ses in

10 print client row

Figure 5. With a patch inserted by Lifty to protect against
the EDAS leak.

visible when the conference phase is Done, the programmer
defines its type as a reference to Status tagged with policy
λ(s,u).s[phase] = Done. Hereafter, we elide the binders (s,u)
from policy predicates for brevity, and simply write λ.p. The
predicate any = λ.True annotates fields as public (i.e. visible
in any context).
Given the code in Fig. 3 and the policy module, Lifty in-

jects policy-enforcing code required to patch the EDAS leak;
the result is shown in Fig. 5 with the new code highlighted.
This code guards the access to the sensitive field status with
a policy check, and if the check fails, it substitutes the true
value of status with a redacted value (a constant NoDecison).
Lifty guarantees that this code is provably correct with
respect to the policies in the policy module.

2.3 Targeted Program Synthesis

Can the code in Fig. 5—and its correctness proof—be syn-
thesized using existing techniques? Several synthesis sys-
tems [25, 34] can generate provably correct programs, but
require a full functional specification (which is not avail-
able for showPaper) and might fail to scale to larger functions.
Prior approaches to sound program repair [24] use fault local-
ization to focus synthesis on small portions of the program,
responsible for the erroneous behavior. These existing focus-
ing techniques, however, are not applicable in our setting,
because (1) they rely on testing, which is challenging for in-
formation flow security, and (2) they are not precise enough,
i.e. they would not be able to pinpoint get (status p) as the
unsafe term.
In this section we show how a careful encoding of infor-

mation flow security into a type system (Sec. 2.3.1) allows
us to instead use type inference for precise fault localiza-
tion (Sec. 2.3.2). Concretely, type-checking the code in Fig. 3
against the policy module, leads to a type error in line 5,
which flags the term get (status p) as unsafe, and more-
over, specifies the expected type, which can be used as the
local specification for patch synthesis (Sec. 2.3.3).

2017-11-29 11:22 page 3 (pp. 1-18) 3

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft

No
t fo
r d
ist
rib
uti
on

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Draft, 2017, USA Nadia Polikarpova, Jean Yang, Shachar Itzhaky, Travis Hance, and Armando Solar-Lezama

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

2.3.1 Type System

The Lifty type system builds upon existing work on security

monads [37, 41], where sensitive data lives inside a monadic
type constructor (in our case, ⟨·⟩), parameterized by a secu-
rity level; proper propagation of levels through the program
is ensured by the type of the monadic bind. In contrast with
prior work, our security levels correspond directly to policy
predicates, which allows Lifty programs to express com-
plex context-dependent policies directly as types, instead of
encoding them into an artificial security lattice.

Subtyping. Moreover, unlike prior work, Lifty features sub-
typing between tagged types, which is contravariant in the
policy predicate, i.e. ⟨T ⟩λ .p <: ⟨T ⟩λ .q iff q ⇒ p. This allows
a “low” value (with a less restrictive policy) to appear where
a “high” value (with more restrictive policy) is expected, but
not the other way around. Lifty restricts the language of
policy predicates to decidable logics; hence, the subtyping
between tagged types can be automatically decided by an
SMT solver.

Tagged primitives. The type error for the EDAS leak is
generated due to the typing rules for primitive operations
on tagged values, print and bind. The latter is present in
Fig. 3 implicitly: our Haskell-like do-notation desugars into
invocations of bind in a standard way [31] (see appendix
for the desugared version). The typing rule for bind can be
informally stated as follows: if we want a sequence of two
computations to produce a result visible in a given set of con-
texts, then both computations better produce results visible
at least in those contexts. The rule for print allows display-
ing messages tagged with any π that holds of the current
state and the viewer. We formalize these rules in Sec. 3.

Type inference. The Lifty type inference engine is based on
the Liquid Types framework [12, 36, 44]. As such, it uses the
typing rules to generate a system of subtyping constraints
over tagged types, and then uses the definition of contravari-
ant subtyping to reduce them to the following system of
implications or Horn constraints over policy predicates:

B ⇒ s[phase] = Done (1)
P ⇒ B (2)
u = client ∧ s = σ ⇒ P (3)

where P , B are unknown predicates that correspond to the
policies of print and bind2. Horn constraints are solved using
a combination of unfolding and predicate abstraction.
In this case, however, the system clearly has no solution,

since the consequent of (1), which represents the policy on
status, is not implies by the antecedent of (3), which is de-
rived from the invocation of print and reflects what we know
about the output context (i.e. that the viewer is client and

2There’s a separate unknown for each invocation of bind, but in this example
they are equivalent, and we simplify for readability.

the output state is the same as the current state, σ). Intu-
itively, it means that the code is trying to display a sensitive
value in a context where its policy doesn’t hold.

2.3.2 Fault Localization

Unlike existing refinement type checkers [12, 36, 44], Lifty is
not content with finding that a type error is present: it needs
to identify the term to blame and infer its expected type.
Intuitively, declaring constraint (3) as the cause of the error
corresponds to blaming print for displaying its sensitive
message in too many contexts, while picking constraint 1,
corresponds to blaming the access get (status p) for re-
turning a value that is too sensitive. For reasons explained
shortly, Lifty decides to blame the access. To infer its ex-
pected type, it has to find an assignment to B, which works
for the rest of the program (i.e. is a solution to constraints (2)–
(3)). This new system has multiple solutions, including a
trivial one [P ,B 7→ ⊤]. The optimal solution corresponds
to the least restrictive expected type, in other words—due to
contravariance—the strongest solution for policy predicates:
[P ,B 7→ u = client ∧ s = σ]. Substituting this solution into
the subtyping constraint that produced (1), results in the
desired type error:

get (status p) :
expected type: ⟨Status⟩λ .u = client ∧ s = σ

and got: ⟨Status⟩λ .s[phase] = Done

Note that picking constraint (3) as the cause instead, and
inferring the weakest solution to constraints (1)–(2) ([P ,B 7→
s[phase] = Done]) would give rise to a different patch: guard-
ing the whole message row with a policy check. This would
fix the leak but have an undesired side effect of hiding the
paper title along with the session. Data-centric applications
routinely combine multiple pieces of data with different poli-
cies in a single output; therefore, in this domain it makes
more sense to guard the access, which results in “redact-
ing” as little data as possible (and also mirrors the Jeeves
semantics). Hence, Lifty always chooses to blame negative
constraints (such as (1)), even though its inference engine
could support the alternative behavior as well.

2.3.3 Patch Synthesis

From the expected type, Lifty obtains a type-driven synthe-
sis problem [34]:

Γ ⊢ ?? :: ⟨Status⟩λ .u = client ∧ s = σ

Here Γ is a typing environment, which contains a set of
components—variables and functions that can appear in the
patch—together with their refinement types. A solution to
this problem is any program term t that type-checks against
the expected type in the environment Γ. As we show in
Sec. 4, any such t , when substituted for get (status p) in
Fig. 3, would produce a provably secure program; hence the
synthesis problem is local (can be solved in isolation).

4 2017-11-29 11:22 page 4 (pp. 1-18)

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft

No
t fo
r d
ist
rib
uti
on

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

Enforcing Declarative Policies
with Targeted Program Synthesis Draft, 2017, USA

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

Even though any solution is secure, not all solutions are
equally desirable: for example, returning NoDecision uncon-
ditionally is a solution (and so is returning Accepted). Intu-
itively, a desirable solution returns the original value when-
ever allowed, and otherwise either redacts some information
from that value or returns a reasonable default. To synthesize
this solution, Lifty enumerates all terms of type ⟨Status⟩π
up to a fixed size and arranges them into a list of branches
according to the strength of their policies. To pick reasonable
default values, we require user annotations in the policy file
that essentially pick a single Status constructor to be added
to Γ. As a result, our running example generates only two
branches:

get (status s) :: ⟨Status⟩λ .s[phase] = Done

NoDecision :: ⟨Status⟩any

Next, for every branch, Lifty abduces a condition that
would make the branch type-check against the expected
type. For example, our first branch generates the following
abduction problem:

C ∧ u = client ∧ s = σ ⇒ s[phase] = Done

whereC is an unknown formula that cannot mention the pol-
icy parameters s and u. Lifty uses existing techniques [34]
to find the following solution C 7→ σ [phase] = Done. It
then uses the abduced condition to synthesize a guard, i.e. a
program that computes the monadic version of the condition.
In our case, the guard is bind (get phase) (x1 . x1 = Done).
Finally, Lifty combines the synthesized guards and branches
into a single conditional, which becomes the patch that re-
place the original unsafe access.

2.4 Scaling Up to Real-World Policies

In the rest of the section, we demonstrate more challeng-
ing scenarios, where (1) a function contains several un-
safe accesses, (2) the policy check itself uses sensitive data,
and hence proper care must be taken to ensure that policy-
enforcing code does not introduce new leaks, (3) the redacted
value is not just a constant, or (4) the policy check depends
on the eventual viewer and the state at the time of output
(which need not equal the state at the time of data retrieval).

2.4.1 Multiple Leaks

Consider a variant of our running example, where in addi-
tion to the paper’s title and session, we display its authors.
Also assume our conference is double-blind, so authors is a
a sensitive field with a policy similar to that of status. When
checking this extended version of showPaper, Lifty gener-
ates two type errors, one for get (status p) and one for
get (authors p), each with the same expected type (since
they flow into the same print statement). This gives rise
to two patch synthesis problems, which can be solved inde-
pendently, because their expected types only depend on the
output context, and are not affected by the rewriting. More

generally, local synthesis is possible in this example because
the correctness property of interest does not depend on the
content of the unsafe terms but only on their policy, and
hence the content can be freely replaced without affecting
the correctness of the rest of the program. As we detail in
Sec. 4, this does not hold in general, but it holds for our
intended use case.

2.4.2 Complex Policies

Continuingwith our extended example, assume that wewant
to allow a paper’s author to see the author list even before
the notifications are out. This is an example of a policy that
depends on a sensitive value; moreover, in this case the policy
is self-referential because it guards access to the field authors

in a way that depends on the value of authors. Enforcing
such complex policies manually is particularly challenging,
because the policy-enforcing code itself retrieves and com-
putes over sensitive values, and hence, while trying to patch
one leak, it might inadvertently introduce another.
In Lifty, the programmer expresses this complex policy

in a straightforward way:

authors :: p : PaperId→

Ref ⟨[User]⟩λ .s[phase] = Done ∨ u ∈s[authors p]

Note that the policy predicate can talk about the true value
of the author list using the refinement term s[authors p],
which is only available in specifications. Given this policy,
Lifty generates a provably correct patch:

auts ← let x0 = get (authors p) in do

c1 ← do x1 ← get phase; x2 ← x0

x1 = Done ∨ elem client x2

if c1 then x0 else []

Intuitively, this code is secure despite the fact that the policy
check c1 depends on the value of authors p, because for
any paper whose authors client is not allowed to see, c1
is always false—independently on the actual author list—
so it does not reveal any secrets. In Sec. 3 we show how a
novel downgrading construct enables Lifty to perform this
nontrivial reasoning automatically.

2.4.3 Nontrivial Patches

When sensitive data has more interesting structure, the opti-
mal redacted value can be more complex than just a constant.
Consider the example of an auction where bids are only re-
vealed once all participants have bid [37]. Now consider a
more interesting policy: once a participant has bid and before
all bids are fully revealed, they can see who else has bid, but
not how much. One way to encode this in Lifty is to store
the bid in an option type, Maybe Int, and associate different
policies with the option and its content:

bid :: User→ Ref ⟨Maybe ⟨Int⟩λ .s[phase] = Done⟩λ .s[bid u],∅

2017-11-29 11:22 page 5 (pp. 1-18) 5

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft

No
t fo
r d
ist
rib
uti
on

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

Draft, 2017, USA Nadia Polikarpova, Jean Yang, Shachar Itzhaky, Travis Hance, and Armando Solar-Lezama

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

With this definition, Lifty generates the following patch
inside a function showBid client p, which displays partici-
pant p’s bid to client:

1 b ← let x0 = get (bid p) in do

2 x1 ← get phase; x2 ← get (bid client); x3 ← x0

3 if x1 = Done

4 then x0

5 else if isJust x2

6 then mapJust (λ _ . 0) x3

7 else Nothing

This patch has three branches, of which the second one (line
6) is the most interesting: whenever client has bid but the
bidding is not yet Done, Lifty only redacts the value that
might potentially be stored inside x3, but not whether x3 is
Nothing or Just. Note that Lifty reasons about this patch
based solely on the generic type of mapJust:

mapJust :: (α → β) → Maybe α → Maybe β

2.4.4 State Updates

Continuing with the auction example, consider the imple-
mentation of the function placeBid client b, which first re-
trieves everyone’s current bids, then calls set (bid client) b,
and finally displays all the bids to client. In this case, reusing
the patch from above would be wrong and would result in
hiding too much, since x3 would reflect client’s (missing)
bid at the time of retrieval; by the time of output, however,
client has already bid and has the right to see who else
did. Lifty would insert a correct repair, since it can reason
about how the call to set affects the state, and in this case
can statically determine that s[bid u] holds of the output
context.

3 The λL Type System
We now formalize the type system of a core security-typed
language λL , which underlies the design of Lifty. The main
novelty of this type system is representing security labels
as policy predicates. This brings two important benefits: on
the one hand, our type system directly supports context-
dependent policies; on the other hand, we show how to
reduce type checking of λL problems to liquid type infer-

ence [36]. As a result, our type system design enables au-
tomatic verification of information flow security against
complex, context-dependent policies, and requires no aux-
iliary user annotations. Moreover, Sec. 4 also demonstrates
how this design enables precise fault localization required
for targeted synthesis of policy-enforcing code.
Another novelty of the λL type system is its support for

policies that depend on sensitive values, including self-refe-
rential policies (Sec. 2.4.2). Until now, this kind of policies
were only handled by run-time techniques such as Jeeves [6,
49]. To support safe enforcement of these policies, λL in-
cludes a novel safe downgrading construct (Sec. 3.2), and

Program Terms

v ::= c | λx . e Values

e ::= v | x | e e | if e then e else e Expressions

| get x | bind e e | ⌊e⌋
s ::= skip | let x = e in s Statements

| set x x ; s | print x x ; s
Types

B ::= Bool | User | · · · | ⟨T ⟩π | Ref T Base types

T ::= {B | r } | T → T Types

Refinements

r ::= ⊤ | ⊥ | ¬r | r ⊕ r
| r [r] | r [r := r] | x | r r | · · ·
where ⊕ ∈ {= | ∧ | ∨ |⇒}

π ::= λ(s,u). r Policy predicates

Figure 6. Syntax of the core language λL .

features a custom security guarantee, which we call contex-
tual noninterference (Sec. 3.3).

This section introduces the syntax of λL (Sec. 3.1) and its
typing rules (Sec. 3.2), and shows that well-typed λL pro-
grams satisfy contextual non-interference (Theorem 3.2).
The runtime behavior of λL programs is straightforward; we
provide an operational semantics in Appendix A.2.

3.1 Syntax of λL

λL is a simple core language with references, extended with
several information-flow specific contructs. We summarize
the syntax of λL in Fig. 6.
Program terms. λL differentiates between expressions and
statements. Expressions include store read (get), monadic
bind (bind), and downgrading (⌊·⌋), which we describe in
detail below. A statement canmodify the store (set) or output
a value to a user (print). Keeping expressions pure avoids the
usual complications associated with implicit flows, which
in λL can be encoded by passing conditional expressions as
arguments to print.
Types. λL supports static information flow tracking via tagged
types. The type ⟨T ⟩π (“T tagged with π”) attaches a policy
predicate π : (Σ, User) → Bool to a type T (here Σ is the
type of stores, which map locations to values). A tagged
type is similar to a labeled type in existing security-typed
languages [35, 38, 41], except the domain of labels is not
an abstract lattice, but rather the lattice of predicates over
stores and users. Intuitively, a value of type ⟨T ⟩λ(s,u).p can
be revealed in any store s to any user u, such that p holds.
Here p is a refinement predicate over the program variables
in scope and the policy parameters s and u. The exact set
of refinement predicates depends on the chosen refinement
logic; the only requirement is that the logic be decidable to
enable automatic type checking. We assume that the logic at
least includes the theories of uninterpreted functions (x and

6 2017-11-29 11:22 page 6 (pp. 1-18)

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft

No
t fo
r d
ist
rib
uti
on

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

Enforcing Declarative Policies
with Targeted Program Synthesis Draft, 2017, USA

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

r r) and arrays (r [r] and r [r := r]), which λL uses to encode
policy predicates and store reads/writes, respectively.

Other types of λL include primitive types, references, func-
tion types, and refinement types, which are standard [26, 36].
In a refined base types {B | r }, r is a refinement predicate
over the program variables and a special value variable ν ,
which denotes the bound variable of the type.
Constants. To formalize the Lifty’s notion of policy mod-
ule, we assume that the syntactic category of constants, c ,
includes a predefined set of store locations and fields (func-
tions that return locations). The type of each constant c
is determined by an auxiliary function ty(c). For example,
in a conference manager we define ty(title) = PaperId→

⟨String⟩λ(s,u).⊤. Since λL programs do not allocate new refer-
ences at run time, the type of any location l is known a-priori
and can be obtained through ty(l), which is why our typing
rules do not keep track of a “store environment”. Besides
locations and fields, constants include values of primitive
types and built-in functions on them.

3.2 Typing rules for λL

Fig. 7 shows a subset of subtyping and type checking rules
for λL that are relevant to information flow tracking. Other
rules are standard for languages with decidable refinement
types [36, 44–46] and deferred to Appendix 11. In Fig. 7, a
typing environment Γ ::= • | Γ,x : T | Γ, r maps variables to
types and records path conditions r .
Subtyping. We only show subtyping rules for tagged types.
The rule <:-Tag1 allows to tag a pure type with any well-
formed policy. The rule <:-Tag2 specifies that tagged types
are contravariant in their policy parameter; this relation al-
lows “upgrading” a term with a less restrictive policy (more
public) into one with a more restrictive policy (more secret)
and not the other way around. The premise Γ � r ′ ⇒ r
checks implication between the policies under the assump-
tions stored in the environment (which include path condi-
tions and refinements on program variables). By restricting
refinement predicates to decidable logic, we make sure that
this premise can be validated by an SMT solver. To our knowl-
edge, λL is the first security-typed language that supports
both expressive policies and automatic upgrading.
Term typing. The rest of Fig. 7 defines the typing judgments
for expressions (Γ;σ ⊢ e :: T) and statements (Γ;σ ⊢ e :: T).
Since λL is stateful, both judgments keep keeps track of σ ,
the variable that stands for the current store. This variable
is used in the rule T-get and T-set to, respectively, relate
the retrieved value to the current store and record the effect
on the store. The rule for conditionals (P-If) is standard, but
we include it because verification of programs with policy
checks relies crucially on its path-sensitivity: note how the
branches are type-checked in an environment extended with
a path condition, derived from the refinement of the guard.

Subtyping Γ ⊢ T <: T ′

<:-Tag1
Γ ⊢ ⟨T ⟩π

Γ ⊢ T <: ⟨T ⟩π

<:-Tag2
Γ ⊢ T <: T ′ Γ � r ′⇒ r

Γ ⊢ ⟨T ⟩λ(s,u).r <: ⟨T ′⟩λ(s,u).r ′

Expression Typing Γ;σ ⊢ e :: T

T-get
Γ;σ ⊢ x :: Ref {B | r }

Γ;σ ⊢ get x :: {B | r ∧ ν = σ [x]}

T-If

Γ;σ ⊢ e :: {Bool | r }
Γ, [ν 7→ ⊤]r ⊢ e1 :: T Γ, [ν 7→ ⊥]r ⊢ e2 :: T

Γ;σ ⊢ if e then e1 else e2 :: T

T-bind
Γ;σ ⊢ e1 :: ⟨T1⟩π Γ;σ ⊢ e2 :: T1 → ⟨T2⟩π

Γ;σ ⊢ bind e1 e2 :: ⟨T2⟩π

T- ⌊ ·⌋
Γ;σ ⊢ e :: ⟨{Bool | ν ⇒ r }⟩λ(s,u).π [(s,u)]∧r

Γ;σ ⊢ ⌊e⌋ :: ⟨{Bool | ν ⇒ r }⟩π

Statement Typing Γ;σ ⊢ s

T-print

Γ;σ ⊢ x1 :: ⟨{User | π [(σ ,ν)]}⟩π
Γ;σ ⊢ x2 :: ⟨Str⟩π Γ;σ ⊢ s

Γ;σ ⊢ print x1 x2 ; s

T-set

Γ;σ ⊢ x1 :: Ref T Γ;σ ⊢ x2 :: T
Γ,σ ′ : {Σ | ν = σ [x1 := x2]} ; σ ′ ⊢ s σ ′ is fresh

Γ;σ ⊢ set x1 x2 ; s

Figure 7. Typing rules of λL .

The core of information flow checking in λL are the rules T-
bind and T-print, which, in combination with contravariant
subtyping, guarantee that tagged values only flow into al-
lowed contexts. To this end, T-bind postulates that applying
a sensitive function to a sensitive value, yields a result that
is at least as secret as either of them. According to T-print, a
print statement takes as input a tagged user (which may be
computed from sensitive data) and a tagged result. The rule
requires both arguments to be tagged with the same policy π ,
and crucially, π must hold of the viewer in the current store
(i.e. both the viewer identity and the message must be visible
to the viewer). Here π [(σ ,ν)] stands for “applying” the policy
predicate; formally (λ(s,u).p)[(σ ,ν)] � p[s 7→ σ ,u 7→ ν].
Downgrading. The safe downgrading construct, ⌊e⌋, is a
novel feature of λL , which we introduced specifically to
support static verification of programs with self-referential
policies (Sec. 2.4.2). Informally, the idea is that we can we
can safely downgrade a tagged term (i.e. weaken its pol-
icy), whenever we can prove that the term is constant, since
constants cannot leak information. Whereas this property

2017-11-29 11:22 page 7 (pp. 1-18) 7

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft

No
t fo
r d
ist
rib
uti
on

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

Draft, 2017, USA Nadia Polikarpova, Jean Yang, Shachar Itzhaky, Travis Hance, and Armando Solar-Lezama

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

is hard to check automatically in the general case, a spe-
cial case where e is a tagged boolean turns out to be both
amenable to automatic verification and particularly useful
for self-referential policies. The rule T-⌊·⌋ allows tagging ⌊e⌋
with λ(s,u).p as long as there exists a refinement predicate
r over program variables, such that e can be tagged with
λ(s,u).p ∧ r and the value of e implies r . This operation is
safe because in any execution where r holds, the two policies
are the same; while any execution where r does not hold,
the value of e is guaranteed to be false (a constant).
To illustrate the application of this rule, consider a sim-

plified version of the patch form Sec. 2.4.2 where authors

has a self-referential policy π � λ.u ∈ s[authors p]. In this
case, to decide whether to show the author list to client,
the patch has to check whether client is on the list, i.e. com-
pute bind (get (authors p)) (x2 . elem client x2). Since
this term retrieves the author list, it has to be itself tagged
with π , preventing the patch form type-checking. Wrapping
the policy check in ⌊·⌋ breaks this circularity and allows
tagging it with λ.u = client ∧ s = σ , (since its value implies
client ∈ σ [authors p]), causing the patch to type-check.
Algorithmic type checking.As is customary for expressive
type systems, the rules in Fig. 7 are not algorithmic: they
require “guessing” appropriate policy predicates for inter-
mediate terms (when applying rules T-Print and T-Bind),
as well as the predicate r in T-⌊·⌋. Our insight is that we
can re-purpose liquid type inference [12, 36, 44], which has
been previously used to automatically discover unknown
refinements, to also discover these unknown predicates. To
this end, our typing rules are carefully designed to respect
the restrictions imposed by Liquid Types, such as that all
unknown predicates occur positively in specifications. As a
result, we obtain fully automatic verification for programs
with (decidable) context-dependent policies.

3.3 Contextual Noninterference in λL

We want to show that well-typed λL programs indeed do
not leak information. In the presence of context-dependent
policies, defining what exactly constitutes a leak is non-
trivial: we cannot directly apply the traditional notion of
noninterference because our policies can depend on the sen-
sitive values they protect. Instead, we enforce contextual

non-interference, a guarantee similar to that of the Jeeves
language. In the interest of space, this section formalizes
contextual non-interference in the absence of store updates
and omits proofs; the full version of our formalization can
be found in Appendix A.4.
Intuitively, we require that an observer o : User cannot

observe the difference between two stores that only differ in
locations secret from o. However, which locations are “secret”
depends on the store. Following Jeeves, we only require that
o cannot observe a difference in location l if l is secret in
both stores (e.g. it’s fine if I notice the difference between a
real paper status I can see and a default status NoDecision).

1: Enforce(Γ, e,T)
2: ê ← Localize(Γ ⊢ e :: T)
3: return Patch(ê)

4: Patch(let x = ⟨Te ▹Ta⟩d in e)
5: d ′← Generate([x0 : Ta], Γ,Te)
6: return let x = (let x0 = d in d ′) in Patch(e)
7: Patch(e)
8: recursively call Patch on subterms of e

9: Generate(ΓB , ΓG , ⟨T ⟩π)
10: ΓB ← ΓB∪ redaction functions for T
11: branches← Synthesize(ΓB ⊢ ?? :: ⟨T ⟩none)
12: (dflt : guarded) ← sort branches by policy
13: if Check(Γ ⊢ dflt :: ⟨T ⟩π) then
14: patch← dflt

15: else fail

16: for b ← guarded do

17: ψ ← Abduce(ΓG , ?? ⊢ b :: ⟨T ⟩π)
18: Tд ← ⟨{ν : Bool | ν ⇔ ψ }⟩π

19: guard ← Synthesize(Γ ⊢ ?? :: Tд)
20: patch← bind(guard)(λд.if д then b else patch)

21: return patch

Figure 8. Policy enforcement algorithm

Definition 3.1 (observational equivalence). For some ob-
server o : User, two stores σ1,σ2 are o-equivalent—written
σ1 ∼o σ2—if they hold the same value at every location l
visible to o in either store:

∀l . ty(l) = Ref ⟨T ⟩π ∧
(
π [(σ1,o)]∨π [(σ2,o)]

)
⇒ σ1[l] = σ2[l]

Theorem 3.2 (contextual noninterference). Let s be a λL
program and let σ1,σ2 be two stores. Assume that running s on
σ1,2 produces outputs ⟨oi, j ,vi, j ⟩, for i ∈ 1..2, j ∈ 1..k , where
oi, j is the viewer of output vi, j .

For any observer o, if σ1 ∼o σ2, then for all j ∈ 1..k , o1, j =
o ⇔ o2, j = o and o1, j = o ⇒ v1, j = v2, j .

4 Targeted Synthesis for λL

We now turn to the heart of our system: the algorithm En-
force (shown in Fig. 8), which takes as input a type envi-
ronment Γ, a program e (in A-normal form), and a top-level
type annotationT , and determines whether policy-enforcing
code can be injected into e to produce e ′, such that Γ ⊢ e ′ :: T .
The algorithm proceeds in two steps. First, procedure Lo-
calize identifies unsafe terms (line 2), replacing them with
type casts to produce a “program with holes” ê (Sec. 4.1). Sec-
ond, procedure Patch traverses ê (line 3) replacing each type
cast with an appropriate patch, generated by the procedure
Generate (Sec. 4.2).

8 2017-11-29 11:22 page 8 (pp. 1-18)

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft

No
t fo
r d
ist
rib
uti
on

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

Enforcing Declarative Policies
with Targeted Program Synthesis Draft, 2017, USA

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

4.1 Fault Localization

Type casts. For the purpose of fault localization, we extend
the values of λL with type casts:

v ::= · · · | ⟨T ▹T ′⟩

Statically, our casts are similar to those in prior work [26];
in particular, the cast ⟨T ▹ T ′⟩ has type T ′ → T . However,
the dynamic semantics of casts in λL is undefined. The idea
is that casts are inserted solely for the purpose of targeting
synthesis, and, if synthesis succeeds, are completely elim-
inated. We restrict the notion of type-safe λL programs to
those that are well-typed are free of type casts.
Sound localizations. Algorithm Localize first uses liquid
type inference [12, 36, 44] to reduce the problem of checking
the source program e against type T to a system of Horn
constraints. If the constraints have a solution, it returns e
unmodified; otherwise, instead of simply signaling an error
like existing liquid type checkers, it attempts to construct a
sound localization of e , which is a program ê that satisfies the
following properties: (1) ê is obtained from e by inserting
type casts, i.e. replacing one or more subterms ei in e by
⟨Ti ▹ T

′
i ⟩ei ; (2) it is type correct, i.e. Γ ⊢ ê :: T In particular,

note that (2) implies that each ei has type T ′i .

Lemma 4.1 (Localization). Replacing each subterm of the

form ⟨Ti ▹T
′
i ⟩ ei in a sound localization of e with a type-safe

term of type Ti , yields a type-safe program.

This lemma follows directly form (2) and a standard substi-
tution lemma for refinement types [26]. Crucially, it shows
that once a sound localization has been found, patch genera-
tion can proceed independently for each type cast.
Minimal localizations. Among sound localizations, not all
are equally desirable. Intuitively, we would like to make mini-
mal changes to the behavior of the original program. Formal-
izing and checking this directly is hard, so we approximate
it with the following two properties. A sound localization
is syntactically minimal if no type cast can be removed or
moved to a subterm3without breaking soundness. Picking
syntactically minimal localizations leads to patching smaller
terms, rather than trying to rewrite the whole program.

Once the unsafe terms are fixed, we can still pick different
expected types Ti . Intuitively, the more restrictive the Ti ,
the less likely are we to find the patch to replace the cast.
A minimal localization is syntactically minimal, and all its
expected types cannot be made any less restrictive with-
out breaking soundness. In general, there can be multiple
minimal localizations, and a general program repair engine
would have to explore them all, leading to inefficiency. For
the specific problem of policy enforcement, however, there
is a reasonable default, which we infer as shown below.

3In this context, the definition of a let-bound variable is considered a subterm
of the let body

Inferring the localization. Given an unsatisfiable system
of Horn constraints, Localize first makes sure that all con-
flicting clauses have been generated by implication checks
on policy predicate, and removes those clauses that were
generated by the smallest term. It then re-runs the fixpoint
solver [12, 36] on the remaining system, inferring strongest
solutions for policy predicates, after which it reset the non-
policy refinements of the removed terms to ⊤ and re-check
the validity of the constraints. If the constraints are satis-
fied, we have obtained a sound and minimal localization (the
expected types are the least restrictive because policies are
strongest, and other refinements are ⊤). If the constraints
are violated, it indicates that the program depends on some
functional property of the unsafe term we want to replace.
We consider such programs out of scope: if a programmer
wants to benefit form automatic policy enforcement, they
have to give up the ability to reason about functional proper-
ties of sensitive values, since our language reserves the right
to substitute them with other values.

4.2 Patch Generation

Next, we describe how our algorithm replaces a type-cast
⟨Te ▹Ta⟩ d with a type-safe term d ′ of the expected type Te ,
using the patch generation procedure Generate (line 5). At
a high level, the goal of this step is to generate a term from
a given refinement type Te , which is the problem tackled
by type-driven synthesis as implemented in Synqid [34].
Unfortunately, Generate cannot use Synqid out of the
box, because the expected type Te is not a full functional
specification: this type only contains policies but no type
refinements, allowing trivial solutions to the synthesis prob-
lem, such as unconditionally returning an arbitrary constant
with the right type shape.

To avoid such undesired patches, procedure Generate
implements a specialized synthesis strategy: first, it generates
a list of branches, which return the original term redacted to
a different extent; then, for each branch, it infers an optimal
guard (a policy check), that makes the branch satisfy the
expected type; finally, it constructs the patch by arranging
the properly guarded branches into a (monadic) conditional.
Synthesis of branches. In line 11, Generate uses Synqid
to synthesize the set of all terms up to certain size with
the right content type, but with no restriction on the policy
(here, none = λ.False). Note that branches are generated in a
restricted environment ΓB , which contains only the original
faulty term, the “default” value of type T , and a small set of
redaction functions for this type (such as mapJust for Maybe
in Sec. 2.4.3). This restriction makes the branch synthesis
both more predictable and more efficient.
Default branch. Once the branches have been generated,
we sort them according to their actual policy predicate, form
weakest to strongest (i.e. in the reverse order of how they
are going to appear in the program). In line 13, we check

2017-11-29 11:22 page 9 (pp. 1-18) 9

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft

No
t fo
r d
ist
rib
uti
on

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

Draft, 2017, USA Nadia Polikarpova, Jean Yang, Shachar Itzhaky, Travis Hance, and Armando Solar-Lezama

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

that the first branch can be used as the default branch, i.e. it
satisfies the expected type unconditionally. This property is
always satisfied as long as ΓB contains a value v of type T ,
since in our type systemT <: ⟨T ⟩π for any π . For this check,
we use the original liquid type checking unmodified.
Synthesis of guards. For each of the other branchesb (which
include at least the original term), Generate attempts to
synthesize the optimal guard that would make b respect the
expected type. At a high level, this guard must be logically
equivalent to a formulaψ , such that (1)ψ ∧ p ⇔ q, where
λ(s,u).p � π is the expected policy of the patch, and λ(s,u).q
is the actual policy of branch b; (2)ψ does not mention the
policy parameters s and u. This predicate can be inferred
using existing techniques, such as logical abduction [13]. In
particular, Generate relies on Synqid’s liquid abduction
mechanism [34] to inferψ in line 17.
The main challenge of guard synthesis, however, is that

the guard itself must be monadic, since it might need to
retrieve and compute over some data from the store. Since the
data it retrieves might itself be sensitive, we need to ensure
that two conditions are satisfied (1) functional correctness:
the guard returns a value equivalent toψ , and (2) no leaky
enforcement: the guard itself respects the expected policy π
of the patch. To ensure both conditions, we obtain the guard
via type-driven synthesis, providing ⟨{ν : Bool | ν ⇔ ψ }⟩π

as the target type.

Lemma 4.2 (Safe patch generation). If Generate succeeds,
it produces a type-safe term of the expected type ⟨T ⟩π .

Assuming correctness of Synthesize and Abduce, we
can use the typing rules of Sec. 3 to show that the invariant
Γ ⊢ patch :: ⟨T ⟩π is established in line 14 and maintained in
line 20. In particular, the type of bound variable д in line 20
is {ν : Bool | ν ⇔ ψ }, hence, then branch is checked under
the path conditionψ ⇔ ⊤, which implies ΓG ⊢ b :: ⟨T ⟩π .
We would also like to provide a guarantee that a patch

produced by Generate is minimal, i.e., in each concrete
execution, its return value retains the maximum information
allowed by π from the original term. We can show that, for
a fixed set of generated branches, the patch will always pick
the most sensitive one that is allowed by π , since the guards
characterize precisely when each branch is safe. Of course,
the set of generated branches is restricted to terms of certain
size constructed from components in ΓB . The original term,
however, is always in ΓB , hence we are guaranteed to retain
the original value whenever allowed by π .

4.3 Guarantees and Limitations

In this section we summarize the soundness guarantee of
targeted synthesis in λL and then discuss the limitations on
its completeness and minimality.

Theorem 4.3 (Soundness of targeted synthesis). If proce-
dure Enforce succeeds, it produces a program that satisfies

contextual noninterference.

Compilation time
Benchmark Localize Generate Total
Basic policy 0.04s 0.09s 0.14s
Self-referencing policy 0.00s 0.17s 0.19s
Implicit flow 0.01s 0.29s 0.30s
Filter by author 0.06s 0.61s 0.68s
Sort by score 0.03s 0.86s 0.90s
Send to multiple users 0.00s 0.34s 0.35s
Interleaved reads/writes 0.01s 0.72s 0.74s
Copy a private field 0.00s 0.19s 0.20s

Table 1. Micro-benchmarks, with compile-time statistics.
This is straightforward by combining Lemmas 4.1 and 4.2

with Theorem 3.2.
Completeness.When does procedure Enforce fail? Sec. 4.1
explains how Localize can fail when the inferred localiza-
tion is not safe. Generate can fail in lines 13, 17, and 19.
The first failure indicates that ΓB does not contain any suffi-
ciently public terms (in particular, there is no default value).
The second failure can happen if the abduction engine is not
powerful enough (this does not happen in our case studies).
The third failure is the most interesting one: it happens when
no guard satisfies both functional and security requirements,
indicating that the policy is not enforceable without leaking
some other sensitive information.
Minimality. We would like to show that the changes made
by Enforce are minimal: in any execution where e did not
cause a leak, e ′ would output the same values as e . Unfor-
tunately, this is not true, even though we have shown that
Localize produces least restrictive expected types and Gen-
erate synthesizes minimal patches. The reason is that even
the least restrictive expected type might over-approximate
the set of output contexts, because of the imprecisions of
refinement type inference. In these cases, Enforce is conser-
vative: i.e. it hides more information than is strictly necessary.
One example is if the state is updated in between the get

and the print by calling a function for which no precise re-
finement type can be inferred. Another example is when the
same sensitive value with a viewer-dependent policy is dis-
played to multiple users. In our case studies, we found that
in the restricted class of data-centric applications that Lifty
is intended for, these patterns occur rarely. One approach
to overcoming this limitation would be to combine targeted
synthesis with runtime techniques similar to Jeeves.

5 Evaluation

We implemented a set of microbenchmarks and larger case
studies and demonstrate the following.
Expressiveness of policy language. We use Lifty to im-
plement a conference manager, a grading application, and
a health portal4. The two authors who developed the case
4The first two applications are based on case studies for the policy-agnostic
Jacqueline system [48]. The health portal is based on theHealthWeb example
from the Fine paper [41].

10 2017-11-29 11:22 page 10 (pp. 1-18)

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft

No
t fo
r d
ist
rib
uti
on

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

Enforcing Declarative Policies
with Targeted Program Synthesis Draft, 2017, USA

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

(a) Conference Management System Policy size (tokens): 345
Program size (tokens) Time

Policy enforcing Manual Auto
Benchmark Original Manual Auto Verify Localize Generate Total
Register user 10 0 0 0.00s 0.00s 0.00s 0.00s
View users 20 9 24 0.01s 0.01s 0.58s 0.59s
Paper submission 45 0 0 0.00s 0.00s 0.00s 0.00s
Search papers 77 96 82 0.90s 0.08s 7.03s 7.11s
Show paper record 53 46 82 0.34s 0.04s 7.89s 7.94s
Show reviews for paper 57 54 45 0.39s 0.07s 0.58s 0.66s
User profile: GET 66 0 0 0.03s 0.03s 0.00s 0.03s
User profile: POST 17 0 0 0.00s 0.00s 0.00s 0.00s
Submit review 40 0 0 0.00s 0.00s 0.00s 0.00s
Assign reviewers 47 0 0 0.01s 0.01s 2.25s 2.26s
Totals 432 205 233 1.71s 0.27s 18.36s 18.64s

(b) Gradr—Course Management and Interactive Grading System Policy size (tokens): 141
Program size (tokens) Time

Policy enforcing
Benchmark Original (Lifty) Localize Generate Total
Display the home page 12 0 0.00s 0.00s 0.00s
Student: get classes 13 0 0.04s 0.00s 0.04s
Instructor: get classes 13 0 0.00s 0.00s 0.00s
Get class information for a user 29 0 0.01s 0.00s 0.01s
View a user’s profile (owner) 23 0 0.00s 0.00s 0.00s
View a user’s profile (any user) 25 19 0.01s 0.04s 0.06s
Instructor: view scores for an assignment 36 17 0.00s 0.03s 0.05s
Student: view all scores for user 36 17 0.00s 0.03s 0.05s
Instructor: view top scores for an assignment 62 17 0.02s 0.03s 0.06s
Totals 253 70 0.13s 0.17s 0.31s

(c) HealthWeb—Health Information Portal Policy size (tokens): 194
Program size (tokens) Time

Policy enforcing
Benchmark Original (Lifty) Localize Generate Total
Search a record by id 23 293 0.00s 12.10s 12.11s
Search a record by patient 56 293 0.03s 13.10s 13.14s
Show authored records 45 0 0.02s 0.00s 0.02s
Update record 34 0 0.00s 0.15s 0.15s
List patients for a doctor 52 44 0.03s 0.09s 0.13s
Totals 216 630 0.10s 25.46s 25.57s
Table 2. Case studies: conference management, course manager, health portal.

2 4 6 8 10 12 14 16
0

1

2

3

Ti
m
e
(s
)

Localize
Generate
Total

N

Figure 9. Scalability—N accesses in a single function.

studies were not involved in the development of Lifty. We

demonstrate that Lifty’s policy language supports the de-
sired policies for these systems.
Scalability.We demonstrate that the Lifty compiler is suffi-
ciently efficient at error localization and synthesis to use for
systems of reasonable size: Lifty is able to generate all neces-
sary checks for our conference manager (424 lines of Lifty)
in about 20 seconds. Furthermore, we show that synthesis
times are linear in the number of required patches.
Quality of patches. We compare the code generated by
Lifty to a version with manually written policy checks and
show that not only does Lifty allow for policy descriptions
to be centralized and concise, but also the compiler is able

2017-11-29 11:22 page 11 (pp. 1-18) 11

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft

No
t fo
r d
ist
rib
uti
on

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

Draft, 2017, USA Nadia Polikarpova, Jean Yang, Shachar Itzhaky, Travis Hance, and Armando Solar-Lezama

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

to recover all necessary checks, without reducing the func-
tionality.

5.1 Microbenchmarks and Case Studies

We implemented the following code using Lifty.
Microbenchmarks. To exercise the flexibility of our lan-
guage, we implemented a series of small but challenging
microbenchmarks, described in Tab. 1.
Conference manager. We implemented two versions of a
basic academic conference manager: one where the program-
mer enforces the policies by hand and one where Lifty is
responsible for injecting the policy checks. The manager han-
dles confidentiality policies for papers in different phases
of the conference and different paper statuses, based on the
role of the viewer. Policies depend on this state, as well as
additional properties such as conflicts with a particular pa-
per. The system provides features for displaying the paper
title and authors, status, list of conflicts, and conference in-
formation conditional on acceptance. Information may be
displayed to the user currently logged in or sent via various
means to different users. The system contains 888 lines of
code in total (524 Lifty + 364 Haskell).
Course manager. We implemented a system for sending
grades to students based on their course enrollment and
assignment status. An example policy is that a student can
see their own scores, whereas instructors can see scores for
all of their students.
Health portal. Based on the HealthWeb example for the
Fine language [41], we implemented a system that supports
the enforcement of information flow policies in the context
of viewing and searching over health records. The complex-
ity of the policies and functions of this case study make it
interesting. We describe it in more detail in Appendix A.5.

5.2 Performance Statistics

We show running times for the microbenchmarks in Tab. 1,
and for the case studies in Tab. 2. We break them down into
fault localization (including type checking) and patch syn-
thesis. For the conference manager, we show a comparison
between the version with manual policy checks and a ver-
sion with automatically generated checks. For the version
that contains manual checks, we show only verification time,
as Lifty skips the other phases. Notice that Lifty is able to
determine that six of our benchmarks required no patches
at all: in particular, all store updates are safe.

Scaling. Because of the way targeted synthesis works, syn-
thesizing patches for each function is independent. Cross
effects arise only from (1) interactions between policies and
(2) having more generic components in scope, as the synthe-
sizer needs to search over this space. For this reason, Lifty
scales linearly with respect to the number of functions in
the program. For a stress test, we created a benchmark test

that performs N reads (of the same field, for convenience)
and then a print to an arbitrary user. Lifty’s job is to patch
all of the get locations with a conditional. We show in Fig. 9
that patch generation time is linear in N . Verification (includ-
ing error localization) is still quadratic in N . This currently
dominates the compilation time.

5.3 Measuring the Quality of Patches

We compared the two versions of our conference manager
(Tab. 2). The size of the checks confirms our hypothesis
that for data-centric applications, much of the programming
burden is in policy-enforcing code. Our results reveal that
while manual checks are more concise than Lifty-generated
checks, the bloat in the generated code comes from unnec-
essary verbosity, and affects neither its functionality nor
performance. The manual and automatic checks were se-
mantically equivalent across our benchmarks.

6 Related Work

Program synthesis and repair. Our approach differs from
existing program synthesis techniques [2–4, 15, 16, 22, 27, 30,
33, 34, 39], which synthesize programs from scratch, from
end-to-end functional specifications, while Lifty performs
synthesis for the cross-cutting program concern of infor-
mation flow. Our goal is similar to that of sound program
repair [24], but in the specific setting of policy enforcement,
Lifty is able to perform a much more precise fault local-
ization, and synthesize all patches locally, which makes it
more scalable. Prior work on rewriting programs based on
security concerns [17, 18, 21, 40] does not involve reasoning
about expressive information-flow policies.
Information flow control. Lifty provides a high-level pro-
gramming interface to support security guarantees based
on a long history of work in language-based information
flow [38]. Both static and dynamic label-based approaches [5,
8, 11, 19, 29, 32, 35, 50, 51] allow programmers to label data
with security levels and check programs for unsafe flows.
Labels are, however, low level: they trust the programmer
to correctly express high-level policies in terms of label-
manipulating code. More importantly, none of these ap-
proaches address the issue of or programmer burden: static
approaches simply prevent unsafe programs from compiling;
the dynamic approaches raise exceptions or silently fail.

Lifty takes a policy-agnostic approach [6, 48, 49] and fac-
tors information flow out from core program functionality,
allowing programmers to implement policies as high-level
predicates over the program state. Prior work uses runtime
enforcement, which yields nontrivial runtime overheads and
makes it difficult to reason about program behavior. Lifty
addresses these issues by providing a synthesis-driven ap-
proach to support the Jeeves semantics statically, supporting
an analogous security property.

12 2017-11-29 11:22 page 12 (pp. 1-18)

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft

No
t fo
r d
ist
rib
uti
on

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

Enforcing Declarative Policies
with Targeted Program Synthesis Draft, 2017, USA

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

Type systems. Lifty’s type system, as well as the monadic
encoding for information flow, are inspired by other value-
dependent type systems [9, 10, 23, 41, 42]. The key difference
is the decidability of both type inference, which yields auto-
mated verification and fault localization, crucial for targeted
synthesis. Lifty’s type inference engine is built on top of
the Liquid Types framework [12, 36, 44–46], and extends it
with a fault localization mechanism tailored towards security
types. Our technique for using types for program rewriting
resembles both hybrid type checking [26] and type-directed
coercion insertion [43]. Both our types and rewriting ca-
pabilities are more advanced and thus can handle global,
cross-cutting concerns such as information flow.

References

[1] Shreya Agrawal and Borzoo Bonakdarpour. 2016. Runtime Verification
of k-Safety Hyperproperties in HyperLTL. In CSF.

[2] Aws Albarghouthi, Isil Dillig, and Arie Gurfinkel. 2016. Maximal
specification synthesis. In POPL.

[3] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recur-
sive Program Synthesis. In CAV.

[4] Rajeev Alur, Pavol Černý, and Arjun Radhakrishna. 2015. Synthesis
Through Unification. In CAV.

[5] O. Arden, M. D. George, J. Liu, K. Vikram, A. Askarov, and A. C. Myers.
2012. Sharing Mobile Code Securely with Information Flow Control.
In Oakland.

[6] Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-
Lezama. 2013. Faceted execution of policy-agnostic programs. In
PLAS.

[7] Daniel W. Barowy, Sumit Gulwani, Ted Hart, and Benjamin G. Zorn.
2015. FlashRelate: extracting relational data from semi-structured
spreadsheets using examples. In Proceedings of the 36th ACM SIGPLAN

Conference on Programming Language Design and Implementation, Port-

land, OR, USA, June 15-17, 2015. 218–228.
[8] N. Broberg and David Sands. 2006. Flow Locks: Towards a core calculus

for Dynamic Flow Policies. In ESOP (LNCS), Vol. 3924. Springer Verlag.
[9] Juan Chen, Ravi Chugh, and Nikhil Swamy. 2010. Type-preserving

compilation of end-to-end verification of security enforcement. In
PLDI.

[10] AdamChlipala. 2010. Static Checking of Dynamically-Varying Security
Policies in Database-Backed Applications. In OSDI.

[11] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. 2009.
Staged Information Flow for Javascript. In PLDI.

[12] Benjamin Cosman and Ranjit Jhala. 2017. Local refinement typing.
PACMPL 1, ICFP (2017), 26:1–26:27. https://doi.org/10.1145/3110270

[13] Isil Dillig and Thomas Dillig. 2013. Explain: A Tool for Performing
Abductive Inference. In Computer Aided Verification - 25th Interna-

tional Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.

Proceedings. 684–689.
[14] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat

Chaudhuri. 2017. Component-based synthesis of table consolidation
and transformation tasks from examples. In Proceedings of the 38th

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017. 422–436.
[15] John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing

data structure transformations from input-output examples. In PLDI.
[16] Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve

Zdancewic. 2016. Example-directed synthesis: a type-theoretic in-
terpretation. In POPL.

[17] Matthew Fredrikson, Richard Joiner, Somesh Jha, Thomas W. Reps,
Phillip A. Porras, Hassen Saïdi, and Vinod Yegneswaran. 2012. Ef-
ficient Runtime Policy Enforcement Using Counterexample-Guided

Abstraction Refinement. In CAV.
[18] Vinod Ganapathy, Trent Jaeger, and Somesh Jha. 2006. Retrofitting

Legacy Code for Authorization Policy Enforcement. In SP.
[19] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières,

John C. Mitchell, and Alejandro Russo. 2012. Hails: Protecting Data
Privacy in Untrusted Web Applications. In 10th USENIX Symposium on

Operating Systems Design and Implementation, OSDI 2012, Hollywood,

CA, USA, October 8-10, 2012. 47–60.
[20] Sumit Gulwani. 2011. Automating string processing in spreadsheets

using input-output examples. In Proceedings of the 38th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL

2011, Austin, TX, USA, January 26-28, 2011. 317–330.
[21] William R. Harris, Somesh Jha, and Thomas Reps. 2010. DIFC Programs

by Automatic Instrumentation. In CCS.
[22] Jeevana Priya Inala, Xiaokang Qiu, Ben Lerner, and Armando Solar-

Lezama. 2015. Type Assisted Synthesis of Recursive Transformers on
Algebraic Data Types. CoRR abs/1507.05527 (2015).

[23] Limin Jia and Steve Zdancewic. 2009. Encoding information flow in
Aura. In PLAS.

[24] Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak. 2015. Deduc-
tive Program Repair. In CAV.

[25] Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. 2013.
Synthesis modulo recursive functions. In Proceedings of the 2013 ACM

SIGPLAN International Conference on Object Oriented Programming

Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013,

Indianapolis, IN, USA, October 26-31, 2013. 407–426.
[26] Kenneth Knowles and Cormac Flanagan. 2010. Hybrid Type Checking.

ACM Trans. Program. Lang. Syst. 32, 2, Article 6 (Feb. 2010), 34 pages.
https://doi.org/10.1145/1667048.1667051

[27] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. 2010.
Complete functional synthesis. In PLDI.

[28] Peng Li and Steve Zdancewic. 2005. Downgrading Policies and Relaxed
Noninterference. (2005).

[29] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers. 2009.
Fabric: a platform for secure distributed computation and storage. In
SOSP. ACM.

[30] Zohar Manna and Richard Waldinger. 1980. A Deductive Approach to
Program Synthesis. ACM Trans. Program. Lang. Syst. 2, 1 (Jan. 1980).

[31] Simon Marlow. 2010. Haskell 2010 language report. (2010). https:
//www.haskell.org/onlinereport/haskell2010/

[32] Andrew C. Myers. 1999. JFlow: Practical Mostly-Static Information
Flow Control. In POPL.

[33] Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-
directed program synthesis. In PLDI.

[34] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Pro-
gram Synthesis from Polymorphic Refinement Types. In PLDI.

[35] François Pottier and Vincent Simonet. 2003. Information Flow In-
ference for ML. ACM Transactions on Programming Languages and

Systems 25, 1 (Jan. 2003).
[36] PatrickMaximRondon,Ming Kawaguchi, and Ranjit Jhala. 2008. Liquid

types. In PLDI.
[37] Alejandro Russo, Koen Claessen, and John Hughes. 2008. A Library

for Light-weight Information-flow Security in Haskell. In Proceedings

of the First ACM SIGPLAN Symposium on Haskell (Haskell ’08). ACM,
New York, NY, USA, 13–24. https://doi.org/10.1145/1411286.1411289

[38] Andrei Sabelfeld and Andrew C. Myers. 2003. Language-based
information-flow security. IEEE Journal on Selected Areas in Com-

munications 21, 1 (2003).
[39] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Se-

shia, and Vijay A. Saraswat. 2006. Combinatorial sketching for finite
programs. In ASPLOS.

[40] Sooel Son, Kathryn S. McKinley, and Vitaly Shmatikov. 2013. Fix Me
Up: Repairing Access-Control Bugs in Web Applications. In NDSS. The
Internet Society.

2017-11-29 11:22 page 13 (pp. 1-18) 13

https://doi.org/10.1145/3110270
https://doi.org/10.1145/1667048.1667051
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://doi.org/10.1145/1411286.1411289

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft

No
t fo
r d
ist
rib
uti
on

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

Draft, 2017, USA Nadia Polikarpova, Jean Yang, Shachar Itzhaky, Travis Hance, and Armando Solar-Lezama

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

[41] Nikhil Swamy, Juan Chen, and Ravi Chugh. 2010. Enforcing Stateful
Authorization and Information Flow Policies in Fine. In ESOP.

[42] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub,
Karthikeyan Bhargavan, and Jean Yang. 2011. Secure distributed pro-
gramming with value-dependent types. In ICFP.

[43] Nikhil Swamy, Michael Hicks, and Gavin M. Bierman. 2009. A Theory
of Typed Coercions and Its Applications. In Proceedings of the 14th

ACM SIGPLAN International Conference on Functional Programming

(ICFP ’09). ACM, New York, NY, USA.
[44] Niki Vazou, Patrick Maxim Rondon, and Ranjit Jhala. 2013. Abstract

Refinement Types. In ESOP.
[45] Niki Vazou, Eric L. Seidel, and Ranjit Jhala. 2014. LiquidHaskell: expe-

rience with refinement types in the real world. In Haskell.
[46] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon

L. Peyton Jones. 2014. Refinement types for Haskell. In ICFP.
[47] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig.

2017. SQLizer: query synthesis from natural language. PACMPL 1,
OOPSLA (2017), 63:1–63:26. https://doi.org/10.1145/3133887

[48] Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama,
Cormac Flanagan, and Stephen Chong. 2016. Precise, Dynamic Infor-
mation Flow for Database-backed Applications. In PLDI.

[49] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. 2012. A lan-
guage for automatically enforcing privacy policies. (2012).

[50] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek.
2009. Improving application security with data flow assertions. SOSP
(2009).

[51] Lantian Zheng and Andrew C. Myers. 2007. Dynamic security labels
and static information flow control. International Journal of Informa-

tion Security 6, 2 (2007), 67–84.

14 2017-11-29 11:22 page 14 (pp. 1-18)

https://doi.org/10.1145/3133887

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft

No
t fo
r d
ist
rib
uti
on

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Enforcing Declarative Policies
with Targeted Program Synthesis Draft, 2017, USA

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

A Appendix

A.1 Desugaring do-notation

This is code from Fig. 3 with the do-notation desugared into
invocations of bind.

showPaper client p =

let row =

bind (get (title p)) (λ t .

bind (get (status p)) (λ st .

bind (if st = Accepted

then get (session p) else return "") (λ ses .

return (t + " " + ses))))

print client row

A.2 Operational Semantics of λL

The runtime behavior of λL programs is straightforward and
is summarized in Fig. 10. Expression evaluation happens in
the context of a store σ : (Loc→ Value) ∪ (User→ Value),
which has two components, mapping location to values and
users to their corresponding output. The statements set and
print modify the two components of the store respectively.
The dynamic semantics of tagged primitives is not very

interesting, which is not surprising, since λL only tracks
policies statically. ⌊·⌋ simply returns its argument, while
bind calls its second argument on the first. At runtime a
tagged computation is indistinguishable from a computation
on untagged values (in fact, you might have noticed that
bind corresponds to the bind of the identity monad).

A.3 The λL Type System

We show the full typing rules in Fig. 11.

A.4 Contextual Noninterference with Store Updates

In the presence of store updates, there is an additional sub-
tlety in the definition of contextual noninterference. As the
program executes and writes to the store, some previously
secret locations can become visible, hence we only require
that o cannot observe a difference in location l if l is secret
throughout both program executions (e.g. it’s fine if I notice
the difference in paper status if the phase advanced halfway
through the program execution and it became visible).

Definition A.1 (observational equivalence). For some ob-
server o : User and a set of stores ∆ = {∆1, · · · ,∆n}, two
stores σ1,σ2 are ⟨o,∆⟩-equivalent — written σ1 ∼o,∆ σ2 — if

∀l ,p. ty(l) = Ref ⟨T ⟩p ∧
(∨

∆i ∈∆ p(∆i ,o)
)
⇒ σ1[l] = σ2[l]

That is: at every location l visible to o in any ∆i , the stores
hold the same value.

When ∆ is omitted, it means ∆ = {σ1,σ2}.

In order to discuss the privacy properties of the language,
we need to add some annotation to program terms.

DefinitionA.2 (semantic annotations). λ ⟨L⟩ is the language
obtained from λL by adding one more case to v :

v ::= · · · | ⟨v⟩p

The operational semantics rules remain the same, ignor-
ing and bypassing any ⟨·⟩p annotations. The rule for let is
slightly changed so that the substituted value is annotated
with p whenever the type of the bound variable is ⟨T ⟩p .

DefinitionA.3 (observational equivalence for program terms).
For two terms t1, t2 (either expressions or statements), and
for an observer o and stores ∆ as before, the terms are ⟨o,∆⟩-
equivalent — t1 ∼o,∆ t2 — when:
• They are syntactically identical, except at annotated
values;
• For corresponding annotated values v̂1 = ⟨v1⟩p , v̂2 =
⟨v2⟩

p′ they agree on the tag p = p ′, and(∨
∆i ∈∆ p(∆i ,o)

)
⇒ v1 = v2

We formalize our contextual noninterference theorem as
follows.

First we state the full theorem, which includes writes and
reasons about λL programs containing set statements.

Theorem A.4 (contextual noninterference). Let s be a λL
program and let σ1,σ2 be two stores. Observe the two λ ⟨L⟩-
traces of s on these stores:

σj , s −→ σ (1)j , s
(1) −→ σ (2)j , s

(2) −→ · · · −→ σ (k)j , s
(k)

(notice that the traces must be of equal length) and define

∆ =
⋃

j ∈{1,2},i ∈1..k {σ
(i)
j }.

If σ1 ∼o,∆ σ2, then σ
(i)
1 ∼o,∆ σ

(i)
2 for all i ∈ 1..k .

Notice that this generalizes our previous handling of print
statements, since the output displayed to each observer can
be modeled by an array of Refs, one per user, with the policy
that only that user can see them, such that print appends to
these stores.

We now prove four lemmas, one for expressions, and one
for each type of statements. In all of them, we implicitly
assume terms are well-typed. The proofs are rather boring
so only a brief sketch is given.

Lemma A.5 (contextual noninterference for expressions).
Let

• σ1,σ2,∆ stores such that σ1 ∼o,∆ σ2;
• e1, e2 expression such that e1 ∼o,∆ e2;
• Γ,y,T ,p such that Γ;y ⊢ ej :: ⟨T ⟩p for j ∈ {1, 2} and i
such that p(∆i ,o);
• σj , ej −→

∗ c j for j ∈ {1, 2};
then c1 = c2.

Proof.This lemma constitutes the core of the non-interference
property.We the standard technique of Pottier and Simonet [35]:
define an auxiliary language λL2 where every tagged value
has two components, one for each of σj , and show that a term

2017-11-29 11:22 page 15 (pp. 1-18) 15

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft

No
t fo
r d
ist
rib
uti
on

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

Draft, 2017, USA Nadia Polikarpova, Jean Yang, Shachar Itzhaky, Travis Hance, and Armando Solar-Lezama

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

Expression Evaluation σ , e −→ e

e-β
σ , (λx :T . e1) e2 −→ [x 7→ e2]e1

e-get
σ , get l −→ σ [l]

e-true
σ , if true then e1 else e2 −→ e1

e-false
σ , if false then e1 else e2 −→ e2

e-bind
σ , bind ex (λx : T .e) −→ [x 7→ ex]e

e-downgrade
σ , ⌊e⌋ −→ e

e-ctx
e −→ e ′

C[e1] −→ C[e2]

where C ::= • | C e | e C | λx :T . C | get C | if C then e1 else e2 | bind e C

Statement Execution σ , s −→ σ , s

let
σ , e −→∗ v

σ , let x = e in S −→ σ , [x 7→ v]S

set
σ , set l v ; S −→ σ [l := v], S

print
σ , print u v ; S −→ σ [u +=v], S

Figure 10. λL operational semantics.

visible to the observer o will evaluate to a value with equal
components, assuming that the stores hold equal values at
references visible to o.

We omit the full formalization because it is mostly tedious.
We just note that it relies crucially on the λL2 definition of the
tagged primitives bind and ⌊·⌋; in particular, bind v f exe-
cutes f on both components of v , and ⌊·⌋ increases visibility
exactly for those cases where both components are known
to be equal. The subtyping rules make sure that “upcasts”
can only strengthen the policy tag p, so tagged values with
non-equal components can never become visible again.

Lemma A.6 (contextual noninterference for “print” state-
ments). Let σ1 ∼o,∆ σ2,

sj = print ⟨uj ⟩
p ⟨vj ⟩

p ; tj for j ∈ {1, 2},
such that s1 ∼o,∆ s2 and σj , sj −→ σ ′j ; s

′
j .

Assume σ1,2,σ
′
1,2 ∈ ∆.

Then σ ′1 ∼o,∆ σ
′
2 and s

′
1 ∼o,∆ s ′2.

Proof. The semantics of print is that it modifies the location
uj in the store. From the typing rules for print we know
that p(σj ,uj). So if either u1 = o or u2 = o, we get p(σj ,o),
therefore from ⟨o,∆⟩ equivalence u1 = u2 = o and v1 = v2.
By statement execution rules, s ′j = tj which are sub-

statements of sj and equivalence follows from the definition.

Lemma A.7 (contextual noninterference for “set” state-
ments). Let σ1 ∼o,∆ σ2,

sj = set l ⟨vj ⟩
p ; tj such that ty(l) = Ref ⟨T ⟩p for

j ∈ {1, 2},
such that s1 ∼o,∆ s2 and σj , sj −→ σ ′j ; s

′
j .

Assume σ1,2,σ
′
1,2 ∈ ∆.

Then σ ′1 ∼o,∆ σ
′
2 and s

′
1 ∼o,∆ s ′2.

Proof. Notice that in this case the location itself is not
tagged so both executions alter the same key in the store. If
p(∆i ,o) for some i , then we know that v1 = v2; otherwise
the mutated location is not observed hence the values are
insignificant.

As in the print case, s ′j = tj and the rest is the same.

Lemma A.8 (contextual noninterference for “let” state-
ments). Let σ1 ∼o,∆ σ2,

sj = let x = ej in tj for j ∈ {1, 2},
such that s1 ∼o,∆ s2 and σj , sj −→ σ ′j ; s

′
j .

Assume σ1,2,σ
′
1,2 ∈ ∆.

Then σ ′1 ∼o,∆ σ
′
2 and s

′
1 ∼o,∆ s ′2.

Proof. If x does not have a tagged type, the theorem is trivial.
Otherwise, let x :: ⟨T ⟩p . From Lemma A.5, if p(σj ,o) holds
(for either j ∈ {1, 2}) then e evaluates to the same value on
both stores; otherwise two tagged values ⟨c j ⟩p are created
and substituted into sj , and sincep(σj ,o) this does not violate
⟨o,∆⟩ equivalence.
In both cases, let does not mutate the store, so σ ′j = σj ,

and obviously σ ′1 ∼o,∆ σ
′
2 .

Proof by induction on i , starting at i = 0 denoting the
initial state. For each derivation step, either Lemma A.6, A.7,
or A.8 applies.

With Theorem 3.2 we can be certain that if the permis-
sions are set correctly, then no information flow can violate
the policy throughout the execution of the program. The re-
quirement is that any value that becomes public at any point,
should be equal on the two initial stores. This is important
because policies depend on the state of the store; so if a pro-
gram grants permission to view a field that previously was

16 2017-11-29 11:22 page 16 (pp. 1-18)

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft

No
t fo
r d
ist
rib
uti
on

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

Enforcing Declarative Policies
with Targeted Program Synthesis Draft, 2017, USA

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

Well-formedness Γ ⊢ r Γ ⊢ B Γ ⊢ S

WF-r
Γ ⊢ r : Bool

Γ ⊢ r
WF-Tag

Γ ⊢ T Γ,y : Store,u : User ⊢ r

Γ ⊢ ⟨T ⟩λy .λu .r

Subtyping Γ ⊢ T <: T ′ Γ ⊢ B <: B′

<:-Sc
Γ ⊢ B <: B′ Γ � r ⇒ r ′

Γ ⊢ {B | r } <: {B′ | r ′}
<:-Fun

Γ ⊢ T ′x <: Tx Γ ⊢ T <: T ′

Γ ⊢ Tx → T <: T ′x → T ′

<:-Tag1
Γ ⊢ ⟨T ⟩p

Γ ⊢ T <: ⟨T ⟩p
<:-Tag2

Γ ⊢ T <: T ′ Γ � r ′⇒ r

Γ ⊢ ⟨T ⟩λy .λu .r <: ⟨T ′⟩λy .λu .r ′

<:-Refl
Γ ⊢ B <: B

Expression Typing Γ;y ⊢ e :: T

T-C
Γ;y ⊢ c :: ty(c)

T-Var
x :T ∈ Γ

Γ;y ⊢ x :: T
T-λ

Γ ⊢ Tx Γ,x : Tx ;y ⊢ e :: T
Γ;y ⊢ λx . e :: Tx → T

T-App
Γ;y ⊢ e1 :: Tx → T Γ;y ⊢ e2 :: Tx

Γ;y ⊢ e1 e2 :: T
T-get

Γ;y ⊢ x :: Ref {B | r }
Γ;y ⊢ get x :: {B | r ∧ ν = y[x]}

T-If

Γ;y ⊢ e :: {Bool | r }
Γ, [ν 7→ ⊤]r ⊢ e1 :: T Γ, [ν 7→ ⊥]r ⊢ e2 :: T

Γ;y ⊢ if e then e1 else e2 :: T
T-bind

Γ;σ ⊢ e1 :: ⟨T1⟩π Γ;σ ⊢ e2 :: T1 → ⟨T2⟩π

Γ;σ ⊢ bind e1 e2 :: ⟨T2⟩π

T- ⌊ ·⌋
Γ;σ ⊢ e :: ⟨{Bool | ν ⇒ r }⟩λ(s,u).π [(s,u)]∧r

Γ;σ ⊢ ⌊e⌋ :: ⟨{Bool | ν ⇒ r }⟩π
T-<:

Γ;y ⊢ e :: T ′ Γ ⊢ T ′ <: T
Γ;y ⊢ e :: T

T∀
Γ,α ;y ⊢ e :: S
Γ;y ⊢ e :: ∀α . S T -Inst

Γ;y ⊢ e :: ∀α . S Γ ⊢ T

Γ;y ⊢ e :: [α 7→ T]S

Statement Typing Γ;y ⊢ s

T-let
Γ;y ⊢ e :: T Γ,x : T ;y ⊢ s

Γ;y ⊢ let x = e in s
T-print

Γ;y ⊢ x1 :: ⟨{User | p(y,ν)}⟩p
Γ;y ⊢ x2 :: ⟨Str⟩p Γ;y ⊢ s

Γ;y ⊢ print x1 x2 ; s

T-set

Γ;y ⊢ x1 :: Ref T Γ;y ⊢ x2 :: T
Γ,y ′ : {Store | ν = y[x1 := x2]} ; y ′ ⊢ s y ′ is fresh

Γ;y ⊢ set x1 x2 ; s
T-skip

Γ;y ⊢ skip

Figure 11. λL static semantics.

secret, and this field had two different values, then clearly
the result of the program would differ.

A.5 Health Portal Case Study

Our health portal case study, based on the HealthWeb case
study in the Fine [41] paper, is particularly interesting be-
cause it showcases many Lifty capabilities and because of
its complex policies guarding health records. We show the
type signatures for some of the functions in Figure 12. As

you can see, the policy on a health record is quite complex,
depending on both the identity of the viewer, whether they
are a patient, whether there is a withholding relationship
on the record, and whether there is a psychologist and treat-
ment relationship between the viewer and the patient whose
record it is. For this example, the complexity of the policy
makes the generated policy check significantly larger than
the size of the original code.

2017-11-29 11:22 page 17 (pp. 1-18) 17

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft

No
t fo
r d
ist
rib
uti
on

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

Draft, 2017, USA Nadia Polikarpova, Jean Yang, Shachar Itzhaky, Travis Hance, and Armando Solar-Lezama

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

getRecord :: rid : RecordId→ Ref ⟨RecordId⟩λ(s,u).u=author (s[r id])∨

(isPatient s u∧u=patient s[r id]∧¬(shouldWithhold u s[r id]))∨

(isDoctor s u∧¬(shouldWithhold u s[r id]))∨

(isPsychiatrist s u∧isTreating u s[r id]∧isPsychiatristRecord s[r id]∧¬(shouldWithhold u s[r id]))

getIsTreating :: u : User→ w : User→ Ref ⟨Bool⟩λ(s,v).isPsychiatrist s v ∧ v=u

getAuthoredRecordIds :: User→ Ref ⟨[RecordId]⟩any

Figure 12. Function signatures from the HealthWeb case study.

The health portal code takes advantage of Lifty’s ability
to generate checks as close to the data source as possible. One
view function, showRecordsForPatientView, uses a filter over
the list of all records to find the records that have a specified
patient, and then outputs the result. The repair works as
expected: the repaired version of the function generates a
complex check (corresponding to the above) and runs it on
each element of the list, so that only those records that pass
the check will be shown.
We also found Lifty to handles sensitive values in poli-

cies appropriately. The policy for getIsTreating depends
on the result of isTreating, but our getIsTreating function
has a policy of its own that says that the patients of a psy-
chiatrist can only be seen by that psychiatrist. However,

the generated policy check still works fine, because in the
getRecord’s policy, the isTreating predicate is checked only
after isPsychiatrist is checked.

The showAuthoredRecordsView function is also interesting
because it demonstrates how relying on automatic patch
generation can potentially reduce the number of checks nec-
essary in the code. In our code, the showAuthoredRecordsView
function first gets all the IDs of records authored by the
session user. The getRecord policy says that a record may
always be seen by its author. Because Lifty can verify this
policy against the code, it is able to determine that the
showAuthoredRecordsView function satisfies policies without
even needing to add a check.

18 2017-11-29 11:22 page 18 (pp. 1-18)

	Abstract
	1 Introduction
	2 Lifty by Example
	2.1 The EDAS Leak
	2.2 Programming with Lifty
	2.3 Targeted Program Synthesis
	2.4 Scaling Up to Real-World Policies

	3 The L Type System
	3.1 Syntax of L
	3.2 Typing rules for L
	3.3 Contextual Noninterference in L

	4 Targeted Synthesis for L
	4.1 Fault Localization
	4.2 Patch Generation
	4.3 Guarantees and Limitations

	5 Evaluation
	5.1 Microbenchmarks and Case Studies
	5.2 Performance Statistics
	5.3 Measuring the Quality of Patches

	6 Related Work
	References
	A Appendix
	A.1 Desugaring [language=lifty,basicstyle=,columns=fixed]do-notation
	A.2 Operational Semantics of L
	A.3 The L Type System
	A.4 Contextual Noninterference with Store Updates
	A.5 Health Portal Case Study

