Non-Linear Learning via Feature Induction
in Statistical Machine Tranlsation

Jonathan H. Clark

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Ph.D. Thesis Proposal
March 30, 2012

Thesis Committee:

Alon Lavie (chair), Carnegie Mellon University
Jaime Carbonell, Carnegie Mellon University
Chris Dyer, Carnegie Mellon University
Noah Smith, Carnegie Mellon University
Wolfgang Macherey, Google, Inc.

Abstract

Many popular machine learning algorithms used in statistical machine translation
minimize a loss function representative of translation quality by fitting a linear model
comprised of a real-valued weight vector associated with a static set of features.
However, the combination of such a simple learning technique and such a simple
model means the overall learning process may ignore useful non-linear information
present in the feature set. This places significant and undue burden on those tasked
with improving translation systems to carefully design features that fall within the
constraints of linear models — a highly unintuitive and error-prone task, as we will
see.

We propose to relax three constraints of linear models by abandoning a static set of
features and dynamically expanding the feature set during learning. We first show
that by expanding real-valued features into a finite set of indicator features, we can
achieve non-linear transformations of individual features. This transformation en-
ables us to recover a translation system performing on par with the state-of-the-art
without the the usual (arbitrary) transformation from probabilities to log-probabilities
— in fact, we out-perform the state-of-the-art, demonstrating that the customary log
transform is not always optimal. Second, we show that by expanding the feature
set with conjunctions of indicator features, we can learn interactions among multiple
features. These two techniques are not mutually exclusive in that indicator features
resulting from the expansion of real-valued features can also participate in conjunc-
tions. Further, these techniques produce interpretable models, which provide valu-
able insight into how the learner chose to fit the data, exposing which non-linearities
are important. In the course of this thesis, the effectiveness of these techniques will
be explored through several applications in machine translation using at least three
language pairs. Experiments so far on a large scale Arabic—English task have shown
gains of up to 2.4 BLEU using discretization and 1.2 BLEU using conjunctions.

Contents

1 Background
1.1 A Brief History of Modelingin SMT
1.2 The Anatomy of the Feature Space
1.3 Inference Framework: Linear Models in Structured Prediction
1.4 Learning Framework: Pairwise Ranking Optimization

2 Overview
2.1 Theoretical Motivation: Assumptions and Pitfalls of Linear Modeling
2.2 Practical Motivation: A View from Feature Engineering
2.3 Thesis Statement L. e e e e e e
24 Experimental Setup e
2.5 Related Work

3 Discretization: Inducing Non-Linear Transformations of Real-valued Features
3.1 Discretization Approach L
3.2 Completed Work: Static Discretization
3.3 Proposed Work: Neighbor Regularization

4 Conjunction: Inducing Dependencies Among Multiple Features
4.1 Proposed Work: Feature Selection by Inference Complexity
4.2 Proposed Work: Feature Selection by Sparsity
4.3 Proposed Work: Incremental Feature Selection via Grafting
4.4 Proposed Work: Feature Complexity Regularization

5 Applications
5.1 Completed Work: Direct Application to Simple, Targeted Features
5.2 Completed Work: Single System, Multiple Domain Adaptation
5.3 Proposed Work: A Jointly Optimized Discriminative Language Model
5.4 Proposed Work: Context-Rich Language Modeling

6 Summary and Timeline
6.1 Summary e
6.2 Contributions e e e e e
6.3 Timeline L e

References

12
12
13
14
14
17

19
19
20
22

25
26
30
30
31

32
32
33
34
36

38
38
39
40

41

Chapter 1

Background

1.1 A Brief History of Modeling in SMT

We begin by reviewing how prevailing models for SMT evolved with an emphasis on how they have become
more general and which assumptions have fallen away — and in doing so we will reveal some historical
conventions that have remained despite current advances. These historical conventions include the use of a
log transform to convert translation model probabilities into features and the summarization of monolingual
language modeling statistics into a single feature. We will discuss the original generative Brown model,
Och’s log-linear model optimized toward corpus probability, and Och’s linear model directly optimized
toward an arbitary objective function (e.g. BLEU). Finally, we will touch on recent work that seeks to
handle large numbers of features while optimizing toward a proxy objective function (e.g. MIRA and PRO).

Brown et al. (1993) present a probabalistic model of translation, which defines the probability of an
English translation e of a foreign sentence f under the distribution p(e|f). This can be expanded according
to Bayes’ Rule, consistent with their source-channel interpretation of translation:

P(e)P(fle)

P(elf) = =g

(1.1)

The Brown paper then quickly moves on to transform this into the “fundamental equation of statisti-
cal machine translation”, which shows the inference-time decision rule that seeks the most likely English
translation €:

é(f) = argmax P(e)P(f|e) (1.2)

Notice that the denominator P(f) falls away as it is a constant for each f. P(e) corresponds to a language
model and P(f|e) corresponds to a translation model (in reverse, as explained by the noisy-channel model).
From a modern perspective, this model “weights” each of these component models equally. While this
may empirically be suboptimal because of model error or estimation error, it is theoretically optimal under
Bayes’ Rule. Importantly, it allows the translation model and language model to be trained separately.

1.1. A BRIEF HISTORY OF MODELING IN SMT
Och and Ney (2001)" move away from this generative source-channel approach in favor of a log-linear
model with features H, corresponding weights w, and a latent variable aligning phrases a:?

_ exp ZLI;I(‘) wsz(fv a, e)

P(e,alf) 70

(1.3)

where Z(f) is a normalizer, which sums over all possible translations of f as generated by the function
GEN, ensuring that each conditional distribution sums to unity:

H]
Z(f) = Z epowiHi(f,a',e’) (1.4)
e’,a’ €GEN(f) 1=0

This exponential formulation has two major advantages:

1. The model allows the system designer to add arbitrary features that provide the model with faceted
information about translation hypotheses

2. It introduces optimizable parameters w for each of the features in a principled way

Och so notes that the Brown model does not account for the translation model and language model being
imperfectly estimated and that we can correct for this in the overall model by weighting the components.
Conveniently, this log-linear model generalizes the source-channel model in that we can recover Brown’s
model by using the following feature set (Och and Ney, 2001):

hryv(f,a,e) =log P(e) (1.5)
hra(f,a,e) = log Py(fle) (1.6)

Och also noted that comparable performance could be achieved by using the feature hry/(f,a,e) =
log P, (elf), which is further evidence in support of this feature-based view of translation over the source-
channel model.

Besides the change in form, an additional purpose has been assigned to the model’s definition: since
Och’s model (Equation 1.3) has the free parameters w, which must be tuned, it was also used as an objective
function for optimization using Generalized Iterative Scaling (GIS). Further, the features used in this model
are perhaps unusual as they are real-valued; whereas log-linear models are typically defined as having real-
valued features, in practice it is more common for only indicator features to be used.

"Papineni, Roukos, and Ward (1998) had previously proposed such an exponential model with discriminative training, but in
the context of translating from a natural language to a formal language.

20ch and Ney (2001) originally present these equations without the latent alignment variable a. We present it here for com-
pleteness.

CHAPTER 1. BACKGROUND

With Och’s log-linear model, we see that there are now two layers of optimization:

o first, the translation model parameters and language model parameters are each estimated separately
using relative frequencies; and

e second, the parameters of the log-linear model w are optimized toward Equation 1.3 (holding the pa-
rameters of the translation model and language model fixed). Note that in this context, the translation
model and language model have been re-cast as real-valued features.

As we did with the Brown model, we can remove all terms that are constant with regard to f to obtain
the model’s inference-time decision rule:?

||
é(f) = argmax E w;H;(f,a,e) (1.7)
ae =0

It is perhaps striking how much simpler the decision rule is versus the overall model’s objective func-
tion. Another disconnect in this log-linear setup is that the objective function used during optimization
(likelihood) is entirely different than the evaluation function (e.g. BLEU). This was motivation for Mini-
mum Error Rate Training (MERT) (Och, 2003), which directly minimizes the number of errors produced
over a set of parallel tuning sentences S by a model with a particular set of weights w according to an
arbitrary error function E, using a set of reference translations r:

= argmln Z (r,é(f;w)) (1.8)
(f,r)es

Och (2003) present MERT as an optimizer for the log-linear model of Equation 1.3, and in fact the
decision rule remains the same as Equation 1.7. However, when using MERT as an optimizer, the relation
to Equation 1.3 is perhaps more for historical reasons — in fact, MERT is simply optimizing a linear model
(which also happens to share the decision rule of Equation 1.7:

|H|
score(f, a, e) Zwl (f,a,e) (1.9)

With this view the term log-linear becomes overly specific. Throughout the rest of this work, we will
refer to this more generally as a linear model.

MERT no longer compells us to believe that an exponential model such as Equation 1.3 is a good
measure of translation quality. In this context, the log transform of probability models into features begins
to seem arbitrary: Since we are no longer tied to the Brown model nor the log-linear model of translation,
we are left with little theoretical justification for our log transform. In fact, many systems actually use raw
probabilities as features (Gimpel and Smith, 2009). Yet it has been observed empirically that many common

3Notice that decoding uses the Viterbi derivation (as denoted by a being included in argmax) rather than the Viterbi target
string (which would correspond to summing over all a). This is common to most modern decoders due to the burdens of non-local
features.

1.2. THE ANATOMY OF THE FEATURE SPACE

features produce better translation quality in log space rather than probability space. However, the question
still remains whether a log transform is optimal. We will return to this question in Section 2.1.

MERT also no longer compells us to believe that an exponential model such as Equation 1.3 is a good
measure of translation quality. However, considering that some features are actually real-valued models
themselves (Section 2.4), it does this only in the context of the second stage of optimization. These compo-
nent models are trained as first stage of parameter estimation toward some proxy estimator such as maximum
likelihood estimates (phrase tables) or perplexity (language models) — this is almost certainly not optimal
in the context of the final objective function used in MERT. This shortcoming is primarily a symptom of
the component models hiding a large number of statistics from the MERT procedure. In some sense, this
is desireable since MERT only scales to a small number of features (Hopkins and May, 2011) and so sum-
marizing a large number of features into a single real-value makes MERT more efficient and less prone to
overfitting. However, to be optimal in terms of MERT’s objective function, the model score (which sum-
marizes these many statistics) must satisfy several properties (Section 2.1). In practice, satisfying these
properties can be very difficult. Further, it can even be difficult to know if these properties are satisfied.

Recent work in optimization for SMT has focused on enabling the use of more features (Shen, Va, and
Rey, 2004; Liang et al., 2006; Chiang, Marton, and Resnik, 2008; Hopkins and May, 2011). These typically
trade some approximation of the objective function for the ability to scale to large feature sets. We will
return to such optimizers in Section 1.4. With the general ability to add many features to models, this brings
into question a second historical practice: previously, many of the free parameters of child models were
hidden from the second-stage optimizer (MERT) via a first-stage optimization procedure; why should we
still continue to optimize these parameters toward a first-pass proxy objective function such as likelihood
when we now have the ability to jointly optimize them toward a more reliable objective?

1.2 The Anatomy of the Feature Space

In this section, we briefly define attributes of features that we will reference throughout the rest of this
proposal. First, we define three types of feature visibility:

e Observable features. Direct attributes of the source input (e.g. sentence-level source language model,
source LDA topic)

e Output features. Attributes of the model’s output (e.g. language model, word penalty, lexical proba-
bilities)

o Latent features. Not visible in either the input nor output, but only in latent variables of the model
(e.g. segmentation, source tree, target tree, entropy, source phrase count, language model probability
of a particular phrase, Py, (T'|5))

Together, we refer to the output features and latent features as non-observable features.

We also define two types of feature locality:

e Local features. Stateless features (e.g. phrase features) that do not require additional state informa-
tion in the dynamic program

e Non-local features. Stateful features (e.g. target language model) that do require additional state
information in the dynamic program — these will always be hypothesis or latent features

CHAPTER 1. BACKGROUND

Feature locality is relative to the way in which the inference method of a decoder is factored. For
example, in a phrase-based decoder, any feature that is computable given only a single phrase pair or the
input sentence is local, while features that cross phrase boundaries are non-local. Similarly, in a chart-based
decoder, local features must be computable from a single grammar rule or the input sentence. Factoring
features in this way allows for efficient inference by allowing search to be decomposed into smaller reusable
subproblems in the spirit of dynamic programming.*

Next, we present the features of a standard machine translation system using the terminology of markov
random fields (MRF) in Figure 1.1 (Smith, 2011, pp. 27-29). As the edges in this graph are undirected, this
should not be interpreted as a generative story nor a particular ordering of events. In this graphical model,
the source sentence f is fully observed. We then choose a derivation D of this sentence including how to
segment the phrases in the case of a phrase-based system or which grammar rules to apply in the case of
a syntactic system. We also assign the task of performing any reordering to D. Note that D is both latent
and structured. For each the n phrases (or grammar rules) chosen by D, each phrase choses to generate
some number of target terminals m;. Finally, we choose which target terminal belongs in at e;. The feasible
assignment to each of these random variables is heavily constrained by the grammar rules or phrase table,
as well as, the reordering hyperparameters of the system.

Under this view, we can now more precisely identify what information each feature function requires.
Since the factorization of a MRF is a priori ambiguous, we organize our features over vertices V into
compatibility functions® ¥, € F(d) where v C 'V defines the scope of the compatibility function and F
is responsible for taking a derivation d and factorizing it into compatibility functions (Sutton and Mccallum,
2010). In Figure 1.1, each compatibility function is represented by a small square box. In the abstract, a
compatibility function is composed of several feature functions,® which may be applied to any random
variables of the correct type. When we instantiate this graphical model for particular input sentence, then
each compatibility function is bound to a particular instances of its random variables and its constituent
feature functions are likewise bound to a subset of those random variable instances.

We divide the popular features of machine translation into two abstract compatibility functions: phrase
and rule-local features W (e.g. phrase translation probabilities and lexical probabilities) and WM, which
includes only the language model. As shown in Figure 1.1, the rule-local features are distinguished from
the LM features in that their compatibility functions never cross a rule boundary, making them amenable
to dynamic programming. Because different classes of feature functions require different information, they
bear different function signatures including Apprase(f,7, €1 ..., €;) and Apigramim(e1, €2). When speaking
about features in general without regard to a specic feature class, we denote the feature function as taking
the random variables v of its compatibility function as an argument h(v), h € Uy,.

“Due to the presence of non-local features, we cannot actually perform dynamic programming since the best solution to each
subproblem is not guaranteed to be globally optimal. This is, in fact, the primary reason that machine translation decoders typically
use inexact inference.

5The compatibility functions ¥ are also frequently called factors. However, we avoid this terminology due to the alternative
meaning of the word factor in the machine translation community.

SFeature functions are also sometimes referred to as potential functions in the machine learning literature.

1.2. THE ANATOMY OF THE FEATURE SPACE

Source sentence

N \\ . \\\ \\
N \\
N AN Latent
alignment
variable a

wBigramLM(

Derivation including
segmentation,
reordering, and
grammar rules

(n phrases or rules)

Each rule r (or
phrase) generates
zero or more
target terminals

Each target position :
chooses a word e;
(D may affect ordering)*

Non-local features
such as the LM
are grouped within

one compatibility function e1> 82) ={ MgigramLm(€1: €2) }

Phrase/rule local features - n

have access to f,
the current rule r, Phrase _
and r's terminals e Wy (f,r.eq...e) ={ hrgg(f.r.ey...e), h oysat(f. €160, - }

within their
compatibility function

Figure 1.1: The features of a typical statistical machine translation visualized as a graphical model. We
use factor graph notation to indicate the compatibility functions for phrase-local and rule-local features
Phrase (£ 1) ... e;) and by a non-local bigram language model feature WBigamM (¢, ¢)) Local features
are distinguished from non-local features in that they do not cross any rule boundaries. We use D to indicate
a structured random variable over the derivation including segmentation, choice of grammar rules (or source
phrases), and reordering constraints. We use a bigram LM as an example here for simplicity — in our
experiments, we use larger LMs. Lines are dashed solely for readability.

CHAPTER 1. BACKGROUND

1.3 Inference Framework: Linear Models in Structured Prediction

We have already presented the decision rule of linear models used by many MT systems in Equation 1.7:

H]|
é(f) = argmax E w;H;(f,a,e)
e =0

However, this hides many of the realities of performing inference in modern decoders. Inference would
be intractable if every feature were allowed access to the entire alignment a and the entire target hypothesis
e. In this section, we refine this decision rule using the fine-grained distinctions among features presented
in the previous section.

First, we define how the inference mechanism aggregates the feature values within each compatibility
function, as introduced in the previous section. Let “s € ¥, indicate iteration over the feature indices ¢ in
the compatibility function W, composed of the random variables v. Then our linear model aggregates the
compatibility function as:

=) wihi(v) (1.10)

€Wy,

We pass v as an argument to indicate that this is a call to ¥ returning a value, not a definition of the members
of U.

This then allows us to rewrite the decision rule of Equation 1.7 in terms of these compatibility functions
W, resulting from the factorization of the derivation d according to F:

é(f) = argmax Z (1.11)

= argmax Z sz i (1.12)

This view of the inference problem provides us with a clear picture of how decoders make inference
efficient. The decoder can aggregate the score from each of these compatibility functions once per partial
hypothesis. Since many of these partial hypotheses are shared among larger hypotheses, these costs can
be amortized in a dynamic programming fashion. In practice, the scope of the language model feature is
too broad to allow dynamic programming to be efficient, and so the inference problem is organized such
that it factors over rules or phrases. This implies that some features are local (the rule-local features in
WPhrasey and others have now become non-local (the LM features in W), It also implies that exact dynamic
programming is no longer possible. Instead, approximate inference is typically carried out using a modified
beam search that includes cube pruning as a nested search problem over which partial hypotheses should be
considered for combination (Huang and Chiang, 2007).

With the introduction of this approximate inference to accomodate non-local features, we are now left
with the possibility of search errors, which can arise when a poor decision early in the search procedure
discards a partial hypothesis that would later have participated in the hypothesis with the best model score
(Auli et al., 2009). To mitigate (but certainly not overcome) this danger, decoders require non-local feature

1.4. LEARNING FRAMEWORK: PAIRWISE RANKING OPTIMIZATION

functions to perform future cost estimation’ in which features provide an estimate of their value once the
full hypothesis has been completed, but within the context of only a partial hypothesis (Moore and Quirk,
2007; Zens, 2008; Zens and Ney, 2008). Alternatively, this can be viewed as a mechanism of making
the scores of partial hypotheses within the same search stack comparable so that the decoder does not
opportunistically make local choices that will inevitably lead to worse translations in a larger context.
While this view from the perspective of compatibility functions is useful for understanding the efficiency
of inference (which will become important in Section 4.1), it obscures the behavior of the overall model. To
shed light on the high-level behavior of the model, we first define two stages of feature vector aggregation:

o the U-local feature vector, denoted h, which is the feature vector returned by a local or non-local
feature as evaluated within its compatibility function ¥; and

o the global feature vector, denoted H, which is the feature vector obtained by the decoder by summing
the W-local feature vectors.

The inference mechanism computes the value of a global feature H(d) for some derivation d by sum-
ming over all instances of W-local features across the various compatibility functions W:

Hi(d)= > hi(v) (1.13)
)

vyeF(d

If we view the inference problem as hypergraph decoding, then we can view the local features Wy oca as
decomposing additively over hyperedges (Dyer, 2010, p. 57).

Finally, substituting this definition of the global feature vector back into our original decision rule, we
obtain this high-level view of our linear model:

é(f):argmaxZwi Z hi(v) (1.14)

From this perspective, we see a clear distinction between the global feature H, which is important from the
perspective of the linear model, and the myopic W-local feature /, which is often how features are formally
described. This distinction will become important in Chapter 3.

1.4 Learning Framework: Pairwise Ranking Optimization

As types of feature induction, discretization and conjunction will both result in much larger feature sets to be
optimized. While MERT has proven to be a strong baseline, it does not scale to larger feature sets in terms of
both inefficiency and overfitting. While MIRA has been shown to be effective over larger feature sets, as an
on-line margin learning algorithm, it is more difficult to regularize — this will become important for neighbor
regularization in Section 3.3. Therefore, we use the PRO optimizer as our baseline learner. PRO works by
sampling pairs of hypotheses from the decoder’s k-best list and then providing these pairs as a binary training
examples (correctly ranked or not) to a standard binary classifier to obtain a new set of weights for the linear
model. In our case, this classifier is trained using L-BFGS. This procedure of sampling training pairs and

"Future cost estimation is also often referred to as rest cost estimation.

10

CHAPTER 1. BACKGROUND

then optimizing the pairwise rankings is repeated for a specified number of iterations. It has been shown
to perform comparably to MERT for small number of features, and to significantly outperform MERT for
large number of features (Hopkins and May, 2011).

11

Chapter 2

Overview

2.1 Theoretical Motivation: Assumptions and Pitfalls of Linear Modeling

We have reviewed how linear models have emerged as the dominant models of statistical machine transla-
tion. While these models have allowed much progress in the field, they are not without their limitations. We
follow Nguyen et al. (2007) in enumerating the restrictions placed upon a feature set within a linear model,
which hold whenever a linear model is used as an inference mechanism:'

1. Linearity. A feature must be linearly correlated with the objective function. That is, there should be
no region that matters less than other regions. For example, this forces a system designer to decide
use between log P(e) and P(e).

2. Monotonicity. A feature value of x; for a hypothesis h; must indicate that h; is better than any
other hypothesis h; having a lesser value of that feature x; < z;. For example, consider a simple
length penalty implemented as a signed difference: WordCount (f) — WordCount (e). To meet the
monotonicity requirement, a system designer must use the absolute value to indicate that deviating
from the length of the source sentence in either direction is bad.

3. Independence. Inter-dependence among features is ignored by the model. That is, a feature f; may
not contribute more toward the model score in the presence of another feature f, than when f> is not
active. For example, if a system has 3 language models, each trained on a different genre, each of
those language models contributes equally to a hypothesis’ score, regardless of the genre of the source
sentence.

Linearity and monotonicity are perhaps most important when considering real-valued features as they
are trivially satisfied for indicator features.

Independence is not strictly a requirement of a linear model nor most popular learners used in SMT
including MERT, MIRA, and PRO. That is, the optimization procedure will not perform worse when de-
pendent features are added to an otherwise independent feature set. However, when inter-dependence exists
between features, the model cannot take advantage of this information. Independence manifests itself differ-
ently for real-valued versus indicator features. For indicator features (the boolean case), the classic example
of a function that cannot be captured by a linear model is XOR, which is shown in Figures 2.1 and 2.2.

!They actually present this in the context of a log-linear model. However, these properties also hold for linear models.

12

CHAPTER 2. OVERVIEW

Yet for such simple boolean features, it can be fairly easy for a human engineer to design such features.
However, when considering real-valued features, interactions between features become much less intuitive.
Interactions between real-valued features manifest when particular values of multiple features fogether in-
dicate that a hypothesis has a different quality than a simple weighted sum of those values, as shown in
Figures 2.3 and 2.4. Concrete applications of this idea in MT are described in Chapter 5.

f1=0 | f1=1
J1=0 | fi=1 fo=0] 0 1
fa=0 0 1 fo=1 1 0
fo=1 1 2
Figure 2.2: An example of the XOR function. Notice
Figure 2.1: An example of how a linear model com- that there exists no weight vector for a linear model
bines indicator features using the weights w;=ws=1 that can produce this outcome.
f1=0.1 | f1=0.2
f1i=0.1| f1=02] ... fo=0.1 0.2 0.3
f2=0.1 0.2 0.3 e fo=0.2 0.3 0.5
f2=0.2 0.3 0.4

Figure 2.4: A model that allows inter-dependence be-
Figure 2.3: A feasible scenario in a linear model. A tween features. There exists no set of weights w such
linear model can produece the outcomes in this table that w - f will produce the values in this table, indicat-
given the weights w;=we=1 ing that it is not possible in a linear model.

2.2 Practical Motivation: A View from Feature Engineering

We have pointed out several theoretical limitations of linear models. We now turn our attention to how
these restrictions can negatively impact the development of statistical machine translation systems. When
constructing MT systems, system developers often wish to improve system performance via feature Engi-
neering, the process of designing features to contribute to the system’s predictive model.

A common development pattern when improving SMT systems is to 1) create a new translation feature
that (hopefully) predicts some desirable (or undesirable) facet of translations and then 2) expose this as a
new feature whose weight can be tuned by an optimizer. These component translation features, which are
increasingly complex models on their own, are not optimized directly toward our true objective function (e.g.
BLEU), yet once we have the opportunity to optimize directly to our objective, we fit a global linear model,
a rather blunt one-size-fits-all approach. But what if a feature has the potential to improve quality in some
contexts, but not others? This is likely a common scenario since during feature engineering, developers
may look through system output and devise models to address specific observed shortcomings; however,
it is impossible for feature developers to consider all of the situations in which their new models might
have negative side effects. We address these shortcomings by allowing translation features to be reweighted
depending on context. This context could range from document topic to the average number of letters per
word or combinations thereof. As discussed in Section 2.1, linear models are simply incapable of such fine
distinctions unless they are explicitly encoded into the feature set, placing this burden squarely upon the
human system designers.

13

2.3. THESIS STATEMENT

2.3 Thesis Statement

We have introduced linear models as the state-of-the-art in statistical machine translation. We have also
suggested that direct optimization of a linear model may produce suboptimal results in a SMT system by
ignoring useful non-linear information present in the feature set. Currently, this shortcoming is addressed
by human system engineers manually developing increasingly complex models.

In this thesis, we propose to develop methods that address these shortcomings of linear learning. We
claim that:

e by dynamically expanding the feature set during learning we can render the learned model non-linear
with regard to the initial feature set;

e discretization of initial features will result in a statistically significant improvement in overall transla-
tion quality as measured by automatic metric scores; and

e conjunction of initial features will result in a statistically significant improvement in overall translation
quality as measured by automatic metric scores.

To support these claims, we propose to:

o develop a method of feature discretization to relax the properties of linearity and monotonicity (Chap-
ter 3);

e develop a method of feature conjunction to relax the property of independence that dynamically per-
forms feature induction during learning (Chapter 4);

e demonstrate that discretization can be used to recover a system with at least state-of-the-art perfor-
mance by performing a non-linear transformation of the standard feature set without the typical log
transform applied (Section 3.2);

e demonstrate that conjunctions of features can improve translation quality (Chapter 5); and

e contribute three real-world applications of these theoretical tools in machine translation tasks (Chap-
ter 5).

From an engineering perspective, the resulting model will still be directly usable in conventional de-
coders with minimal to no modification. From a scientific perspective, the resulting model will be in-
terpretable, giving us insight into which non-linear factors are most important in achieving high quality
translations.

2.4 Experimental Setup

To empirically verify these claims, we will perform experiments in Chinese—English, Arabic—English, and
one additional language pair, as well as the reverse direction from English—Foreign for one language pair.
These language pairs exhibit variety in the quality achievable by state-of-the-art systems; under our data
scenario, a baseline Chinese—English typically scores around 30 BLEU while a baseline Arabic—English
system scores around 50 BLEU. In turn, this can cause features to have very different behaior inside the sys-
tem. For example, a feature that looks at source phrase length on the foreign side will be fairly uninteresting

14

CHAPTER 2. OVERVIEW

in the Chinese case since source phrase match lengths are usually around one word while the feature could
be important given the longer source spans matched in the Arabic system. The additional language pair will
be selected based on preliminary results from the Chinese and Arabic experiments so as to best demonstrate
the strengths of our approach. For example, it may turn out that the proposed techniques work best with
mixed genres, a low-resource scenario, or in morphologically rich languages.

Chinese Resources: For the Chinese—English experiments, including the completed work presented in
this proposal, we train on the Foreign Broadcast Information Service (FBIS) corpus® of approximately
300,000 sentence pairs with about 9.4 million English words. We tune on the NIST MT 2006 dataset and
test on NIST MT 2008. Full details are shown in Figure 2.5.

Sentences Words (avg per reference) Translations
Chinese English

FBIS 303K 7.9M 9.4M 1
MTO6 (tune) 1664 38.8K 47.1K 4
MTOS (test) 1357 32.5K 40.6K 4

Figure 2.5: Corpus statistics for Chinese—English experiments.

Arabic Resources: For the Arabic—English experiments, we train on the much larger NIST MT 2009
constrained training corpus > of approximately 5 million sentence pairs with about 181 million English
words. We tune on the NIST MT 2006 dataset and test on NIST MT 2005 and 2008.* 3 Full details are
shown in Figure 2.5.

Sentences Words (avg per reference) Translations

Arabic English
NIST Train 54M | 184.5M 181.4M 1
MTO6 (tune) 1797 | 49.0K 59.2K 4
MTOS5 (test) 1056 32.6K 36.2K 4
MTOS (test) 1360 | 45.0K 51.6K 4
MTO09 (test) 1313 39.7K 47.3K 4

Figure 2.6: Corpus statistics for Arabic—English experiments.

Formalism: In our experiments, we use a hierarchical phrase-based translation model (Chiang, 2007). A
corpus of parallel sentences is first word-aligned and then phrase translations are extracted heuristically. In
addition, hierarchical grammar rules are extracted where phrases are nested. Such aligned subphrases are

Distributed as part of the NIST Open MT Evaluation as Linguistic Data Consortium catalog number LDC2003E14

3A list of the resources available as part of the NIST MT 2009 constrained training resources is availble at http: //www.
itl.nist.gov/iad/mig/tests/mt/2009/MT09_ConstrainedResources.pdf

“The NIST MT test sets are available from the LDC as catalog numbers LDC2010T{10,11,12,13,17,21,23}

One of the four references for the Arabic MT08 weblog data was not processed correctly in the officially released XML
document and is mismatched with regard to the source sentences. There is no obvious way of reversing this error. However, since
three references are still valid, this should have negligible impact on the results.

15

http://www.itl.nist.gov/iad/mig/tests/mt/2009/MT09_ConstrainedResources.pdf
http://www.itl.nist.gov/iad/mig/tests/mt/2009/MT09_ConstrainedResources.pdf

2.4. EXPERIMENTAL SETUP

Word Hierarchical
Alignment Grammar
9 Extraction
Monoli | Language
Ogo ingua Model Optimization Decoding Evaluation
orpus . .
Estimation

Figure 2.7: Our experimental pipeline. Shaded components fall within the scope of the proposed work. The
optimization component will be the primary focus. Minor modifications to the decoder will be necessary to
support non-local conjunctive features. Note that the optimizer is run multiple times to control for optimizer
instability (Clark et al., 2010).

used to generalize their parent phrases by being substituted as a single non-terminal symbol X. In general,
our choice of formalism is rather unimportant — our techniques should apply to most common phrase-based
and chart-based paradigms including hiero and syntactic systems. Our decision to use hiero was primarily
motivated by the cdec decoder’s API being most amenable to our proposed work.

Tools: After initial pre-processing such as tokenization and segmentation, we perform word alignment
using MGIZA++ (Gao and Vogel, 2008) and then extract and score a hierarchical phrase-based grammar
using a suffix array data-structures that samples a few hundred target phrases for each matched source phrase
(Lopez, 2008; Lopez, 2007; Lopez, 2008). For decoding, we will use cdec (Dyer et al., 2010), a multi-pass
decoder that supports syntactic translation models and sparse features. Our primary optimizer will be PRO
(Hopkins and May, 2011) as implemented by the cdec decoder.

Baseline Features: As this thesis is largely about inducing enhanced feature sets, feature sets will vary.
Here, we describe our baseline feature set, which is included in all experiments unless otherwised stated
explicitly. We use the baseline features produced by Lopez’ suffix array grammar extractor, which is dis-
tributed with cdec:

e log Peoherent (€] f): The coherent phrase-to-phrase translation probability (Lopez, 2008, p. 103). The
phrasal probability of each English SCFG antecedent (e.g. “el [X] gato”) given a particular foreign
SCFG antecedent “the [X] cat” combined with coherence, the ratio of successful source extractions
to the number of attempted extractions

e log Pex(e|f), log Pex(f|e): The lexical alignment probabilities within each translation rule, as com-
puted by a maximum likelihood estimation over the Viterbi alignments

e log P m(e): The log probability of the target translation hypothesis under a language model

16

CHAPTER 2. OVERVIEW

e c(e) The count of target words (terminals) in the target translation hypothesis
e c¢(glue) The count of glue rules used in the derivation

e ¢(00VTy) The count of source tokens that were not recognized by the translation model (out of
vocabulary) and were therefore passed through

e ¢(00Vyy) The count of target tokens that were not recognized by the language model (out of vocab-
ulary)

Hardware: We will continue to carry out experimentation on resources provided under the Extreme Sci-
ence and Engineering Discovery Environment (XSEDE), a program of the National Science Foundation.
This includes the use of the Trestles cluster at the San Diego Supercomputing Center, which offers many
nodes having 32 cores and 64GB RAM, and the Blacklight cluster at the Pittsburgh Supercomputing Center,
which offers nodes having 16 cores and 128GB RAM.

Evaluation: We will quantify increases in translation quality using automatic metrics including BLEU
(Papineni et al., 2002) and METEOR (Denkowski and Lavie, 2010; Banerjee and Lavie, 2005). We will
control for test set variation by measure the statistical significance over bootstrap replicas of the test set
(Koehn, 2004) and control for optimizer instability by measuring variance and statistical significance ac-
cording to approximate randomization (Clark et al., 2010). We will further mitigate the risk of confounds
by performing a targeted automated analysis, breaking down improvements by category.

Workflow management: To manage our experiments in an orderly fashion and ensure that our work
can be reproduced by the broader community, we use the Ducttape Workflow Manager, a successor of the
LoonyBin HyperWorkflow Manager (Clark et al., 2009; Clark and Lavie, 2010).

2.5 Related Work

Previous work on feature discretization in machine learning has focused on the conversion of real-valued
features into discrete values for learners that are either incapable of handling real-valued inputs or perform
suboptimally given real-valued inputs (Dougherty, Kohavi, and Sahami, 1995; Kotsiantis and Kanellopou-
los, 2006). Such learners include decision trees, bayesian networks, and rule learners.

Kernel methods such as support vector machines (SVMs) are often considered when non-linear interac-
tions between features are desired since they allow for easy usage of non-linear kernels. Wu, Su, and Carpuat
(2004) showed improvements using a non-linear kernel PCA method for word sense disambiguiation ver-
sus a support vector machine model. Tsochantaridis et al. (2004) introduce a support vector machine for
structured output spaces and show applications in grammar learning, named-entity recognition, text classifi-
cation, and sequence alignment. This line of work later included application to information retrieval, protein
alignment, and classification with unbalanced classes (Joachims et al., 2009). Giménez and Marquez (2007)
used a support vector machine to annotate a phrase table with binary features indicating whether or not a
phrase translation was appropriate given the context. Wang, Shawe-Taylor, and Szedmak (2007) present a
string-kernel SVM model of machine translation, but apply it only on very small data due to inherent scal-
ing difficulties. Even within kernel methods, learning non-linear mappings with kernels remains an open

17

2.5. RELATED WORK

area of research; For example, Cortes, Mohri, and Rostamizadeh (2009) investigated learning non-linear
combinations of kernels.

However, kernel methods remain slow due to complex training and inference requirements. This poses
a challenge in machine translation, which is a complex structured prediction problem involving non-local
features. Kernel methods also make it difficult to map back to the primal form of the problem to recover
features and their weights — that is they are generally not interpretable. Further complicating matters is the
issue of future cost estimation, which requires a model to estimate the future values of non-local features
to avoid excessive search errors during approximate inference. Nor would such an approach be compatible
with most decoders available, slowing adoption of the work. Aditionally, much work has already been done
to make inference fast with linear models in current decoders.

Decision trees and random forests are also commonly used non-linear learners. Decision trees have been
successfully used in many areas of natural language processing including language modeling (Jelinek et al.,
1994; Xu and Jelinek, 2004) and parsing (Charniak, 2010; Magerman, 1995). While they are considerably
easier to interpret than kernel methods, they have two important deficiencies in the context of this work.
As with kernel methods, it is again very difficult to perform future cost estimation for such models, a
requirement of our modern decoding algorithms.

Feature augmentation using conjunctions of features has been explored in various areas of machine
learning. Della Pietra, Della Pietra, and Lafferty (1995) describe a greedy algorithm for iteratively adding
features to a random field based on expected gain (Della Pietra, Della Pietra, and Lafferty, 1997). Mccal-
lum (2003) extends this work to conditional random fields, but also constructs the conjunctions iteratively.
Guyon (2003) describes a checklist for applying machine learning to a problem, which recommends us-
ing conjunctive features if one suspects inter-dependence among the features. Guyon also notes that while
a model may be linear in its parameters, the model may be rendered non-linear in its input variables via
feature construction — the approach we take in this work.

Research has also been done on “unpacking” real-valued generative features into a few sufficient statis-
tics. These unpacked statistics can then be optimized directly alongside other features in the translation
system, providing the opportunity for a tighter fit. For example, Chen et al. (2011) explored unpacking
the sufficient statistics of various phrase table smoothing methods and demonstrated an improvement in
translation quality.

The most closely related work to this proposal is that of Nguyen et al. (2007). Nguyen attempted to
use discretized real-valued features using 20-50 bins. However, with this small number of bins they saw
no improvement. Nguyen also did not yet have access to reliable methods for optimizing large numbers of
features available at that time, so they instead used a modified version of minimum risk annealing (Smith
and Eisner, 2005). Nguyen did observe a small improvement when attempting to relax the feature indepen-
dence constraint using Gaussian Mixture Model (GMM) features, which were separately trained toward a
likelihood-based objective and then added as features into a standard MT model.

18

Chapter 3

Discretization: Inducing Non-Linear
Transformations of Real-valued Features

We introduced the limitations of a static feature set within a linear model in Section 2.1. We then proposed
feature induction as a means for overcoming these limitations in Section 2.3. In this chapter, we describe
discretization (Section 3.1), which allows us to relax the linearity and monotonicity constraints imposed
on the initial set of features. First, we provide some results using a very basic discretization technique
(Section 3.2). We then describe neighbor regularization (Section 3.3), which will allow the optimizer to
reliably estimate weights for the significantly larger number of features generated by discretization.

3.1 Discretization Approach

We now turn to the problem of learning non-linear transformations of real-valued features so those features
need not be linear nor monotonic with regard to the objective function. At first glance, one might be tempted
to simply apply a few non-linear functions on top of each function (e.g. log(z), exp(z), sin(x), ™). How-
ever, even if we were to restrict ourselves to some “standard” set of non-linear functions, many of these
functions have hyperparameters that are not directly tunable by conventional optimizers (e.g. what period
and amplitude for sin, what value of n in ™). Further, continuous transformations may simply be inadequate
to model sudden changes in the behavior of the response.

Our approach is to first discretize real-valued features into a set of indicator features and then use a
conventional optimizer to learn a weight for each indicator feature. This technique is sometimes referred
to as binning and is closely related to quantization. In particular, we will transform the W-local features h,
rather than the global features H such that no additional non-local information is required during inference;
this is important to maintaining efficient inference (see Section 1.3).

Effectively, discretization allows us to re-shape a feature function. In fact, given an infinite number of
bins, we can perform any non-linear transformation of the original function.!

However, choosing the right number of bins can have important effects on the model:

e Lossiness. If we choose too few bins, we risk degrading the model’s performance by discarding
important distinctions encoded in fine differences between the feature values. In the extreme case, we

!"This is similar to the idea of Riemann Sums in calculus, in which some number of partitions is used to approximate the area
under a curve; taking the limit as the number of partitions goes to infinity yields the true area.

19

3.2. COMPLETED WORK: STATIC DISCRETIZATION

could reduce a real-valued feature to a single indicator feature.

e Sparsity. If we choose too many bins, we risk making each indicator feature too sparse, which is
likely to result in the optimizer overfitting such that we generalize poorly to unseen data

First, we will experimentally explore these effects in Section 3.2. Then, we will explore how to mitigate
this sparsity in Section 3.3.

3.2 Completed Work: Static Discretization

In this section, we experimentally evaluate the performance of discretization using some fixed number of
bins. We construct a Chinese—English system using the FBIS training data, NIST MT06 for tuning, and
NIST MTO08 for evaluation, as described in Section 2.4. We tune using PRO for 30 iterations as suggested by
Hopkins and May (2011), though analysis indicates that the parameters converged much earlier. The PRO
optimizer internally uses a L-BFGS optimizer with the default /5 regularization implemented in cdec. We
begin with the baseline set of 7 common features described in Section 2.4, and modify them as described
below.

First, we remove the phrase translation probability features and the lexical translation probability fea-
tures and instead replace them as follows. We run two baseline experiments (the top two lines of Figure 3.1):
One with the Py (t|s) feature in log space, as usual, and another with this feature untransformed, in proba-
bility space. As expected, the feature in log space performs much better. We then run 4 scenarios using static
discretization by representing the probability-space feature using only 3, 4, 5, or 6 base ten digits. For exam-
ple, in the case of discretizing to 3 digits, the individual features in the model might include TGS@0.111,
TGSR0.112,and TGSR1.000.

Condition | Tune | Test
Prob 21.6 | 15.7
Log 26.2 | 18.4
Bin3 26.9 | 18.8
Bin4 2571 17.8
Bin5 252 | 17.0
Bin6 25.0 | 174

Figure 3.1: Results of static discretization experiments as measured by the BLEU metric.

The results of these experiments are shown in Figure 3.1. We see a clear trend of underperformance
when using a larger number of bins — binning tends to do worse than the log tranform when using more
than 3 decimal places to represent our feature. This trend is mirrored when we examine the feature weights
assigned to each of the binned features in Figure 3.2 — the weights are dominated by overfitting noise when
we use too many bins. Surprisingly, we observe lower translation quality on both the tuning and test data.
We hypothesize that this is due to the changing samples between iterations of the PRO optimizer; that is, the
discretized features become so sparse that their weights fail to generalize even between different samples
from k-best lists. However, we can see that we overcome the effects of both lossiness and sparsity when
using 3 decimal places — in fact, we do better than the features in log space, providing evidence that the
log tranform is not somehow theoretically optimal, but merely an empirical convenience that often performs
well.

20

CHAPTER 3. DISCRETIZATION

While there are certainly more principled ways of choosing bin boundaries, which we plan to explore
through the course of this work, these simple experiments demonstrate both the potential gains and the
challenges we expect to face in discretization. For example, bin boundaries could be chosen by uniformly
dividing the values of the feature or by examining the density of each feature value in the tuning data. It
may also be beneficial to specialize bins near boundaries to be very narrow — this might allow zero and one
counts to be weighted more freely.

0.20 T T T T 0.20
0.15 0.15
0.10 0.10
0.05 0.05
))
5 =
= 0.00 = 0.00
= =
—0.05 -0.05
-0.10 -0.10
-0.15 -0.15
_020 1 1 1 1 _020 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Indicator Feature (Binned probability) Indicator Feature (Binned probability)

Figure 3.2: Plots of the weights of the indicator features representing the binned Py (t|s) feature. Notice
that the bin3 experiment (left) is beginning to show a log-like shape while the bin6 experiment (right) is
dominated by noise due to overfitting. 794 features are represented along the x-axis for the bin3 experiment
and 4532 features are represented for the bin6 experiment.

21

3.3. PROPOSED WORK: NEIGHBOR REGULARIZATION

3.3 Proposed Work: Neighbor Regularization

Regularization has long been used to discourage optimization solutions that give too much weight to any
one feature. This encodes our prior knowledge that such solutions are unlikely to generalize. Regular-
ization terms such as the £, norm are frequently used in gradient-based optimizers including our baseline
implementation of PRO.

As we just saw, static discretization is very brittle with regard to the number of bins chosen. Primarily,
it suffers from sparsity. At the same time, we note that we know much more about discretized features
than initial features since we control how they are formed. With these things in mind, we propose neighbor
regularization, which embeds a small amount of knowledge into the objective function: that the indicator
features resulting from the discretization of a single real-valued feature are spatially related. We expect
similar weights to be given to the indicator features that represent neighboring values of the original real-
valued feature such that the resulting transformation appears somewhat smooth.>

To incorporate this knowledge into our objective function, we use the method of Sandler et al. (2008) for
regularization over feature networks (Sandler, 2010). In terms of learning, we are making the usual trade-off
of regularization: higher bias (we may not fit the tuning data as tightly) for lower variance (different tuning
sets should yield more similar weights than without regularization) and better generalization to unseen data.

As an introduction to describing neighbor regularization, we first note that the f5 regularizer can be
interpreted probabalistically as adding a prior to the initial likelihood objective. This prior has the form of
a multivariate Gaussian with a zero mean (to encourage the feature weight to remain small) and a variance
inversely proportional to the regularization constant ««. The regularization term added to the objective is
then:

Ra(w) = aZw? (3.1)

Since the Gaussian is multivariate, its variance parameter is in fact a covariance matrix.> For the ¢y
regularizer, this matrix is diagonal and can be calculated as the regularization constant o multiplied by the
identity matrix I, encoding the knowledge that we do not believe any features to be related a priori. This
allows us to rewrite the regularization term as a sequence of matrix operations:

Ro(w) =w' Mow (3.2)
My = ol (3.3)

2This is similar to the method of time series regularization, introduced by Yogatama et al. (2011).

3We specify dependencies largely in terms of the precision matrix P as it allows us to specify global dependencies while keeping
the overall matrix sparse. For example, if feature 1 is related to feature 2, 2 to 3, and 3 to 4 (as if they were balls connected by
springs), then we could specify this using only 6 entries in the precision matrix (specifying which balls are connected by springs),
while we would need the full cross product of 16 entries in the covariance matrix (specifying every ball that moves when each other
ball moves).

22

CHAPTER 3. DISCRETIZATION

For example, for a set of 4 features, the matrix M is:

34

oo o QR
o o L o
o L0 oo
Q oo o

Now we formally define neighbor regularization as an instance of feature network regularization (San-
dler et al., 2008; Sandler, 2010). We consider our features as vertices V' = {1,...,|h|} in a graph G with
edges linking feature weights that we believe to be similar. These edges are non-negative with increasing
weights indicating greater similarity. We encode these edge weights in the square matrix P where each
P;; > 0 contains the weight of the directed edge from vertex 4 to vertex j. Following Sandler, we constrain
the sum of outgoing edges to sum to one, » . P;; = 1, so that no feature dominates the graph. To enforce
the semantics that linked features should have similar weights while maintaining a convex objective func-
tion, our neighbor regularizer Rnr penalizes each feature’s weight by the squared amount it differs from its
neighbors:

|h| |h|

Rar(w) =8 (w; — Y Pirwy)’ (3.5)
j=1 k=1
0.5 0.5
Co ()
0.5 0.5
()
)

Figure 3.3: An example feature network implementing neighbor regularization. Discretized features re-
sulting from the same initial real-valued feature are linked by edges as shown by h1, ha, hs and hy, hs, hg.
Initial features that are not discretized do not receive edges as shown by hr7, hs.

Alternatively, this can be rewritten as a series of matrix multiplications:

Rar(W) = w ' Mygw (3.6)
Myg = B(I = P)" (I - P) (3.7)

23

3.3. PROPOSED WORK: NEIGHBOR REGULARIZATION

In the case of neighbor regularization, only a few features, the neighboring features, will have edges
between them. This will cause the matrix P to be tridiagonal. Continuing the example from Figure 3.3, the
matrix would be:

hi ha hs hs hs he hy hg
hi{ 0 05 0 O 0o 0 0 O

he{ 05 0 05 0 0 0 0 O
hs{ 0 05 0 O O O 0 O
hasy O 0 0O O 05 0 0 O (3.8)
hs{ 0 0 0 05 0 05 0 O
he] 0 0 O 0.5 0 0
hz1 0 0 O 0 0 0
hs \ 0O 0 O 0 0

For reference, we present the complete modified loss function of the convex optimization problem in-
ternal to each iteration of PRO. For n sampled pairwise rankings, the loss function will take the following
form when combined with the usual ¢5 regularizer and neighbor regularization:

L(w) =Y 1(xi,4i; W) + Ra(w) + Rar (W) (3.9)
=1

The gradient update to minimize the loss £ is then:

Vwl = Vl(xi,yi; W) + 2(My + Myg)w (3.10)
i=1

To evaluate the performance of neighbor regularization, we will carry out experiments on the various
language pairs described in Section 2.4 using various schemes of static discretization (Section 3.2). Hy-
perparameters will be tuned on a separate held-out data set. We will evaluate each experimental condition
of neighbor regularization using automatic metrics and perform significance testing to determine if im-
provements are meaningful. We will also investigate its effectiveness qualitatively, as we did with static
discretization, using feature weight visualizations of the type shown in Figure 3.2.

24

Chapter 4

Conjunction: Inducing Dependencies
Among Multiple Features

We have described how feature discretization can be used to relax the linearity and monotonicity require-
ments on (initially) real-valued features. We now turn our attention toward allowing our learning procedure
to take advantage of inter-dependence among features.! While this is strictly not possible given a linear
model with a fixed number of features and parameters, we propose to again augment the initial feature set
such that our learned model can take advantage of interactions among features (those that can reasonably be
expected to generalize to unseen data).

Later, we will describe applications of both discretization and conjunctions including results demon-
strating that conjunctions among features can improve translation quality, a key claim of this thesis. In
preliminary work, these conjunctions were manually selected. However, another goal of this work is to take
as much burden off of feature engineers as possible. Toward that end, we now consider how to dynamically
learn conjunctions during learning.

A naive implementation would directly insert the full cross-product of all features into learning, making
the size of the feature set O(2‘h|). This would place large computational burdens on both learning and
inference. Further, it would exponentially increase the number of free parameters in the model; the curse
of dimensionality predicts that such a model would also perform poorly from a learning perspective due to
overfitting.

With these issues in mind, we propose methods for:

e Enumerating a set of candidate feature conjunctions that can be efficiently computed by the decoder

e Selecting a set of candidate feature conjunctions that is both feasibly small for learning and that has
enough training examples to be estimated reliably

e Incrementally adding these conjoined features to the model during optimization

e Reliably learning a set of weights for these complex conjoined features

'Inter-dependence among features can also be viewed as a non-linear combination of features rather than the usual linear
combination.

25

4.1. PROPOSED WORK: FEATURE SELECTION BY INFERENCE COMPLEXITY

4.1 Proposed Work: Feature Selection by Inference Complexity

In the context of inference complexity, if we consider the space of all possible 2!/ conjunctions among
initial features, it becomes apparent that many of these conjoined features cross many more rule boundaries
than before (see Section 1.3 and Figure 1.1). That is, the factorization F of a derivation into compatibility
functions W that was valid under the initial feature set, is no longer valid under the new conjoined feature
set. This 2/ conjoined feature set would require a new factorization in which each compatibility function
has a much larger scope. In fact, the scope of some conjoined features would span the entire sentence. By
separating partial hypotheses that were originally in the same equivalence classes, this would allow for less
substructure during inference, causing decoding to become far more costly.

Clearly, this is not desireable if we seek efficient inference. Therefore, we perform feature selection
based on which conjoined features will not enlarge the scope of any compatibility functions. First, we
consider three sets of initial features:

e Observable initial features. Examine only the source sentence, placing them within the compatibility
function WO (f). Since these features are constant with regard to the source sentence, they will never
affect the ranking of target hypotheses, unless conjoined with a feature from another category.

e Local initial features. Examine random variables local to a single rule or phrase, placing them within
the compatibility function WL (f 7 e1 ... ep).

e Non-local initial features. Examine random variables that span multiple rules or phrases. Such
features include the language model, whose compatibility function is ¥M(e; ... e;)

We then consider the following conjunctions among these feature sets:

Local initial features with themselves

Local initial features with non-local initial features

Observable initial features with all of the above conjunctions

Observable initial features with local initial features

Observable initial features with non-local initial features

By selecting features only from this set, we guarantee that no additional non-local state information
must be kept at inference time. In the remainder of this section, we will explore the technical details of how
to enumerate this seemingly simple set of conjunctions.

26

CHAPTER 4. CONJUNCTION

We specify the space of candidate conjunctions that we will consider declaratively in the framework of
semirings. Semirings have been used in computational linguistics for quite some time (Goodman, 1999;
Eisner, 2001; Mohri, 2002) and more recently in statistical machine translation (Lopez, 2009; Kumar et
al., 2009; Li and Eisner, 2009; Dyer et al., 2010; Dyer, 2010).> A semiring K is defined by a 5-tuple
(K, ®,®,0,1):

e K: The set of values.

e @: A commutative addition-like operator (a monoid) used for aggregating the results of ® with other
previous results within a chart cell.

®: A multiplication-like operator (a monoid), used for aggregating neighboring antecedents in a
production rule as well as the weight of the production rule.

e 0: An annhilator such that 0 @ z = 0 (used for initializing blank chart entries in a hypergraph decoder
or empty stacks in a phrase-based decoder).

e 1: Anidentity element 1 ® x = x (used for seeding agenda with axioms such as input words).

First, we will address how to enumerate conjunctions of local features with themselves. We will ap-
proach the enumeration of local feature conjunctions in two phases: First, we will enumerate the set of
rules or phrases that could participate in the translation of a sentence and then we will extract all local
conjunctions over features within each rule.

After collecting rules and/or phrases from the entire tuning corpus,® we enumerate all local conjunctions
over these local non-observable features. We will refer to the initial feature set (the set of all features
reachable in our hypothesis space) as hp,;; and we will use a function COMB(X, n), which enumerates all
combinations of length n over the set X. We define the local conjunction semiring Kcopj as:

o Keonj: Let C be a conjoined feature, represented as a set containing component indicator features. The
semantics of the set C' are that all features in C participate in a single conjunctive feature by applying
the feature operator A so that the feature C' is true iff all component features in C' are true. Initial
non-conjoined features are represented as a set C' of size one. Then K is a set containing instances of
conjoined features C'.

® Dconj: For operands A and B, the set-wise union over two sets of conjoined features: A U B

® ®conj: For operands A and B, the set of all conjunctions over (potentially) conjoined features:
{aUb|Va € A,¥b € B}

e Oconj: The empty set: ()

e lconj: A set containing one conjoined feature, composed of zero initial features: {()}

For example, consider two initial features htgs and hcounc. We can represent each of these as a con-
joined feature of order 1: Crgs = {hrgs} and Ccount = {hcount}- Then, we the following would be valid

2We also rely on the language of hypergraphs for machine translation. Hypergraphs were introduced to the parsing commu-
nity by Klein and Manning (2001) and have since gained popularity in chart-based statistical machine translation (Zollmann and
Venugopal, 2006; Huang and Chiang, 2007).

3The task of collecting all grammar rules that can participate in valid derivations of a tuning set is also a trivial semiring, the
rule forest semiring Kyles

27

4.1. PROPOSED WORK: FEATURE SELECTION BY INFERENCE COMPLEXITY

operations under our semiring:

K1 = {Crcs} = {{h1cs}}, K1 € K

Ko = {Ccount} = {{hcount}}, K2 € K
Kunion = K1 ® K2 = {{h1Gs}, {hcount} }
Keross = K1 ® Ko = {{h16s, hcount } }

Notice that Kyuion iS a set containing two conjoined features and Ko 1S a set containing one conjoined
feature of order two.

Using this semiring Kconj, we can now enumerate all conjunctions of local non-observable features
by ocainonobs OVer the rules r. If h,. is the set of local initial features associated with a rule r, then:

b |

CLocalNonObs == @ @ @ ®{h} (4-1)

rer =1 Cecoms(h,,i) heC

Similarly, we can obtain the set of local observable features:

[hops

|
Cops = b KR 4.2)

i=1 CecoMB(hgps,i) heC

Recall that conjunctions among observable features hgpg will still result in features that cannot improve
the model (since such a source observation will be constant with regard to translation hypotheses, not af-
fecting their ranking). However, they can provide information when conjoined with latent and hypothesis
features. Taking these into account (but still neglecting non-local features), we can express the space of
conjunctions among local features as:

CLocal = CObs & CLocalNonObs (4-3)

At this point, we have enumerated all conjunctions among local features, both observable and non-
observable. Now we turn our attention toward forming conjunctions among local and non-local features.
When considering which local features should be conjoined with non-local features, we must define the set
of local features that fall within the scope of each non-local feature instance — that is, which local features
should be conjoined with each non-local feature.

First, it is potentially intractable to enumerate all of the non-local features that could occur in a sentence
as this is tantamount to enumerating all of the hypotheses that a sentence can generate.* Therefore, we
sample the non-local features that we expect to see during the current iteration of optimization by examining
the k-best derivations of each sentence, recovering the non-local features that fired for each hypothesis.

“Imagine an algorithm that attempts to efficiently enumerate all non-local features. It might attempt to run a semiring over a
hypergraph that stores (1) all of the features seen under the current vertex along with the conjunction context in which that feature
was seen and (2) a set containing all of the left and right non-local feature states that could possibly be produced under the current
vertex. In the worst case, no recombination is possible and at the sentence-spanning vertex, the set must contain an entry for every
hypothesis that can be produced in the hypergraph. Storing such a large number of hypotheses would be unacceptably inefficient.

28

CHAPTER 4. CONJUNCTION

Second, by definition, the scope of a non-local feature is not dictated by how the model is factored. In
fact, the upper bound on a non-local feature’s scope is an entire sentence. We might take this as evidence
that we should conjoin all local features that might occur within a sentence with our sample of the non-local
features for that sentence. However, this greatly overstates which local features are within the scope of
each non-local features. Generally, non-local feature functions are conceptualized as managing their own
state — they receive antecedent state objects and return a consequent state object along with any relevant
feature scores. Therefore, we defer to each non-local feature function to provide us with this information —
that is, we require each non-local indicator feature function to provide an EnumerateScope mechanism
for returning both if it fires and which local features fall within its scope. Each hypothesis in a k-best list
generated using the EnumerateScope function of each non-local feature will be annotated with the a list
whose elements are tuples (ANonLocal, hy ocalscope) Where hnonLocal is @ non-local feature associated with the
hypothesis and hy ocaiscope 18 the set of local initial features that should be considered for conjunction with
it. Consider the example in Figure 4.1 this would allow a discriminative lexical n-gram language model
to return the feature ID of a match hnonrocal = LM—cat—eats and the local features associated with the
words in that n-gram. In this case, we might return an unaligned words indicator feature, such that the
returned tuple would be: (LM-cat-eats, [Aligned, Unaligned]). In general, if the language model
match spans a phrase boundary, hyocaiscope may contain features from multiple phrases. We refer to this
overall procedure that enumerates a k-best list containing non-local features and the local features falling
within their scope as ScopedKbest.

Phrase 1 Phrase 2
el gato come furtivamente
the G'at eats 3 furtively
N -
LM Match

hNonLocaI = LM-cat-eats

Figure 4.1: An example of how EnumerateScope will behave. A discriminative LM matches
LM-eats-futively, EnumerateScope might indicate that the features A1igned and Unaligned
are within the scope of the feature LM-cat—-eats.

With this mechanism in place, we finally obtain Cnonrocal @s the set of all non-local features conjoined
with in-scope local features for a single sentence:

IthcaIScope I
CNonLocal - @ {hNonLocal} ® @ @ ®{h} (4-4)
(hNonLocal7hL0caISc0pe)eSCOpedeeSt =1 CECOMB(hLocaIScnpevi) heC

29

4.2. PROPOSED WORK: FEATURE SELECTION BY SPARSITY

Finally, we can incorporate all of these observable, local, and non-local features into the full space of
conjunctions that we will be considering by building on Equation 4.4:

CConj = CObs ® (CLocalNonObs ¥ CNonLocal) (45)

This technique of enumerating conjunctions provides us with a set of features that can be efficiently
computed by the decoder without adding any additional non-local state information. However, it is likely
that many of these conjoined features are very sparse and are not likely to be reliably estimated. With this
in mind, we do not expect this set of conjunctions to perform well in isolation and we plan to evaluate them
only as a baseline for the methods presented in the following sections.

4.2 Proposed Work: Feature Selection by Sparsity

Previously, we described how to enumerate a set candidate feature conjunctions that are amenable to efficient
decoding and occur within the tuning data. Most of these conjoined features will occur infrequently in the
tuning data and even less frequently within each of PRO’s samples of ranked hypothesis pairs, giving us
little hope of estimating their weights reliably. To address this, at each iteration of PRO, we examine the
hypothesis pairs selected by PRO’s sampler and collect two counts:

® Cpairs(h) The count of sampled pairs in which the feature h occurs with a non-zero difference (pairs in
which the feature has the same value contribute nothing to the gradient and provide no information to
optimization)

® Csentences(P) The count of tuning sentences containing having a non-zero cpairs(h)

We then set thresholds on each of these Opairs, Osentences, Which we will adjust as hyperparameters. We
then use this thresholding mechanism to perform feature selection, throwing away features that are too
sparse to be reliably estimated.

To evaluate the performance of this technique, we will carry out experiments on the various language
pairs described in Section 2.4. Hyperparameters will be tuned on a separate held-out data set. We will use
initial features from the applications described in Chapter 5. Comparisons will be made to a baseline without
conjunctions and a system using conjunctions selected for decoder efficiency but not for sparsity. We will
evaluate each experimental condition using automatic metrics and perform significance testing to determine
if improvements are meaningful.

4.3 Proposed Work: Incremental Feature Selection via Grafting

We propose to control the number of features in our model by grafting, as described by Perkins (2003)
and Riezler and Vasserman (2003). Feature grafting incrementally selects features to be added to the model
based on the amount that each feature will contribute the the objective function; features that do not contribue
enough are not added to the model. As a side effect, this makes the learned model more interpretable by
reducing the number of correlated features in the model. Like an £y or ¢; regularizer, grafting strongly
reduces the overall number of features in a model. However, it does not give up the convex objective function

30

CHAPTER 4. CONJUNCTION

of the /5 regularizer. Previously, Okanohara (2009) have applied grafting in the context of combination
features on a parsing task with positive results.

To evaluate the performance of grafting, we will carry out experiments on the various language pairs
described in Section 2.4. Hyperparameters will be tuned on a separate held-out data set. We will use initial
features from the applications described in Chapter 5. Comparisons will be made to a baseline without
conjunctions and a system using conjunctions with features selected for inference efficiency and for sparsity.
We will evaluate each experimental condition using automatic metrics and perform significance testing to
determine if improvements are meaningful.

4.4 Proposed Work: Feature Complexity Regularization

Intuitively, conjoined features made up of a very large number of component features are less likely to gener-
alize. Further, such complex features are likely to outnumber less complex features due to the combinatorial
explosion of feature combinations; even small weights on such a large number of features could cause them
to overpower less complex, potentially more reliable features. However, we do not wish to discard such fea-
tures outright since such features could forseeably be valuablue. Our solution is to introduce a regularization
hyperparameter v and regularization term into our objective function using /N as the maximum number of
component features involved in any conjoined feature:

N |h
Rcomplexity =7 Z j2 Z | ’wz’ ‘2 (4.6)
=0

i=0
iff ORDER(h;)=j

We use ORDER(h) to indicate the number of component features involved in a conjoined feature. Since
J is constant with regard to w, this regularization term differs from the {5 norm by only a constant. Al-
ternatively, we can view complexity regularization as partitioning the feature set into N groups and then
applying a /5 regularizer to each group where the regularization weight of each group is vj2. This preserves
the convexity of the objective function and makes it easy to incorporate into the gradient-based updates of
PRO. With this in mind, the gradient is:

N |h|
vacomplexity =7 Z j2 Z 2w; 4.7)
B iff ORDZE:R[%hi): j

To evaluate the performance of feature complexity regularization, we will carry out experiments on the
various language pairs described in Section 2.4. Hyperparameters will be tuned on a separate held-out data
set. We will use initial features from the applications described in Chapter 5. Comparisons will be made
to a baseline without conjunctions and a system using conjunctions selected for inference efficiency and for
sparsity. We will evaluate each experimental condition using automatic metrics and perform significance
testing to determine if improvements are meaningful.

31

Chapter 5

Applications

In previous chapters, we described a theoretical framework for non-linear learning in machine translation.
We now present concrete tasks that make use of these tools.

5.1 Completed Work: Direct Application to Simple, Targeted Features

In our first application, we consider what we expect to be a rather common feature engineering scenario: A
feature engineer adds to a baseline translation system a few simple features that are dense (occur frequently
in the tuning data) and that target common intuitive phenomena. We use the following indicator features as
an example of such a scenario.

We include the following feature templates:

e Nonterminal Count (Nonterm). One feature for each count of non-terminals in the grammar rule
(This can be considered a discretization of the commonly used (This can be considered a discretization
of the commonly used ArityPenalty, whose value is the count of non-terminals in the grammar
rule)

e Source and Target Word Count (WC). One feature for each count of terminals (words) on each
side of the grammar rule (The target side can be considered a discretization of the commonly used
WordPenalty, whose value is the count of terminals in the output string)

e Source and Target High Frequency Word Count (HFWC). One feature for each count of terminals
(words) on the source side of the grammar rule that are high-frequency words

e Source and Target High Frequency Words (HFW,). One feature (the lexical identity) of each
source word that is a high-frequency word. We collect a set of high-frequency words from the training
data by rankinking them by frequency and thresholding at n

Since these are indicator features, each count and each high-frequency lexical item is a separate feature
such as SrcWC-1, SrcWC-2, and Tgt HFWLex—the. Notice that although some of these features are
“source” features in that they examine source words, they can have an impact on the model since they are
actually latent features using knowledge of how the source sentence has been segmented into phrases and/or
rules and therefore can improve the model even without conjunctions.

32

CHAPTER 5. APPLICATIONS

To experimentally evaluate the performance of this feature set under discretization and conjunction, we
construct an Arabic—English system using the standard NIST training data, NIST MTO06 for tuning, and
NIST MTO08 for evaluation, as described in Section 2.4. We tune using PRO for 30 iterations as suggested by
Hopkins and May (2011), though analysis indicates that the parameters converged much earlier. The PRO
optimizer internally uses a L-BFGS optimizer with the default /5 regularization implemented in cdec. All
experimental conditions below include the 7 common features described in Section 2.4 with some subset of
the additional targeted features described in this section.

Condition Tune | MTO5 | MTOS8
Baseline 40.4 54.5 47.2
WC, Nonterm 41.5 56.9 48.6
WC, Nonterm, Conj4 42.2 55.5 48.6
WC, Nonterm, HFWC 42.0 55.9 49.5
WC, Nonterm, HFWC, Conj4 432 56.4 49.2
WC, Nonterm, HFWC, HFWy 42.5 55.8 49.9
WC, Nonterm, HFWC, HFWy, Conj4 | 43.4 55.8 49.9
WC, Nonterm, HFWC, HFW5 42.8 56.8 49.6
WC, Nonterm, HFWC, HFW5, Conj4 | 43.8 56.2 50.4

Figure 5.1: Results of initial conjunction experiments on the NIST MT Arabic—English data set as mea-
sured by the BLEU metric. Both the Meteor and TER evaluation metrics also showed similar improvements.

As shown by the result “WC, Nonterm” in Figure 5.1, by using simple discretizations of the ArityPenalty
and WordPenalty features, we can achieve improvements of +2.4 BLEU on MTO0S5 and +1.4 BLEU on
MTO08. However, when we add conjunctions of up to order 4 (Conj4), we see consistent improvements only
on the tune set, but often hurting the test set on MTO05 — this highlights the potential for overfitting with
conjunctions and the need for careful feature selection as described in Section 4.1.

5.2 Completed Work: Single System, Multiple Domain Adaptation

Machine translation systems are often used for information assimilation as in the case of one person seeking
to understand information or varying genres stored in many languages. This is the use case for most modern
translation web services including Google Translate, Microsoft Translator, and Yahoo Babel Fish.

It is possible to optimize a separate set of weights for each genre. However, taken from the view of
our conjunction framework, such a model implies that all of the features of the model must be, in effect,
conjoined with each genre and none of the original features may share statistics among genres. This can
result in the model’s parameters being more sparsely estimated while removing the possiblity of relying on
the better estimated non-conjoined features.

With these issues in mind, we propose to use conjunctions of observable genre features with initial
model features. This opens up new possibilities as well, such as having multiple granularities of genres
such as news and news—-political or even using communication modalities in combination with top-
ics as in text-political and speech-political. This would give us resulting features such as
news—-LanguageModel, news-WordPenalty, and speech-WordPenalty.

A similar conjunctive approach to domain adaptation (using “feature augmentation”) has been success-
fully applied in other areas of computational linguistics by Daumé III (2007).

33

5.3. PROPOSED WORK: A JOINTLY OPTIMIZED DISCRIMINATIVE LANGUAGE MODEL

To experimentally evaluate the performance of single system, multiple domain adaptation, we construct
an Arabic—English system using the standard NIST training data, NIST MTO06 for tuning, and NIST MT08
for evaluation, as described in Section 2.4. We tune using PRO for 30 iterations as suggested by Hopkins
and May (2011), though analysis indicates that the parameters converged much earlier. The PRO optimizer
internally uses a L-BFGS optimizer with the default {5 regularization implemented in cdec. All experimental
conditions below include the 7 common features described in Section 2.4 as standalone features with each
of the 7 features conjoined with each of the 2 genres, for a total of 21 features overall.

Condition Tune (MTO06) MTO08 MTO09

News | Web | All | News | Web | All
Baseline 404 | 472|304 |40.1| 509 | 309 | 41.2
Genre Conjunctions 41.3 | 48.6 | 30.8 | 41.1 | 52.2 | 32.0 | 424

Figure 5.2: Results of initial multi-genre experiments on the large NIST MT Arabic—English data set as
measured by the BLEU metric. Both the Meteor and TER evaluation metrics also showed improvements.

We present the results of genre conjunctions on the large NIST Arabic—English system in Figure 5.2.
The conjunctions provide gains of 1.0 BLEU on MTO08 and 1.2 BLEU on MT09.

5.3 Proposed Work: A Jointly Optimized Discriminative Language Model

In this section, we explore how to accomplish discretization of an important non-local feature: the language
model. We will then build interpretable conjunctions on top of this in Section 5.4. Work has already been
done in improving over generative language models in favor of discriminative equivalents (Roark et al.,
2000; Roark, Saraclar, and Collins, 2007) including in the context of machine translation (Li and Khudanpur,
2008).

However, generative language models typically have millions or billions of free parameters — one for
each n-gram in the monolingual corpus that it is trained on. Yet previous attempts to learn discriminative
language models in the context of machine translation have typically relied on a much smaller number of
parameters. Li and Khudanpur (2008) used only unigram and bigram features in their discriminative model
and later used only the top 250 most frequent words in their “rule bigram” features, giving them only about
500 features in their discriminative model (Li et al., 2010).

These methods use a pipeline approach, taking one of the following forms:

e First, generate training data for the discriminative LM learner using a baseline MT system. Then,
learn a n-best reranking model. (Li and Khudanpur, 2008)

e First, generate training data for the discriminative LM learner using a baseline MT system. Then,
learn the parameters of the discriminative LM. Finally, learn a new set of weights for the MT system
with the discriminative LM incorporated. (Li et al., 2010)

These pipeline methods each have their own shortcomings. First, training a n-best reranking model over
the entire training data can be quite expensive as it typically involves decoding the entirety of the training
data. N-best reranking is also at the mercy of incorrectable errors made by the baseline MT system; if an
otherwise good hypothesis is dropped from the n-best list, there is no hope of recovery. This can be a sig-
nificant source of error since even large n-best lists represent a tiny fraction of the overall hypothesis space.

34

CHAPTER 5. APPLICATIONS

On the other hand, training a discriminative LM that is later integrated into the decoder has access to the full
hypothesis space. However, the parameters of the discriminative LM are fixed during the optimization of the
final MT system’s parameters. This can be viewed as an additional constraint on the combined parameter
space, which can lead to underfitting.

Our approach is to jointly optimize the features of both the discriminative LM and the MT system using
only the development set. Because deveopment sets are typically smaller than the training set, optimization
requires less CPU time. However, this also means that we are unlikely to have enough data to reliably
estimate millions of parameters. Even including only bi-grams, there are potentially millions of features on
the target side of the Arabic—English. Therefore, we propose to use a small set of carefully engineered
features in our model.

We plan to rely on a generatively estimated language model as one of these features for two reasons:

e Current approximate inference techniques in machine translation rely heavily on rest cost (future
cost) estimation to achieve good approximations of the model-best decoding. Currently, feature-based
language models are generally not able to efficiently providing accurate future cost estimates.

o Generative language models can reliably estimate many more parameters due to the amount of knowl-
edge that has been manually embedded into their estimation formulae; discriminative models gener-
ally do not have the benefits of such knowledge-rich constraints.

As a starting point, we propose two basic feature sets for our discriminative LM:
e The n most frequent bigrams found in a monolingual data source

e Discretized log probabilities (match features) and backoffs (miss features) as indicators, separated by
length. For example:

— Foratrigram match: LM-Match-Len3-VeryLikely, LM-Match-Len2-SomewhatLikely,
LM-Match-Lenl-VeryLikely

— Foratrigram miss: LM-Miss—-Len3-VeryLikely, LM-Match-Len2-SomewhatLikely,
LM-Match-Lenl-VeryLikely

These bigram features build on the earlier work in discriminative language models described above.
Other work in language model quantization shows that only a few discrete values of the LM probabilities are
able to produce most of the signal provided by the language model (Federico and Bertoldi, 2006; Whittaker
and Raj, 2001a; Whittaker and Raj, 2001b); We are in fact performing a type of quantization with our
discretization of generative LM features. However, our discriminative LM features now have the opportunity
to (re-)estimate the importance of matches and misses of different orders and different magnitude.

To evaluate the performance of our jointly optimized discriminative language model, we will carry out
experiments on the various language pairs described in Section 2.4. Hyperparameters will be tuned on a
separate held-out data set. Comparisons will be made to a baseline without the discriminative language
model. We will evaluate each experimental condition using automatic metrics and perform significance
testing to determine if improvements are meaningful.

35

5.4. PROPOSED WORK: CONTEXT-RICH LANGUAGE MODELING

5.4 Proposed Work: Context-Rich Language Modeling

Previously, we described how to convert a typical generative language model into a set of features that more
directly and interpretably exposes the preferences of the learned model. We now describe how to enrich
such a model with context information from the translation model using feature conjunctions.

First, we consider incorporating phrase boundary information into the language model. Phrase-based
machine translation systems memorize and reproduce translation fragments seen in the training data. The
model determines which translation fragments are chosen. Each of these fragments was a fluent and correct
in its original context, but when the decoder combines these fragments in a new context, we can no longer
be sure that the hypothesis will be fluent as a whole. We refer to this phenomena of disfluency at phrase
boundaries as boundary friction (Brown et al., 2003). Normally, the phrase penalty, which encourages the
use of larger phrases, and the language model are the primary tools that combat boundary friction. Yet even
though the language model is a word-based feature, it has no knowledge of whether or not it is scoring
fluent memorized text (as it was trained to do) or scoring across potentially disfluent phrase boundaries.
We propose to conjoin the discriminative language model features from Section 5.3 with phrase boundary
indicator features so that language modeling predictions can weigh more heavily where we expect boundary
friction and can reduce their influence when the translation model is reciting already-fluent memorized
phrases.

Phrase 1 Phrase 2 Phrase 1 Phrase 2

el gato come furtivamente el gato come furtivamente

~ oy
ﬁe cat eatsw furtively the cat (eats furtively)

N —7 —
LM Match LM Match
hpiscLm = LM-Match-Len3-VeryLikely hpiscLm = LM-Match-Len2-VeryUnlikely
hgoundary = PhraseBoundary0 hBoundary = PhraseBoundary1
hConjoined = PhraseBoundary0-LM-Match-Len3-VeryLikely hConjoined = PhraseBoundary1-LM-Match-Len2-VeryUnlikely

Figure 5.3: Examples of how phrase boundary features might be conjoined with the features of our discrim-
inative language model from the previous section.

For example, consider Figure 5.3. Building on our feature set from Section 5.3, we may have features
such as PhraseBoundary0-LM-Match-Len3-VeryLikely to indicate that we are just to the right
of a phrase boundary and the language model found a trigram match bridging this phrase boundary; or
we might have a feature such as PhraseBoundaryl-LM-Match-Len2-VeryUnlikely, which in-
dicates that we are deeper within a phrase but found a smaller, unlikely match — without the phrase boundary
information, this would look like a bad choice, but with the large preceeding phrase context, we might expect
the translation model to do a good job of determining if this is a good word choice.

We will also consider adding translation model information to the language model in a more direct fash-
ion: by conjoining with a binary feature that indicates whether or not each target word should be considered
an “island of reliability”, following the concept from parsing noisy speech recognizer output (Miller, 1974).
First, we apply a (very fast) binary classifier to classify each target word in the hypothesis space as either
reliable or not. As a baseline, we propose to simply use lexical probabilities with a threshold for both prob-
ability and count — that is, we will consider lexical items that are either low count or low probability to be

36

CHAPTER 5. APPLICATIONS

unreliable. Then, during the decoder’s search for the best hypothesis, we conjoin each LM feature with its
island of reliability indicator feature. This allows the language model to weigh more heavily when the trans-
lation model is not confident. It also may prevent the language model from guiding the search away from
confident, correct translations, instead choosing words that are simply more frequent. For example, con-
joined features of this sort might include Reliable-LM-Match-Lenl-VeryUnlikely, which would
normally be penalized heavily by the model, but might be more likely to participate in a correct hypothesis
given that it is reliable.

To evaluate the performance of our context-rich language model, we will carry out experiments on the
various language pairs described in Section 2.4. Hyperparameters will be tuned on a separate held-out data
set. Comparisons will be made to a baseline without any discriminative language model from the previous
section and to a baseline with only the discriminative language model (but without any contextual con-
junctions). We will evaluate each experimental condition using automatic metrics and perform significance
testing to determine if improvements are meaningful.

37

Chapter 6

Summary and Timeline

6.1 Summary

We outlined three restrictions on feature sets imposed by linear models and argued that they unduely burden
feature engineers:

o Linearity. Within each translation unit (each source sentence), if plot the objective function score of
each translation hypotheses versus a feature’s score of that translation hypothesis, they must form a
straight line. Visually, we must be able to plot of y = ma + b where y is the value of the objective
function and x is the value of the feature for some m and b.

e Monotonicity. Within each translation unit, if we rank the translation hypotheses by an objective
function, a feature must return monotonically increasing or decreasing values as we iterate over the
ranked translation hypotheses.

¢ Independence. A feature’s contribution to the model score may not depend on the presence of any
other feature. That is, inter-dependence between features is ignored.

We then proposed two feature induction techniques to address these restrictions:

e Discretization. By transforming a single real-valued feature into a larger number of features, we can
piece-wise learn a non-linear transformation of each of those initial features using the induced feature
set. This relaxes the linearity and monotonicity restrictions on the initial feature set. We then use
neighbor regularization to combat the resulting sparsity of the model.

e Conjunction. To learn inter-dependencies among initial features, we form conjunctions among all
features that are dense enough to be reliably estimated. This enables our model to respond differently
when multiple features are all fire for a hypothesis, rather than simply returning the dot product of the
individual features and their weights.

Finally, we sketched three scenarios in which these techniques can be applied:

o Simple, Targeted Features. By discretizing and conjoining a small set of simple, intuitive features,
we produce a more powerful, more effective feature set.

38

CHAPTER 6. SUMMARY AND TIMELINE

6.2

Context Rich Language Modeling. By conjoining a small number of features of a discrimina-
tive language model with other features such as phrase boundary information, we can learn a model
that behaves differently depending on the current context. For example, whether it is scoring within
already-fluent phrases or accross potentially disfluent phrase boundaries. Alternatively, we might
conjoining features from the translation model and language model, so that we can learn a model
that behaves differently depending on how confident the translation model is, allowing the language
model to speak softly in the case of phrases that are confidently translated, but not otherwise likely in
monolingual training data.

Single system, multiple domain adaptation. By using conjunctive features, we can learn a single
model that responds differently depending on the domain or genre of the text to be translated. In the
past, domain adaptation has been performed largely by training entirely new systems and models for
each domain.

’ Discretization ‘
Static binning Completed
Neighbor regularization Proposed

] Conjunctions ‘
Feature Selection by Inference Complexity | Proposed
Feature Selection by Sparsity Proposed
Incremental Feature Selection via Grafting Proposed
Feature Complexity Regularization Proposed

Applications
Simple, Targeted Features Completed
Single System, Multiple Domain Adaptation | Completed
Jointly Optimized Discriminative LM Proposed
Context Rich Language Modeling Proposed

Figure 6.1: A summary of current progress on work falling within the scope of this thesis.

Contributions

This work will result in the following contributions to the field of statistical machine translation:

Demonstrating that discretization can improve translation quality when compared with standard real-
valued features (Sections 3.2 and 5.1)

Demonstrating that conjunctions of features can improve translation quality (Sections 5.2, 5.3, and 5.4)

Providing a method for reliably estimating the parameters of a discretized feature set learning (Chap-
ter 3)

Providing a method for dynamically performing induction of conjunctions during learning, easing the
burden on feature engineers (Chapter 4)

Providing three concrete examples of how these theoretical tools can be efficiently applied in common
machine translation tasks (Chapter 5)

39

6.3. TIMELINE

6.3 Timeline

We expect work on this thesis to be completed by August 2012, with incremental progress being made
according to the following 17-month timeline:
April - May 2012:
Implementation of neighbor regularization (Section 3.3).
All discretization experiments on FBIS Chinese—English data set (Chapter 3).

Summer 2012:
Scale up discretization implemntation to large data sets.
Discretization experiments on all data sets.
Checkpoint: Completion of NAACL 2013 paper on discretization and neighbor regularization.

Fall 2012:
Implement iterative, dynamic induction of conjunctive features and complexity regularization.
Carry out experiments with dynamic learning of conjunctive features.
Checkpoint: Completion of ACL 2013 paper on conjunctive features.

Spring 2013:
Finalize any remaining tasks in each of the three application areas (Chapter 5).
Finalization of all experiments on individual techniques.
Begin job search.
Checkpoint: Completion of WMT 2013 paper on MT applications of discretization and conjunction.

Summer 2013:
Finalization of systems and experimentation.
Thesis writing.
Checkpoint: Circulate draft of thesis document to committee for review (July).

August 2013:
Checkpoint: Thesis defense.

40

References

Auli, Michael, Adam Lopez, Hieu Hoang, and Philipp Koehn. 2009. A Systematic Analysis of Translation Model
Search Spaces. In Workshop on Statistical Machine Translation, number March, pages 224-232.

Banerjee, Satanjeev and Alon Lavie. 2005. METEOR : An Automatic Metric for MT Evaluation with Improved Cor-
relation with Human Judgments. In Proceedings of the ACL 2005 Workshop on Intrinsic and Extrinsic Evaluation
Measures for MT and/or Summarization.

Brown, Peter E, Stephen A Della Pietra, Vincent J Della Pietra, and Robert L Mercer. 1993. The Mathematics of
Statistical Machine Translation : Parameter Estimation. Computational Linguistics, 10598.

Brown, Ralf D, Rebecca Hutchinson, Paul N Bennett, Jaime G Carbonell, Peter J Jansen, and Peter Jansen. 2003.
Reducing Boundary Friction Using Translation- Fragment Overlap. In MT Summit, pages 24-31, New Orleans.

Charniak, Eugene. 2010. Top-Down Nearly-Context-Sensitive Parsing. In Empirical Methods in Natural Language
Processing, number October, pages 674-683.

Chen, Boxing, Roland Kuhn, George Foster, and Howard Johnson. 2011. Unpacking and Transforming Feature
Functions : New Ways to Smooth Phrase Tables. In MT Summit, pages 269-275.

Chiang, David. 2007. Hierarchical Phrase-Based Translation. Computational Linguistics, 33(2):201-228, June.

Chiang, David, Yuval Marton, and Philip Resnik. 2008. Online large-margin training of syntactic and structural
translation features. In Proceedings of the Conference on Empirical Methods in Natural Language Processing -
EMNLP 08, page 224, Morristown, NJ, USA. Association for Computational Linguistics.

Clark, Jonathan H, Chris Dyer, Alon Lavie, and Noah A Smith. 2010. Better Hypothesis Testing for Statistical
Machine Translation : Controlling for Optimizer Instability. In Association for Computational Linguistics.

Clark, Jonathan H and Alon Lavie. 2010. LoonyBin : Keeping Language Technologists Sane through Automated
Management of Experimental (Hyper) Workflows. In Conference on Language Resources and Evaluation
(LREC).

Clark, Jonathan H, Jonathan Weese, Byung Gyu Ahn, Andreas Zollmann, Qin Gao, Kenneth Heafield, and Alon Lavie.
2009. The Machine Translation Toolpack for LoonyBin: Automated Management of Experimental Machine
Translation HyperWorkflows. Prague Bulletin of Mathematical Linguistics, (December):1-10.

Cortes, Corinna, Mehryar Mohri, and Afshin Rostamizadeh. 2009. Learning Non-Linear Combinations of Kernels.
In Advances in Neural Information Processing Systems (NIPS 2009), pages 1-9, Vancouver, Canada.

Daumé II1I, Hal. 2007. Frustratingly Easy Domain Adaptation. In Association for Computational Linguistics, number
June, pages 256-263, Prague.

Della Pietra, Stephen, Vincent Della Pietra, and John Lafferty. 1995. Inducing features of random fields. Technical
report, Carnegie Mellon University.

Della Pietra, Stephen, Vincent Della Pietra, and John Lafferty. 1997. Inducing Features of Random Fields. Analysis,
19(4):1-13.
Denkowski, Michael and Alon Lavie. 2010. Extending the METEOR Machine Translation Evaluation Metric to the

Phrase Level. In North American Association for Computational Linguistics.

Dougherty, James, Ron Kohavi, and Mehran Sahami. 1995. Supervised and Unsupervised Discretization of Continu-
ous Features. In Proceedings of the Twelfth International Conference on Machine Learning, pages 194-202, San
Francisco, CA.

Dyer, Chris, Jonathan Weese, Adam Lopez, Vladimir Eidelman, Phil Blunsom, and Philip Resnik. 2010. cdec :
A Decoder , Alignment , and Learning Framework for Finite-State and Context-Free Translation Models. In
Association for Computational Linguistics, number July, pages 7-12.

41

Dyer, Christopher James. 2010. A Formal Model of Ambiguity and Its Applications in Machine Translation. Ph.D.
thesis, University of Maryland.

Eisner, Jason. 2001. Expectation Semirings : Flexible EM for Learning Finite-State Transducers . Methods,
(August):1-5.

Federico, Marcello and Nicola Bertoldi. 2006. How Many Bits Are Needed To Store Probabilities for Phrase-Based
Translation? In Workshop on Statistical Machine Translation, number June, pages 94-101.

Gao, Qin and Stephan Vogel. 2008. Parallel Implementations of Word Alignment Tool. In Association for Computa-
tional Linguistics Computational Linguistics, number June, pages 49-57.

Giménez, Jesds and Lluis Marquez. 2007. Context-aware Discriminative Phrase Selection for Statistical Machine
Translation. In Workshop on Statistical Machine Translation, number June, pages 159-166.

Gimpel, Kevin and Noah A Smith. 2009. Feature-Rich Translation by Quasi-Synchronous Lattice Parsing. In Empir-
ical Methods in Natural Language Processing.

Goodman, Joshua. 1999. Semiring Parsing. Computational Linguistics.

Guyon, Isabelle. 2003. An Introduction to Variable and Feature Selection. Journal of Machine Learning Research,
3:1157-1182.

Hopkins, Mark and Jonathan May. 2011. Tuning as Ranking. Computational Linguistics, pages 1352—1362.

Huang, Liang and David Chiang. 2007. Forest Rescoring: Faster Decoding with Integrated Language Models. In
Association for Computational Linguistics, number June, pages 144—151.

Jelinek, Frederick, John Lafferty, David Magerman, Robert Mercer, Adwait Ratnaparkhi, and Salim Roukos. 1994.
Decision Tree Parsing using a Hidden Derivation Model. In Workshop on Human Language Technologies (HLT).

Joachims, Thorsten, Thomas Hofmann, Yisong Yue, and Chun-Nam Yu. 2009. Predicting Structured Objects with
Support Vector Machines. Communications of the ACM, 52(11):97-104.

Klein, Dan and Christopher D Manning. 2001. Parsing and hypergraphs. Science, (c).

Koehn, Philipp. 2004. Statistical Significance Tests for Machine Translation Evaluation. In Empirical Methods in
Natural Language Processing.

Kotsiantis, Sotiris and Dimitris Kanellopoulos. 2006. Discretization Techniques : A recent survey. In GESTS Inter-
national Transactions on Computer Science and Engineering, volume 32, pages 47-58.

Kumar, Shankar, Wolfgang Macherey, Chris Dyer, and Franz Och. 2009. Efficient Minimum Error Rate Training and
Minimum Bayes-Risk decoding for translation hypergraphs and lattices. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing
of the AFNLP: Volume 1 - ACL-IJCNLP 09, number August, pages 163—171, Morristown, NJ, USA. Association
for Computational Linguistics.

Li, Zhifei and Jason Eisner. 2009. First- and Second-Order Expectation Semirings with Applications to Minimum-
Risk Training on Translation Forests . Language.

Li, Zhifei and Sanjeev Khudanpur. 2008. Large-scale Discriminative n-gram Language Models for Statistical Machine
Translation. In Methods.

Li, Zhifei, Ziyuan Wang, Sanjeev Khudanpur, and Jason Eisner. 2010. Unsupervised Discriminative Language Model
Training for Machine Translation using Simulated Confusion Sets. In Coling, number August, pages 656—664,
Bejing.

Liang, Percy, Alexandre Bouchard-c, Dan Klein, and Ben Taskar. 2006. An End-to-End Discriminative Approach to
Machine Translation e. Computational Linguistics, (July):761-768.

42

Lopez, Adam. 2007. Hierarchical Phrase-Based Translation with Suffix Arrays. Computational Linguistics,
(June):976-985.

Lopez, Adam. 2008. Tera-Scale Translation Models via Pattern Matching. In Association for Computational Linguis-
tics Computational Linguistics, number August, pages 505-512.

Lopez, Adam. 2009. Translation as Weighted Deduction. Computational Linguistics, (April):532-540.
Lopez, Adam David. 2008. Machine Translation by Pattern Matching. Ph.D. thesis, University of Maryland.

Magerman, David M. 1995. Statistical Decision-Tree Models for Parsing. In Association for Computational Linguis-
tics, pages 276-283.

Mccallum, Andrew. 2003. Efficiently Inducing Features of Conditional Random Fields. In Conference on Uncertainty
in Artificial Intelligence (UAI).

Miller, Perry Lowell. 1974. A locally-organized parser for spoken input. Communications of the ACM, 17(11):621—
630, November.

Mohri, Mehryar. 2002. Semiring Frameworks and Algorithms for Shortest-Distance Problems. Jornal of Automata,
Languages, and Combinatorics, 7(3):321-350.

Moore, Robert C and Chris Quirk. 2007. Faster Beam-Search Decoding for Phrasal Statistical Machine Translation.
In MT Summit.

Nguyen, Patrick, Milind Mahajan, Xiaodong He, and Microsoft Way. 2007. Training Non-Parametric Features for
Statistical Machine Translation. In Association for Computational Linguistics.

Och, Franz J. 2003. Minimum Error Rate Training in Statistical Machine Translation. In Association for Computa-
tional Linguistics, number July, pages 160-167.

Och, Franz Josef and Hermann Ney. 2001. Discriminative training and maximum entropy models for statistical
machine translation. Proceedings of the 40th Annual Meeting on Association for Computational Linguistics -
ACL ’02, (July):295.

Okanohara, Daisuke. 2009. Learning Combination Features with L 1 Regularization. Computational Linguistics,
(June):97-100.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-jing Zhu. 2002. BLEU : a Method for Automatic Evaluation
of Machine Translation. In Computational Linguistics, number July, pages 311-318.

Papineni, Kishore A., Salim Roukos, and R. T. Ward. 1998. Maximum Likelihood and Discriminative Training of
Direct Translation Models. City.

Perkins, Simon. 2003. Grafting : Fast , Incremental Feature Selection by Gradient Descent in Function Space.
3:1333-1356.

Riezler, Stefan and Alexander Vasserman. 2003. Incremental Feature Selection and 1 Regularization for Relaxed
Maximum-Entropy Modeling. Intelligence, (1996).

Roark, B, M Saraclar, and M Collins. 2007. Discriminative n-gram language modeling. Computer Speech & Lan-
guage, 21(2):373-392, April.

Roark, Brian, Murat Saraclar, Michael Collins, and Mark Johnson. 2000. Discriminative Language Modeling with
Conditional Random Fields and the Perceptron Algorithm. ReCALL, (1995).

Sandler, S Ted. 2010. Regularized Learning with Feature Networks. Ph.D. thesis, University of Pennsylvania.

Sandler, Ted, Partha Pratim Talukdar, Lyle H Ungar, and John Blitzer. 2008. Regularized Learning with Networks of
Features. In Advances in Neural Information Processing Systems (NIPS 2008).

43

Shen, Libin, B C Va, and Marina Rey. 2004. Discriminative Reranking for Machine Translation. In NLT-NAACL.

Smith, David A and Jason Eisner. 2005. Minimum Risk Annealing for Training Log-Linear Models . Language and
Speech.

Smith, Noah A. 2011. Linguistic Structure Prediction. Morgan and Claypool.

Sutton, Charles and Andrew Mccallum. 2010. An Introduction to Conditional Random Fields. Foundations and
Trends in Machine Learning (FnT ML), To appear.

Tsochantaridis, Ioannis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. 2004. Support Vector Machine
Learning for Interdependent and Structured Output Spaces. In International Conference on Machine Learning
(ICML).

Wang, Zhuoran, John Shawe-Taylor, and Sandor Szedmak. 2007. Kernel Regression Based Machine Translation. In
North American Association for Computational Linguistics, number April, pages 185-188, Rochester, N.

Whittaker, Edward and Bhiksha Raj. 2001a. Comparison of Width-wise and Length-wise Language Model Compres-
sion. Language.

Whittaker, Edward and Bhiksha Raj. 2001b. Quantization-based language model compression. Language.

Wu, Dekai, Weifeng Su, and Marine Carpuat. 2004. A Kernel PCA Method for Superior Word Sense Disambiguation.
In Association for Computational Linguistics, Barcelona.

Xu, Peng and Frederick Jelinek. 2004. Random Forests in Language Modeling. In Empirical Methods in Natural
Language Processing.

Yogatama, Dani, Michael Heilman, Brendan O Connor, Chris Dyer, Noah A Smith, and Bryan R Routledge. 2011.
Predicting a Scientific Community’s Response to an Article. In Empirical Methods in Natural Language Process-
ing (EMNLP).

Zens, Richard. 2008. Phrase-based Statistical Machine Translation: Models, Search, Training. Ph.D. thesis.

Zens, Richard and Hermann Ney. 2008. Improvements in Dynamic Programming Beam Search for Phrase-based
Statistical Machine Translation. In International Workshop on Spoken Language Translation (IWSLT), Honolulu,
HI

Zollmann, Andreas and Ashish Venugopal. 2006. Syntax Augmented Machine Translation via Chart Parsing. Com-
putational Linguistics, (June):138-141.

44

	Background
	A Brief History of Modeling in SMT
	The Anatomy of the Feature Space
	Inference Framework: Linear Models in Structured Prediction
	Learning Framework: Pairwise Ranking Optimization

	Overview
	Theoretical Motivation: Assumptions and Pitfalls of Linear Modeling
	Practical Motivation: A View from Feature Engineering
	Thesis Statement
	Experimental Setup
	Related Work

	Discretization: Inducing Non-Linear Transformations of Real-valued Features
	Discretization Approach
	Completed Work: Static Discretization
	Proposed Work: Neighbor Regularization

	Conjunction: Inducing Dependencies Among Multiple Features
	Proposed Work: Feature Selection by Inference Complexity
	Proposed Work: Feature Selection by Sparsity
	Proposed Work: Incremental Feature Selection via Grafting
	Proposed Work: Feature Complexity Regularization

	Applications
	Completed Work: Direct Application to Simple, Targeted Features
	Completed Work: Single System, Multiple Domain Adaptation
	Proposed Work: A Jointly Optimized Discriminative Language Model
	Proposed Work: Context-Rich Language Modeling

	Summary and Timeline
	Summary
	Contributions
	Timeline

	References

