
Treegraft:
A Stochastic Transduction Chart Parser

NLP Lab Project Final Report
Spring 2008

Jonathan Clark
Advised by Alon Lavie

The goal of this project was to create a research tool that will enable future explo-
rations of issues including the strong generative power of various types of grammars
and the suitability of such grammars to applications such as parsing, paraphrasing, and
machine translation. This goal culminated in the creation of a stochastic transduction
chart parser. Efforts were made to ensure that this software was modular enough to
allow for the dramatic and demanding code extensions often required by research.
In this report, I begin by exploring the research problem and motivations for creating

this tool (Section 1). Next (Section 2), I provide a more formal description of the trans-
duction chart parser that I implemented for monolingual and Synchronous Context-Free
Grammars (CFG / SCFG). Then, I note a few of the more practical aspects of Software
Engineering that I encountered during this project (Section 3) followed by an explana-
tion of how I evaluated the formal correctness of my program (Section 4). Finally, I
discuss some insights into Future Work that I would like to conduct using the tools and
the knowledge that resulted from this project (Section 5) and I conclude (Section 6).

1 Problem and Motivation

1.1 Painful Decisions between Grammar Formalisms

In Grammars and Lexicons and in Grammar Formalisms, I learned that each Grammar
Formalism provides its own strengths and weaknesses. Committing to a formalism is a
big decision when writing a large grammar or devising a grammar induction strategy.
However, while many of these formalisms differ strongly in their motivations, their
mechanics share much in common. This leads me to question at exactly what points
they become mechanically incompatible and which points are encompassed by some
more general framework such that they need not be sacrificed by committing to only a
single formalism.

1



Further, as became apparent to me when attempting to build a Japanese-to-English
machine translation system using the Avenue Transfer Engine, language structures can
be very non-isomorphic. This non-isomorphism goes well beyond the strong generative
capacity of a SCFG. Often, languages do not express the same grammatical meanings via
their word order. For instance, English encodes semantic roles while Japanese encodes
new and old information (which participant is emphasized). Therefore, it might seem
that we would expect there to be less correlation between the word ordering structures
in these languages. However, in a statistical modeling, we are often not interested in
outliers, and so to find out whether or not such grammatical non-isomorphism is truly
a bottleneck in our models will require empirical evaluation.

1.2 Long-Term vs Short-Term Goals

This then begs the question, how do we go about pursuing these avenues of research?
One way would be to modify existing software (namely, the Avenue Transfer Engine)
to test these ideas. However, legacy C++ code can be difficult to modify. More im-
portantly, the implementation process can be a path to a much deeper knowledge of
concepts since holes in understanding typically produce holes in the implementation,
forcing both to be addressed.
With this in mind, I took a second approach: write a research tool from the ground

up that is built to enable the exploration of various types of grammars and parsing
strategies. Since the goal of actually exploring these grammars is beyond the scope of
this semester-long project, I have simply implemented this research tool as a first step
toward addressing this larger research agenda.

2 Algorithm

2.1 Chart Parsing

Following the mechanics of the Avenue Statistical Transfer Engine[9], I implemented
a transduction chart parser. As a stepping stone toward defining transduction chart
parsing, we will first reproduce (with some minor additions) the algorithmic definition
of Chart Parsing discussed in the Algorithms for NLP course1.
For a parsing input x = x1...xn, we begin by processing the input from left-to-right

with i corresponding to the input token being processed:

1. Begin with the first input symbol
Set i = 0

2. Initialize the Agenda with all POS of the current terminal input symbol
If the agenda is empty and i < n, then set i = i + 1, find all POS of xi and add
them as constituents C(pi, pi+1) to the agenda

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-55/lti/Courses/711/Class-notes/
Chart-Parsing.pdf

2

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-55/lti/Courses/711/Class-notes/Chart-Parsing.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-55/lti/Courses/711/Class-notes/Chart-Parsing.pdf


3. Pick a key from the Agenda
If the agenda is empty, stop. Otherwise, remove the next Key constituent C(pj , pi+1)
from the agenda (note that j ≤ i).

4. Add all grammar rules that start with the Key as active arcs
For each grammar rule of the form [A→ CX1...Xm] (those that begins with the
key C that we just got from the agenda), create an active arc [A→ •CX1...Xm](pj , pj)
and, iff such an arc does not already exist in the list of active arcs L, append it
to L.

5. Extend any existing active arcs with the key
(Without target side packing nor transduction constraints)

For all active arcs of the form [A→ X1...•Ck...Xm](ph, pj) (those that to advance
their dot further need a Key that provides C) where h ≤ j ≤ i in the list of active
arcs L, create a new active arc of the form [A→ X1...Ck•...Xm](ph, pi+1) (one with
the dot advanced over C). If we later intend to recover the parses that have been
produced, we must associate a backpointer α with each RHS constituent so that
our arc now has the form [A→ X1(α1)...Ck(αk)•...Xm](ph, pi+1). Thus, we set αk

equal to C(pj , pi+1). (Note that since we are not yet doing any ambiguity packing
there is a one-to-one correspondence between RHS symbols and backpointers).

6. Add LHS constituents of newly completed rules to the agenda
(Without ambiguity packing nor target side packing)

For all active arcs of the form [A→ X1...C•](pj , pi+1) (those arcs that have been
completed), add a new key to the agenda of the form [A→ X1...C](pj , pi+1).

7. Add the key to the chart
Record that this key is a proven constituent for this input sequence.

8. Test for termination conditions
If the key is S(1, n), the input is grammatical and we can stop now if we only
seek one grammatical parse. If the agenda is not empty, go to step 3. If there are
more input tokens, go to step 2.

2.2 Local Ambiguity Packing

As chart parsing is a dynamic programming algorithm, it allows us to reduce an oth-
erwise exponential task to O(n3) time. Ambiguity packing is one key way in which a
chart parser can reduce the time to explore this huge space; multiple ways of deriving
the same parse structure are represented by a single Key. Thus, we will use exactly one
key to represent each source LHS covering a unique span.
More formally, if we wish to perform ambiguity packing, we must modify the above

algorithm’s step 6 as follows:

3



6. Add LHS constituents of newly completed rules to the agenda
(With ambiguity packing, without target side packing)

For all active arcs of the form [A → X1...C•](pj , pi+1) (those arcs that have been
completed), add a new key to the agenda of the form A(pj , pi+1).

2.3 Scoring

Another feature of Treegraft is a simple scoring mechanism that allows it to pro-
cess stochastic grammars. Without ambiguity packing, implementing scoring would
be nearly trivial since each Key in the Chart would correspond to a single (partial)
parse. Thus, an aggregate score could be obtained by adding log probabilities up the
tree. However, ambiguity packing complicates this only slightly. Now, instead of being
able to score each Key, we must first unpack the ambiguities into individual parses
before summing the log probabilities of all rules applied to form the derivation.

score(parse) =
∑

rule∈derivation(parse)

logP (rule)

Using a single rule probability is, of course, a very simple case of parse scoring. In
the future, Treegraft can easily be modified to support multiple feature scores for each
parse. Also, note that it is still possible to assign scores to individual Keys, but they
would have to report information about groups of parses (e.g. the score of the best
derivation rooted at the current key or the total probability mass of all derivations
rooted at the current key).

2.4 Transduction

So far, I have discussed chart parsing only in a monolingual context. However, a
few modifications must be made to allow the chart parser to act as a transduction
machine from some “source language” into a “target language” (note that in the case of
paraphrasing both the source and target languages might be the same). Broadly, these
modifications fall into three categories:

1. ensuring that the grammatical constraints of the target RHS are satisfied (i.e.
that the target tree is grammatical)

2. dealing with the increased ambiguity with the new possibility of having multiple
target LHS’s and RHS’s for a single source LHS

3. generating the target language parse trees and strings after the source has been
built

For the sake of simplicity, I will discuss the case of transduction with a Synchronous
Context-Free Grammar (SCFG), since it is the formalism that I implemented in this
project; however, the concepts discussed below can easily be extended to other for-
malisms such as Tree Substitution Grammar.

4



2.4.1 Packing Target Sides

The above algorithm can also result in having more active arcs than are necessary when
we consider that now we can have multiple target sides (both target LHS’s and target
RHS’s) for a single source side. This can result in having arcs that are redundant on
the source side, and, until the arcs are completed, there is no guarantee they will ever
lead to a valid target-side node. Thus, we wish to pack these arcs as well, especially
since a large number of them will be created during parsing.
We modify the above algorithm’s step 4 and 6 as follows:

4. Add all grammar rules that start with the Key as active arcs
For each grammar rule Rk of the form [A → CX1...Xm] (those that begins with the
key C that we just got from the agenda), create an active arc [A→ •CX1...Xm](pj , pj)
and, iff such an arc is not already in the list of active arcs L, append it to L and
append a pointer to the rule Rk to the arc’s list of transduction rules ρ. If such an arc
A already exists in L, append Rk to ρA.

6. Add LHS constituents of newly completed rules to the agenda
(With ambiguity packing and target side packing)

For all active arcs of the form [A → X1...C•](pj , pi+1) (those arcs that have been
completed), create a new key of the form A(pj , pi+1). If such a key already exists in
the agenda or chart, call it B otherwise call our new key B. Append a pointer to the
completed active arc A to B’s list of active arcs .
The addition of these rule backpointers allow us to later transduce in a one-to-many

fashion from the source-side LHS and RHS to the target-side LHS and RHS.

2.4.2 Checking Constraints of Transduction Rules

For a SCFG, we must ensure that target-side RHS non-terminals match the target-
side LHS of the key that is attempting to extend a rule since we allow the source and
target LHS non-terminal symbols to be different in the grammar. More formally, we
check the requirements of the target RHS of a SCFG by modifying step 5 in the above
algorithm (cumulative with the changes made for dealing with ambiguous backpointers):

5. Extend any existing active arcs with the key
(With target side packing and transduction constraints)

For all active arcs of the form [A → X1... • Ck...Xm](ph, pj) (those that to advance
their dot further need a Key that provides C) where h ≤ j ≤ i in the list of active
arcs L: If C is a non-terminal, ensure that the target-side RHS symbol T aligned to
the source-side RHS symbol C matches the target-side LHS for the current Key; if it
does not, do not proceed any further with this step. Otherwise, create a new active arc
of the form [A → X1...Ck • ...Xm](ph, pi+1) (one with the dot advanced over C). If
such an arc does not already exist in L, add this arc and call it x, otherwise call the
existing arc of this form x. If we later intend to recover the parses that have been

5



produced, we must associate a backpointer α with each RHS constituent so that our
arc now has the form [A → X1(α1)...Ck(αk) • ...Xm](ph, pi+1). Thus, we set αk equal
to C(pj , pi+1). (Note that since we are not yet doing any ambiguity packing there is a
one-to-one correspondence between RHS symbols and backpointers).
This preemptive check will prevent many extraneous active arcs from being created,

but it still does not guarantee that the target side trees will be corrext. In addition to
this preemptive check, we must re-check that the target-side non-terminals match as
we transduce using each rule. This process is described in the following section.

2.4.3 Transducing into the Target-side Parse Forest

For transducing the source-side parse forest (also called the Chart or source hypergraph)
to the target-side parse forest, we add an additional step to be executed for each Key
Ci in the Chart:

9. Create the target-side parse forest
For each source-side Key C(pv, pw), for each active arc [A→ X1(α1)...Xm(αm)](pv, pw)
packed within that C, for each rule R packed within A, create a new target-side Key
[Ti → Y1(β1)...Yq(βq)](pv, pw) (recall that α and β are backpointers). Now, set the
non-terminal type of Ti to the target-side LHS of the rule R. If there already exists a
target-side key of the form T (pv, pw) (one with the same target-side non-terminal symbol
and the same source-side span), then call it t, otherwise call our newly created target-
side key t. Next, we populate t’s list of target backpointers β, in which each element
corresponds to one target RHS symbol. For each terminal aj at the jth position in
the target RHS of the rule R, assign aj to βj . For each non-terminal symbol Bj as
the jth position of the target RHS, find the source-side non-terminal Xk to which it
is aligned and, using the rule R, ensure that the target-side RHS symbol T aligned to
the source-side RHS symbol C matches the target-side LHS for the current Key; if it
does not, do not proceed any further with this iteration for R, discarding Ti if it does
not have backpointers βg∀1 ≤ g ≤ q. Otherwise, for Bj ’s source-side backpointer αk

(a pointer to another source Key), store a pointer to the corresponding target-side Key
Tw as the target-side backpointer βw.
We can now extract the individual parses from this target-side parse forest via ambi-

guity unpacking just as we would for the source-side parse forest. As an aside, we can see
from this algorithm that source-side non-terminals must always be aligned to target-side
non-terminals and vice versa, but terminals should never be aligned to anything.

3 Software Engineering

In the spirit of the hands-on experience that this NLP Lab Project is intended to
provide, I briefly leave the context of research and touch on the more practical aspects
of how Treegraft was implemented.

6



3.1 Implementation

Treegraft is implemented in pure Java and its source code is available at code.google.com,
released under a BSD license2. During development Google’s SVN code repository was
used for version control so that any disastrous changes or loss of data could be recov-
ered. All source code can be accessed from a web interface at Treegraft’s Google Code
homepage3.

3.2 Documentation

To document the contract each component of the system fulfills, I used Java’s own
JavaDoc tool4, which places the documentation alongside the code it refers to. This
documentation includes high-level comments for every class, method, parameter, and
return type. The resulting documentation can be on Treegraft’s JavaDoc API page5.

3.3 Object Oriented Modules

One consideration that was on my mind while developing Treegraft was that it should
be easily extensible and robust to future changes in our approach; simply put, I sought
to design a research tool rather than just an implementation of a particular idea. This
consideration is implemented using Java generics and interfaces. For readers familiar
with C++, generics are roughly equivalent to C++ templates. Interfaces are roughly
equivalent to C++ abstract classes in which a set of methods and their expected input
and output is well-defined (and well-documented), but multiple particular implementa-
tions are allowed; the code that references these interfaces is agnostic to the particulars
of each interface implementation. For example, Treegraft has a “Rule” interface, which is
implemented by both a monolingual CFG rule class and a synchronous CFG rule class.
Their construction is such that a Tree Substitution Grammar (TSG) rule implementa-
tion should be relatively straightforward. Another instance of interfaces in Treegraft is
the “Scorer,” which allows for multiple scoring methods (with various feature sets) to
be independently developed and then tested using the same framework.

3.4 JUnit

To test the formal correctness (discussed further in Section 4), I used JUnit6, a Java
unit testing framework. This allowed for the creation of an automated test suite in
which known inputs can be fed to the system so that assertions about various aspects
about actual versus expected program output. Feedback is provided in a simple pass
or fail fashion with a detailed error trace when an assertion fails. In this way, we avoid

2http://en.wikipedia.org/wiki/BSD_license
3http://code.google.com/p/treegraft/
4http://java.sun.com/j2se/javadoc/
5http://treegraft.googlecode.com/svn/treegraft/java/doc/index.html
6http://www.junit.org/

7

http://en.wikipedia.org/wiki/BSD_license
http://code.google.com/p/treegraft/
http://java.sun.com/j2se/javadoc/
http://treegraft.googlecode.com/svn/treegraft/java/doc/index.html
http://www.junit.org/


both the time it takes a human to read over testing output, the chance for human error
in comparisons, and the dread of having to spend one’s time reading such outputs. In
practice, this lead me to test my code much more frequently and develop with greater
confidence.

3.5 Speed Considerations

Though a long-term goal of this code base includes time-expensive processes such as
parsing of Tree Adjoining Grammars (TAG’s), Java has still been shown to give rea-
sonable runtimes for intensive NLP tasks including examples such as Marian Olteanu’s
Phramer7, a MT decoder that is reportedly ten times faster than Moses or Pharaoh,
and Joshua8, Johns Hopkins’s Reimplementation of the Hiero decoder.

3.6 Optimizations

In the world of algorithms, computer scientists often focus strongly on the worst-case
or average case complexity of a program while throwing away the constants. However,
in practice, these constants can be the different between 12 hours and 24 hours to get
the results of an experiment. With this in mind, Treegraft makes heavy use of efficient
hashing and efficient equality comparisons. The best example of this is in the handling
of tokens. Rather than doing string comparisons during the parsing process, Treegraft
instead hashes all unique input strings to unique integers so that all comparisons are
fast integer operations.

3.7 Lessons Learned

Initially, I proposed that Treegraft should be written in C for the reason of speed dis-
cussed above. However, after developing a good deal of the project in C, several points
became clear: 1) that the code was becoming very brittle with regard to being exten-
sible during future research explorations and 2) that the large increase in development
time was likely not worth the potential gains in system execution times.
For these reasons, I began developing the project and Java and found that my pro-

ductivity increased by a very large factor. One of the biggest benefits of developing in
Java has little to do with the language itself, but the development tools (e.g. the Eclipse
IDE) available for it (granted, the power of Java development tools comes from the lack
of a C/C++ style pre-processor, which enables tools to do deeper processing). These
tools provide features such as code templates, automatic compilation and error anal-
ysis as-you-type, project-wide code refactoring, jump to method/class definition, and
an integrated in-code-documentation to HTML generator. Also, the ease with which
Java can dynamically link new code at runtime means that testing new research ideas
does not involve long compilation times. Overall, the power of the development tools to

7http://www.phramer.org
8http://www.clsp.jhu.edu/wiki2/Joshua_Lab

8

http://www.phramer.org
http://www.clsp.jhu.edu/wiki2/Joshua_Lab


protect programmers from themselves make the “typical” benefits of the Java language
(cross-platform execution and detailed error messages for exceptions) only a secondary
consideration.

4 Evaluation

The formal correctness of the parser was evaluated using the JUnit testing framework
for the following two scenarios:

4.1 Correctness of Monolingual CFG Source Forest

To test the correctness of Treegraft’s generated source forest (the Chart), I used the
known grammar and gold standard from the NLP Lab’s Chart Parser module9. This
included 21 input sequences including 278 individual assertions for which keys should
have been created.
For each of these inputs, I verified that:

• the correct number of Keys was created for each input

• each Key covered the correct span

• each Key had the correct non-terminal constituent type

4.2 Correctness of Transduction SCFG Target Partial Parses

To test the correctness of Treegraft’s generated partial parses for each Key in the target
forest, I used a subset of the grammar and gold standard from the NLP Lab’s monolin-
gual Chart Parser module. Due to time constraints, I used the first 10 input sequences,
which contain a total of 63 Keys. For each of the source-side Keys (which have a
one-to-one correspondence with target-side Keys, but a one-to-many relationship with
target-side parses), I manually added the expected target-side partial parses including
the expected score at each non-terminal node. Likewise, I augmented the monolingual
grammar into a synchronous grammar by adding target-side constituents and align-
ments. Several potential points of failure were targeted by this SCFG grammar:

• ambiguous source LHS’s for the same source terminal symbol (tests ambiguity
packing)

• ambiguous target RHS’s for the same source terminal symbol / source LHS pair

• insertion of lexical items on the target side

• reordering between the source and target non-terminals
9http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-55/lti/Lab/Modules/NLP-712/chart/
index.html

9

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-55/lti/Lab/Modules/NLP-712/chart/index.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-55/lti/Lab/Modules/NLP-712/chart/index.html


• having a successful source-side parse that fails due to a candidate Key’s target
LHS not matching the target RHS item that is being triggered

• parse trees coming from the same Key having different scores

• the span of each Backpointer Key falling within the span of its parent Key

For each of these inputs, I verified that:

• the correct number of Keys was created for each input

• each Key covered the source correct span

• each Key had the correct source and target non-terminal constituent type

• each Key had the expected number of partial parses

• each partial parse matched the expected partial parse (including both the struc-
ture and its score at each non-terminal)

5 Future Work

5.1 Constraining the Search Space

Given that many research applications of Treegraft might involve very large search
spaces, it follows that we might want to prune parts of this search space that do not
appear to be useful so that the system’s run time can be reduced. One natural solution
to this is to use a traditional beam search, which keeps only the top k entries at each step
in the parsing process based on the scores at that step. For slightly more programming
effort, we could use Liang Huang’s technique of Cube Pruning or Cube Pruning and
achieve even greater speed gains.

5.2 Unification-Based Feature Constraints

Though Treegraft already includes many of the features of the Avenue Transfer En-
gine’s parsing technology, it does not yet include unification-based feature constrains
via peudo-unification. Though these constraints do not provide any additional genera-
tive power, they do allow for rules to be constrained such that they only apply in very
specific circumstances. Linguistic theories such as Lexical Functional Grammar (LFG)
have shown such unification-based feature constraints to capture many grammatical
phenomena across languages. Therefore, it could be beneficial to support their use in
Treegraft in the future.

10



5.3 Tree Substitution Grammars

Tree Substitution Grammar (TSG) is a subset of Tree Adjoining Grammar (TAG)
without the adjunction operation. A Synchronous TSG (STSG) grammar provides us
with strictly more strong generative power (though the weak generative power remains
the same) than SCFG [7] since it provides more tree relations, pairs of source and target
trees[8]. In the area of translation, preliminary results have shown gains using STSG
as a tree-to-string transducer on 1-best source-side parses on a small test set[8].

5.4 Tree Adjoining Grammars

In the future, I would like to explore how Tree Adjoining Grammar can be used as
a transduction mechanism between human languages, specifically in a Regular Form
2-Level TAG (RF-2LTAG) [2, 1]. By using a grammar formalism with strictly greater
strong and weak generative power (in the synchronous case) than many other common
formalisms, the functionality of those formalisms is still available to the grammar writer
(whether it be a human or a machine). Finding an elegant syntax for exposing such
features is yet another matter for follow-up work.
However, building a parser for RF-2LTAG would be non-trivial as it requires the

construction of a meta-grammar[3, 4]. Still, many examples of natural language vi-
olating the iso-morphic constraints imposed by lesser grammar formalisms have been
discussed[5] though alternative methods of grouping tree structures for achieving non-
isomorphism have been proposed[6].

6 Conclusion

In this report, I have presented Treegraft, a stochastic transduction chart parser. Tree-
graft will serve as a research tool and enable future explorations of issues including the
strong generative power of various types of grammars and their suitability of such gram-
mars to applications such as paraphrasing and machine translation. These goals cul-
minated in the creation of software deliverable: a stochastic transduction chart parser.
Efforts were made to ensure that this software was modular enough to allow for the
dramatic and demanding code extensions often required by research.

11



References

[1] David Chiang. Evaluation of Grammar Formalisms for Applications to Natural
Language Processing and Biological Sequence Analysis. PhD thesis, University
of Pennsylvania, 2004. Available from: http://www.isi.edu/~chiang/papers/
thesis.pdf.

[2] David Chiang, William Schuler, and Mark Dras. Some remarks on an exten-
sion of synchronous tag. In International Workshop on Tree Adjoining Grammars
and Related Frameworks (TAG+5), 2000. Available from: http://www.isi.edu/
~chiang/papers/tag+5.pdf.

[3] Mark Dras. A meta-level grammar: Redefining synchronous tag for translation and
paraphrase. In Association For Computational Linguistics, 1999. Available from:
http://www.ics.mq.edu.au/~madras/papers/acl99v2.ps.

[4] Mark Dras, David Chiang, and William Schuler. A multi-level tag approach to
dependency. In Workshop on Linguistic Theory and Grammar Implementation,
2000. Available from: http://www.ics.mq.edu.au/~madras/papers/mltag.ps.

[5] Mark Dras and Chung hye Han. Korean-english mt and s-tag. In International
Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+6), 2002.
Available from: http://www.ics.mq.edu.au/~madras/papers/tag+6.pdf.

[6] Mark Dras and Chung hye Han. Non-contiguous tree parsing. In International
Conference on Theoretical and Methodological Issues in Machine Translation, 2004.
Available from: http://www.ics.mq.edu.au/~madras/papers/tmi04.pdf.

[7] Jason Eisner. Learning non-isomorphic tree mappings for machine translation. In
Association for Computational Linguistics, 2003. Available from: www.aclweb.org/
anthology-new/P/P03/P03-2041.pdf.

[8] Liang Huang, Kevin Knight, and Aravind Joshi. Statistical syntax-directed transla-
tion with extended domain of locality. In Association for Machine Translation in the
Americas, 2006. Available from: www.cis.upenn.edu/~lhuang3/amta06-sdtedl.
pdf.

[9] Alon Lavie, Katharina Probst, Erik Peterson, Stephan Vogel, Lori Levin, Ariadna
Font-Llitjos, and Jaime Carbonell. A trainable transfer-based machine transla-
tion approach for languages with limited resources. In European Association for
Machine Translation, 2002. Available from: http://www.cs.cmu.edu/~alavie/
papers/EAMT-XFER-Apr04.pdf.

12

http://www.isi.edu/~chiang/papers/thesis.pdf
http://www.isi.edu/~chiang/papers/thesis.pdf
http://www.isi.edu/~chiang/papers/tag+5.pdf
http://www.isi.edu/~chiang/papers/tag+5.pdf
http://www.ics.mq.edu.au/~madras/papers/acl99v2.ps
http://www.ics.mq.edu.au/~madras/papers/mltag.ps
http://www.ics.mq.edu.au/~madras/papers/tag+6.pdf
http://www.ics.mq.edu.au/~madras/papers/tmi04.pdf
www.aclweb.org/anthology-new/P/P03/P03-2041.pdf
www.aclweb.org/anthology-new/P/P03/P03-2041.pdf
www.cis.upenn.edu/~lhuang3/amta06-sdtedl.pdf
www.cis.upenn.edu/~lhuang3/amta06-sdtedl.pdf
http://www.cs.cmu.edu/~alavie/papers/EAMT-XFER-Apr04.pdf
http://www.cs.cmu.edu/~alavie/papers/EAMT-XFER-Apr04.pdf

	Problem and Motivation
	Painful Decisions between Grammar Formalisms
	Long-Term vs Short-Term Goals

	Algorithm
	Chart Parsing
	Local Ambiguity Packing
	Scoring
	Transduction
	Packing Target Sides
	Checking Constraints of Transduction Rules
	Transducing into the Target-side Parse Forest


	Software Engineering
	Implementation
	Documentation
	Object Oriented Modules
	JUnit
	Speed Considerations
	Optimizations
	Lessons Learned

	Evaluation
	Correctness of Monolingual CFG Source Forest
	Correctness of Transduction SCFG Target Partial Parses

	Future Work
	Constraining the Search Space
	Unification-Based Feature Constraints
	Tree Substitution Grammars
	Tree Adjoining Grammars

	Conclusion

