
Validating Optimizations of the PEGASUS IR in

the CASH compiler framework

Ajay Mathews, Sumit Kumar Jha

April 16, 2007



Contents

1 Introduction 1

2 Translating PEGASUS to EUF 4

3 Optimization Equivalence using Decision Procedures 8
3.1 Direct Bounded Model Checking . . . . . . . . . . . . . . . . . . 8
3.2 Incremental Bounded Model Checking . . . . . . . . . . . . . . . 9
3.3 Distributed Equivalence Checking . . . . . . . . . . . . . . . . . . 9

4 Temporal Logic Model Checking of PEGASUS Optimizations 11
4.1 Constructing the Kripke Structure from the PEGASUS IR . . . . 11
4.2 Temporal Logic as a language for PEGASUS Optimizations . . . 12

4.2.1 Dead Code Elimination . . . . . . . . . . . . . . . . . . . 12
4.2.2 Multiplexer Optimizations . . . . . . . . . . . . . . . . . . 12
4.2.3 Global Common Subexpression, PRE, Redundant Mem-

ory Operation . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.4 Constant Folding . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Checking PEGASUS graphs for Invariant Generation . . . . . . . 13

5 Appendix 1 14

1



Abstract

This draft explores the possibility of validating optimizations in the CASH
compiler. Three different methods for increasing trust in the correctness of
the compiled program are presented. These include the equivalence checking of
the optimized PEGASUS intermediate representation against the unoptimized
PEGASUS IR using (equality with uninterpreted functions) EUF decision pro-
cedures like UCLID and the model checking based validation of compiler opti-
mizations using temporal logic. The theory for these techniques is developed
and their benefits and trade-offs are compared. Finally, a case is presented for
implementing the approach.



Chapter 1

Introduction

Compilers are an extremely complex piece of software and are, hence, prone
to errors. One particularly crucial aspect of the compilation process is the use
of optimization techniques. This draft focusses on the problem of validating
optimizations in the CASH compiler framework.

The CASH compiler translates a C language specification into the PEGASUS
intermediate representation, and then into one of the many target languages like
assembly code, ASYNC or the TARTAN framework.

In Chapter 2, we study the PEGASUS language and present a translation
from PEGASUS to the Equality with Uninterpreted Function (EUF) logic ap-
pended with the increment operator. This is the class of languages accepted
by many decision procedures like UCLID [?]. In Chapter 3, we present a
bounded model checking algorithm for checking the equivalence between
two different PEGASUS intermediate representations. In Chapter 4, we built
upon earlier work and develop a temporal logic approach for checking correct-
ness of compiler optimizations. In particular, we indicate that the PEGASUS
intermediate representation is particularly suited for temporal logic model
checking because of the abundance of information and the simplicity of the
transformations in this framework.

This draft develops two different approaches for the validation of the CASH
compiler.

• Equivalence of PEGASUS intermediate representations using Decision
Procedures

• Temporal Logic Model Checking for the Validation of Compiler Optimiza-
tions
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Before we delve into our study of the PEGASUS intermediate representation,
we outline a simple technique for checking the equivalence of the source code
and the target produced. Given a source code P , a description in the target
language T , and a set of shared observable O in the two programs, we sketch
the possibility of performing a bounded equivalence testing of the observables O
in the source S and the target T respectively.

The CASH compiler takes C as its input language. One of the target lan-
guages produced is an assembly code. The rapid growth of SAT solvers has
reached a point where it is possible to ask a SAT solver whether two programs
are equivalent up to a bounded depth.

The principle of equivalence checking of two programs is shown in Fig. 1.1.
Statements in the program are translated into bit vector expressions and the
bounded execution of a program is turned into a bit vector formula. The source
program S is turned into a bit vector formula BV ( S ) and the target language
program is turned into a bit vector formula BV ( T ). We finally ask the question
BV (S)∧BV (T )∧OS = OT , where OS are the observables in S and OT are the
observables in T.

This satisfiability problem can be answered by several tools like CBMC,
Yices, UCLID, CVC, etc.
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Source Program 
 

s = S (arg1, …argn) 

Compiled Target  
 

t = T (arg1, …argn) 

 

int main(arg1,arg2, ……argn) 
{ 

int s,t; 
s = S(arg1,arg2, ……argn); 
t = T(arg1,arg2, ……argn); 
assert(s = = t); 

} 
 

Is assertion True? 
 

YES 

S is equivalent to 
T 

S is NOT 
equivalent to T 

Produce 
Counterexample 

Produce Witness from 
Unsatisfiability Core 

NO 

Figure 1.1: Equivalence of source and target programs
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Chapter 2

Translating PEGASUS to
EUF

The CASH compiler uses the PEGASUS internal representation which is a graph
based intermediate representation. PEGASUS has a well defined formal exe-
cution semantics [?] and this intermediate representation is utilized to perform
compiler optimizations.

Under the PEGASUS formal semantics model, the various operations are
only related by a partial order. If the inputs to an operation are available, the
output is produced. We associate with each operation a time at which its output
is “ready” to be used or consumed. Thus, an operation can be performed iff all
its inputs are ready.

We translate the formal semantics of PEGASUS to quantifier free logic of
equality with uninterpreted functions (EUF) appended with the increment op-
erator. This translation presented in Appendix 1 makes use of a degenerate
uninterpreted function null, and is closely related to the formal semantics of
PEGASUS presented in [?].

However, we then introduce logical clocks in each of the operations; an op-
eration is executed only if all its inputs are already available and this execution
also increments the local clock of the operation. Another execution of the same
operations (perhaps in a loop) would hence produce a new value. The transla-
tion is presented in Table. 2.1 and Table. 2.2.

We will now briefly explain our translation philosophy. Each operation has
a precondition which checks if all its inputs are ready. This is achieved by
checking that the local clock of the operation is one more than the maximum
of all the input clocks. When we perform the operation, we also increment
the local clock of the operation. This prevents us from re-executing the same
operation multiple number of times.

Our translation into EUF is an eager translation - an operation is executed
as soon as it can be. In reality, the formal definition of PEGASUS allows many
possible executions because of the partial order it imposes among instructions.
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Prove a theorem saying that if the eager semantics of PEGASUS
preserves equivalence, then so does any lazy execution...take eager
IRs L1 and L2 - first argue L1 = E1 and L2 = E2 where E1 amd E2
are eager executions..then appeal to the fact that E1=E2.
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PEGASUS IR Eager Translation into
SMV/UCLID/Yices Input Lan-
guage

o = un op(i) (ot == it) ⇒ ( oot = un op(iit−1) );
Increment ot

o = bin op(i,j) (ot == max(it, jt)) ⇒ ( oot = bin op
(iit−1,jjt−1) ); Increment ot

o1, . . . , on = fanout(i) ( o1t == it ∧ . . . ∧ ont == it) ⇒ ( o1o1t =
iit−1 ∧ . . .∧ onont = iit−1 ); Incre-
ment o1t, . . . , ont

o = c, c is constant (ot == 0) ⇒ oot = c; Increment ot

o = merge(i1, . . . , in)
∨

j [ (ot == ijt) ⇒ (oot = ijijt−1) ] ;
Increment ot

o = eta(p, i) (ot == max(it, pt)) ⇒ [ (ppt−1 ⇒ (oot =
iit−1)) ] ; Increment ot

t0 = combine(t1, . . . , tn) ( t0t == max(t1t, . . . , tnt) ) ⇒ [ t0t0t =
newtoken ]; Increment t0t

o = mux(i1, p1, . . . in, pn) (ot == maxj{ijt, pjt}) ⇒ [
((

∧
j ¬pjpjt−1) ⇒ oot = ∆) ∧

(
∧

j pjpjt−1 ⇒ (oot = ijijt−1)) ] ;
Increment ot

o = store(addr, p, v, t) ( ot == max(addrt, pt, vt, tt) ) ⇒ [ oot =
newtoken ∧ (ppt−1 ⇒ M(addraddrt−1) =
vvt−1)]; Increment ot

Table 2.1: Translation of PEGASUS to UCLID
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PEGASUS IR Eager Translation into
SMV/UCLID/Yices Input Lan-
guage

(o, t0) = load(addr, p, t) ( ot == max(addrt, pt, tt) ∧ t0t ==
max(addrt, pt, tt) ) ⇒ [ t0t0t =
newtoken∧( ¬ppt−1 ⇒ (oot = ∆) ) ∧
( ppt−1 ⇒ (oot = M(addraddrt−1)) ) ] ;
Increment ot

o = i ot == it⇒ [ oot = iit−1 ]; Increment
ot

return(i,t,p,pc) ( pct == max(it, tt, pt) ) ⇒ (ppt−1 ⇒
(pc.ot = pct ∧ pc.opc.ot = iit)); In-
crement pct

(o, t0) =
callk(t, p, pc, i1, . . . , in)

(ot, t0t, pc.arg1t, . . . , pc.argnt, pc.tt,
pc.pcint∗ == maxj{tt, pt, pct, ijt, callkt})
⇒ [ (¬ppt−1 ⇒ (oot = ∆ ∧ t0t0t =
newtoken)) ∧ (ppt−1 ⇒ (pc.arg1pc.arg1t =
i1i1t−1 ∧ . . . ∧ pc.argnpc.argnt = inint−1 ∧
pc.tpc.tt = newtoken ∧ pc.pcinpc.pcint =
callkcallkt)) ] ; Increment ot, t0t,
pc.arg1t, . . . , pc.argnt, pc.tt, pc.pcint

Table 2.2: Translation of PEGASUS to UCLID

7



Chapter 3

Optimization Equivalence
using Decision Procedures

As The PEGASUS IR has a formal execution semantics, the question whether
two different PEGASUS IR are equivalent is a formally well defined problem.

Definition: A PEGASUS IR P2 is said to be t-bounded
equivalent to another PEGASUS IR P1 with respect to a set of
observable variables O1 ∈ P1 , O2 ∈ P2 if and only if for each vari-
able o1 ∈ O1, there exists a variable o2 = equivalence map(o1) ∈
O2 such that o1 and o2 are identical during the execution of P1

and P2 for t operations.
We write P2

∼=t,O1,O2 P1.

The above definition is conservative and is also useful to circumvent the
undecidability barrier of deciding the termination of programs.

We unroll the execution of the PEGASUS IR for n execution time steps. We
create a symbolic program S(Pi) that models the execution of the PEGASUS
IR Pi for n steps using the translation of the PEGASUS IR into EUF presented
in Chapter 2.

In order to show that the unoptimized PEGASUS IR P0 is equivalent to the
optimized PEGASUS IR Pn, we present two different approaches.

3.1 Direct Bounded Model Checking

We translate the unoptimized initial PEGASUS IR P0 and the final optimized
version Pn into symbolic programs S(P0) and S(Pn).
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We then ask a decision procedure if S(P0) and S(Pn) are equivalent with
respect to the observable set O0 and On, where Oi = {o0

i , o
1
i , . . . o

m
i }.

S(P0)
∧

S(Pn) ⇒ ( equivalent(o0
0, o

0
n) ∧ . . .∧ equivalent(om

0 , om
n ) )

The same may be written more succinctly as:

S(P0)
∧

S(Pn) ⇒ equivalent(O0, On)

3.2 Incremental Bounded Model Checking

We have a sequence of PEGASUS IRs obtained during the optimization phases :

P0 → P1 → . . . . . . → Pn

Clearly, P0 and Pn may be very different. So, instead of proving that
P0 ≡ Pn, one may argue that it may be easier to discharge a larger number
of more simpler equivalences:

S(P0)
∧

S(P1) ⇒ equivalent(O0, O1)
S(P1)

∧
S(P2) ⇒ equivalent(O1, O2)

S(P2)
∧

S(P3) ⇒ equivalent(O2, O3)
. . .
. . .

S(Pn−1)
∧

S(Pn) ⇒ equivalent(On−1, On)

3.3 Distributed Equivalence Checking

If we have multiple cores or processors to run our verification algorithms, the
above approach of proving equivalence incrementally may further be adapted to
the distributed architecture.

We build a distributed algorithm which makes sure that we spend no more
time than a single core implementation would. Observe that a distributed im-
plementation seeking to solve the problem in parts may actually take more time
than a single process implementation.

Assumptions: It is no harder to prove the equivalence of Pi and Pj than
the equivalence of P ′i and P ′j , where i′ ≥ i, j′ ≤ j.

E(i, j) ≥ E(i + α, j − β), where α, β > 0.

Aim: To design an algorithm which solves the problem for nm PEGASUS
IRs within t time for n processors if we could prove equivalence within time t
on a single processor.
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Algorithm: Ask E(0,m), E(m,2m), . . . E((n-1)m,nm) on processor 0, 1, . . . n
respectively.

Proof :

E(0, nm) ≥ E(0,m)
E(0, nm) ≥ E(m, 2m)
. . .
. . .
E(0, nm) ≥ E((n− 1)m,nm)

Now, the best a single core implementation could do is to show the equiva-
lence of P0 and Pnm in no less than E(0,nm) time. Hence, each of the queries
in the distributed system would be answered by atmost E(0,nm) time.
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Chapter 4

Temporal Logic Model
Checking of PEGASUS
Optimizations

4.1 Constructing the Kripke Structure from the
PEGASUS IR

Given a PEGASUS IR, we construct an equivalent transition system or Kripke
structure T = (S, S0, R, L), where

• S = (N ×2A)∪ (N ′×2A′) is the the set of states of the transition system,
where N is the set of nodes of one of the PEGASUS IR and each node
n ∈ N is labeled with the set of information atoms A. The set of atoms
labeling n is denoted by A(n). Similarly, N ′ denoted the set of nodes of
the optimized PEGASUS IR and each node n′ ∈ N ′ is labeled with the
set of information atoms A′

• S0 = (n0, A(n)) : The initial state of the transition system in the initial
entry node of the unoptimized PEGASUS IR along with the atoms that
label the node.

• R ⊆ S × S s.t. (s, s′) ∈ R where s = (n, A(n)) ∈ (N × 2A), s′ =
(n′, A(n′)) ∈ (N ′× 2A′), and n′ is obtained from n after the optimization.

• L is a labelling function which labels each state s with the set of atomic
propositions that are true in that state. In our case, L(s) = A(n), where
s = (n,A(n)).

1

1Obviously, only a polynomial fraction of this exponential state space is actually reachable.
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4.2 Temporal Logic as a language for PEGASUS
Optimizations

4.2.1 Dead Code Elimination

Under the PEGASUS intermediate representation, each side effect free opera-
tion whose output is not connected is dead.

The corresponding (temporal) logic formula is

AG[(output(v) == null ∧ ¬(side − effect(v) == null)) ⇒ (dead( X v) =
True)]

4.2.2 Multiplexer Optimizations

Multiplexors with constant True predicate

If an input to a multiplexor is always true, the optimization transformation
changes the node from a multiplexor to a direct connection.

AG[(muxpredicatei(v) == true ∧ nodetype(v) == mux) ⇒ (nodetype( X
v) == direct− connection ∧ input( X v) == inputi(v))]

Multiplexors with constant False predicate

If an input to a multiplexor is known to be false, the optimization transforma-
tion deletes the corresponding input and predicate from the multiplexor, while
retaining the other inputs and predicates.

AG(muxpredicatei(v) == false ∧ nodetype(v) == mux) ⇒ (nodetype(
X v) == mux ∧ ∧

j<i(muxpredicatej( X v) == muxpredicatej(v) ∧ inputj(
X v) == inputj(v)) ∧ ∧

j>i(muxpredicatej−1( X v) == muxpredicatej(v) ∧
inputj−1( X v) == inputj(v)))

4.2.3 Global Common Subexpression, PRE, Redundant
Memory Operation

These optimizations are implemented in PEGASUS by merging two nodes whose
inputs all originate from identical sources.

AG(((nodetype(v1) == nodetype(v2)) ∧ (
∧

j inputj(v1) = inputj(v2))) ⇒
((nodetype( X v1) == nodetype(v1)∧ nodetype( X v2) == null)∧ (

∧
j inputj(

X v1) = inputj(v1))(
∧

j inputj( X v2) = null)))
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4.2.4 Constant Folding

Given an operation whose all inputs are constant, the operation can be per-
formed at compile time and the node replaced by a simple constant.

AG((nodetype(v) == optype∧∧
i(inputi(v) == constant)) ⇒ (nodetype( X

v) == constant∧∧
i(inputi( X v) == null)∧(output( X v) == optype(input0(v), input1(v) . . . . . .))))

4.3 Checking PEGASUS graphs for Invariant Gen-
eration
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Chapter 5

Appendix 1
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PEGASUS IR Translation into EUF logic with Incre-
ments

o = un op(i) (oot−1 == null ∧ iit−1 6= null ) ⇒ (
oot = un op(iit−1) ∧ iit:=null 1 ∧ (ot =
ot + 1) )

o = bin op(i,j) (jjt−1 6= null ∧ iit−1 6= null ∧ oot−1 ==
null) ⇒ ( oot = bin op (iit−1,jjt−1 ) ∧
jjt:=null ∧ iit:=null ∧ ∧ (ot = ot + 1)
)

o1, . . . , on = fanout(i) ( iit−1 6= null ∧ ∧
k (okokt−1 == null))

⇒ ( o1o1t = iit−1 ∧ . . .∧ onont = iit−1

) ∧ iit:=null ∧ ∧ ∧
j (ojt = ojt + 1) )

o = c, c is constant (oot−1 == null)⇒ oot = c ∧ ot = ot+1

o = merge(i1, . . . , in) ( oot == null ⇒ ∧
j [ (ijijt−1 6=

null) ⇒ (oot = ijijt−1 ∧ ijijt = null)
] ) ∧ ot = ot + 1

o = eta(p, i) (iit−1 6= null ∧ ppt−1 6= null) ⇒ [
(ppt−1 ⇒ (oot = iit−1)) ∧ (¬ppt−1 ⇒
(1)) ∧ iit = null ∧ ppt = null ∧
ot = ot + 1 ]

t0 = combine(t1, . . . , tn) ( t0t0t == null ∧ t1t1t 6= null ∧ . . . ∧
tntnt 6= null ) ⇒ [ t0t0t = newtoken
∧t1t1t = null ∧ . . . ∧ tntnt = null ∧
t0t = t0t + 1 ]

o = mux(i1, p1, . . . in, pn)
∧

j(ijijt−1 6= null ∧ pjpjt−1 6= null)
⇒ [ (

∧
j ¬pjpjt−1 ⇒ oot = ∆)

∧(
∧

j pjpjt−1 ⇒ oot = ijijt−1) ∧∧
j(ijijt = null ∧ pjpjt = null) ∧ ot =

ot + 1 ]

o = store(addr, p, v, t) addraddrt−1 = null ∧ ppt−1 = null ∧
ttt−1 = null ∧ vvt−1 = null ∧ oot−1 =
null ⇒ [ oot = newtoken ∧ addraddrt =
null ∧ ppt = null ∧ ttt = null ∧ vvt =
null ∧ (ppt−1 ⇒ M(addraddrt−1) =
vvt−1)∧ Increment addr, p, v, t ]
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PEGASUS IR Translation into EUF logic

(o, t0) = load(addr, p, t) addraddrt−1 6= null ∧ ppt−1 6= null ∧
ttt−1 6= null∧vvt−1 6= null∧t0t0t−1 ==
null⇒ [ t0t0t = newtoken∧addraddrt =
null ∧ ppt = null ∧ ttt = null ∧ vvt =
null∧ (¬ppt−1 ⇒ (oot = ∆))∧ (ppt−1 ⇒
(oot = M(addraddrt−1))) ]

o = i iit−1 6= null ⇒ [ oot = iit−1∧ iit:=null
] ∧ (ot = ot + 1)

return(i,t,p,pc) iit−1 6= null ∧ ttt−1 6= null ∧ ppt−1 6=
null ∧ pcpct 6= null ⇒ iit = null ∧ ttt =
null∧ppt = null∧(ppt−1 ⇒ pc.opc.ot =
iit)

(o, t0) =
callk(t, p, pc, i1, . . . , in)

ttt−1 6= null ∧ ppt−1 6= null ∧
pcpct−1 6= null ∧ ∧i1i1t−1 6= null ∧
. . . ∧ inint−1 6= null ⇒ [ (¬ppt−1 ⇒
(oot = ∆ ∧ t0t0t = newtoken)) ∧
(ppt−1 ⇒ (pc.arg1pc.arg1t = i1i1t−1 ∧
. . . ∧ pc.argnpc.argnt = inint−1 ∧
pc.tpc.tt = newtoken ∧ pc.pcinpc.pcint =
callkcallkt))∧ ttt = null ∧ ppt = null ∧
pcpct = null∧∧i1i1t = null∧. . .∧inint =
null ∧ (ot = ot + 1) ]
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