REWIND TO TRACK: PARALLELIZED APPRENTICESHIP LEARNING WITH BACKWARD
TRACKLETS

Jiang Liu“%**, Jia Chen®*, De Cheng?, Chengiang Gao', Alexander G. Hauptmann®

! Chongqing Key Laboratory of Signal and Information Processing,
Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2 Carnegie Mellon University, Pittsburgh, PA 15213, USA

ABSTRACT

Data association, which could be categorized into offline ap-
proaches and the online counterparts, is a crucial part of a
multi-object tracker in the tracking-by-detection framework.
On the one hand, classical offline data association methods
exploit all the video data and have high computation cost,
which makes them unscalable to long-term offline video data.
On the other hand, online approaches have much lower com-
putation cost, but they suffer from ID-switches and tracklet
drifting problem when directly applied to offline data as they
are only aware of “past” observations. In this paper, we pro-
pose a mixed style tracker, which is not only as efficient as the
online tracker but also aware of “future” observations in of-
fline setting. We start from a Markov Decision Process (MDP)
online tracker and design a parallelized apprenticeship learn-
ing algorithm to learn both the reward function and transition
policy in MDP. By proposing a rewind to track strategy to
generate backward tracklets, future detections in offline data
are efficiently utilized to obtain a more stable similarity mea-
surement for association. Experiment results show that our
approach achieves the state-of-the-art performance on chal-
lenging datasets.

Index Terms— multi-object tracking, data association,
apprenticeship learning

1. INTRODUCTION

Multiple Object Tracking (MOT) in videos is one of the key
components in multimedia content analysis field and it has
various applications in different scenarios, including activity
recognition, autonomous driving and intelligent surveillance
systems. Most state-of-the-art algorithms[1, 2, 3, 4] pursue
the tracking-by-detection approach as the detector of certain
object such as pedestrian starts to work reliably well. In this
kind of approach, the inputs are the bounding boxes in each
frame and the core problem is called data association that
links bounding boxes among different frames to form trajec-
tories.
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The data association could be further categorized into on-

line and offline styles according to the survey paper[5]:
Online: The online style data association handles the image
sequences in a step-by-step way, i.e., it associates object de-
tections from current frame only with previously obtained
tracklets. Therefore, it is natural for the online style trackers
to handle online style data, in which frames and detections
are inputted in a stream manner. Popular online approaches
usually employ probabilistic inference [6, 7] or determinative
models[8, 9] for association. The efficiency of these methods
leads the online trackers scalable to real-time and long-term
vision tracking tasks, such as autonomous driving.
Offline: The offline style trackers strictly require offline data,
i.e., all frames and detections as inputs. By exploiting obser-
vations from all frames, offline trackers are more robust and
stable. During association, the object detections are usually
represented as nodes in the graph and the edges exhibit po-
tential links among the detections. Hereby, it could be fur-
ther formulated as a maximum flow[10] or minimum cost
problem[11]. The association can usually be solved glob-
ally via Dynamic Programming, in which the time com-
plexity increases exponentially with the number of object
detections[12]. Thus, it is unscalable to directly apply offline
tracker to long-term videos. Other methods[13, 14] seek hier-
archy solution by merging tracklets from divided video clips
to lower the computation cost. However, the association error
in each level of tracklet is also piled hierarchically along with
the merging operation.

Based on the above advantages and disadvantages of on-
line and offline style association, an ideal tracker applicable
to long-term offline videos should be both scalable as an on-
line tracker and stable as an offline one. It is tentative to think
that directly applying online tracker to offline data will work.
Unfortunately, without the clue from future frames, the accu-
mulated tracking error usually results in tracklet drifting and
ID-switches problem. To address the contradiction, we pro-
pose a mixed style tracker by exploiting offline data (future
observations) in an improved online tracker[15]. We name
it as rewind to track, since we utilize the future detections
by generating backward tracklets from rewinding the video.



We then employ an online tracker to track in forward order
and use generated backward tracklets for similarity measure-
ment. Compared with a single detection, a backward tracklet
forming from a series of detections in temporal domain, is
more robust and stable for data association. We view each ob-
ject in the video sequence as an agent following the Markov
Decision Process (MDP) consisting of several states such as
lost and tracked. Different from reinforcement learning in
which policy is learned and the reward function is given, we
are only given the ground truth behavior sequence, i.e., the
ground truth trajectories while neither policy nor reward func-
tion is known. This turns out to be an apprenticeship learn-
ing (AL) problem[16], which could be decomposed to itera-
tively solve reinforcement learning (RL): known reward func-
tion but unknown policy, and inverse reinforcement learning
(IRL): known policy but unknown reward function. That is,
each iteration involves two phases: RL phase and IRL phase.
A typical learning algorithm[16] for AL is designed for
single agent situation. However, in MOT settings, there ex-
ists multiple agents representing different objects. The polling
variant of AL[15] expands typical AL to the multiple scenario
by sequentially polling each object in the learning process.
Specifically, they use the policy learned from the j-th object
o0; in previous RL phase to learn the reward function for the
next object 0,1 in the polling sequence. Their underlying im-
plicit assumption is that behavior sequences of neighboring
objects 0; and 0,41 should be similar. However, the trajecto-
ries of different objects vary a lot as the real world situation
is quite complex. For example, some easy object trajectories
involve no occlusion and appearance change while the diffi-
cult cases suffer from drastic changes. To tackle the issue of
polling variant of AL, we propose a parallel variant of AL. We
parallelize each phase of AL across all objects to get a more
robust and stable update of both the reward function and pol-
icy. In summary, our paper have the following contributions:

e We propose a mixed style tracker, which works effi-
ciently as an online tracker while also as robust as an
offline tracker.

e By rewinding the video sequence, we utilize backward
tracklets in similarity measurement for association.

e A parallel variant of apprenticeship learning algorithm
is proposed to efficiently learn both the reward function
and policy for MDP.

e Experiment results reveal that our method achieves the
state-of-the-art performance on challenging datasets.

2. PROBLEM FORMULATION

2.1. Mixed style tracker

We give the formulation of our mixed style tracker consider-
ing the data feed and tracklet expanding strategy. As shown
in Fig.1, given the observations (the dots) of all frames in an
offline video, the mixed style tracker follows the way of an

online tracker to gradually extend existing trajectories (rep-
resented by colored dots linked with solid line) with current
detections (hollowed dots) frame by frame. With formulated

after data association

during data association

Fig. 1. The data association process of a mixed style tracker.

tracklets in frame ¢, the tracker needs to determine which de-
tection in frame ¢ + 1 to associate for each tracklet. An online
tracker directly compares tracklet and individual detections
in ¢t + 1 frame to obtain the result. While our mixed style
framework also takes cues from observations after frame ¢ 41
to construct similar detection groups (dots linked by dashed
line). For a particular detection in frame ¢ 4 1, its correspond-
ing offline detection group is utilized for similarity measure-
ment during association. Later, after similarity comparison,
only the detections in frame ¢ 4+ 1 are merged into the trajec-
tories.

The advantages of our mixed style tracker lie in three as-
pects. Firstly, since the final trajectories are still formulated in
an online manner, the efficiency and scalability is preserved.
Secondly, rather than merging tracklets globally as used in
hierarchy offline solutions, the offline data is only used for
similarity measurement between a particular detection and a
tracklet. Therefore, the stability for data association is im-
proved, since we utilize multiple detections in time domain
to measure the similarity. Last but not least, the error asso-
ciation would not be accumulated hierarchically. The mixed
style tracker could correct it when associating detection in fol-
lowing frames.

2.2. Multi-object tracking based on MDP

In our mixed style tracker, the lifetime of each object is mod-
eled by a finite Markov Decision Process (MDP) which con-
sists of four components (s, a, 7w, R(s,a)). s € S: the states of
each object at a particular time, representing the finite statuses
of an ojbect determined by its previous trajectory. a € A: ac-
tion taken to transfer the state of a object. The policy 7, de-
fines a mapping from state space S to action space A by max-
imize the reward function R(s,a). Specifically, as shown in
Fig.2, an object is categorized into four states in each frame:
active: A newly detected object is initialized as active. Then
it enters into inactive or tracked based on whether it is a valid
detection.

tracked: An object could keep tracked, if and only if its his-
toric tracklet could be extended to current frame. Otherwise it
would be transfered to the lost via aq4.

lost: When an object is lost, it chooses its next state with three



options:1) via as: transits back to tracked by associating it-
self with detections in current frame; 2) via ag: keeps the
lost state; 3)via ay: transfers to inactive state when lost for
a long time. Since other objects in lost also need to be evalu-
ated when making this decision, policy in this state is actually
equivalent to data association.

inactive: An invalid or permanently lost object enters into the
state.

object detections

Fig. 2. The MDP state map for mixed style tracker.

Object in each state could be represented by a feature vec-
tor ¢(s). The reward function is a linear mapping of the fea-
ture: R(s,a) = w - ¢(s). In MOT setting, the ¢ could be a
vector which encodes the appearance and motion information
of an object. The expected value V™ (s;,) of a transition pol-
icy m(s) — a at time {¢ is evaluated by its afterwards reward
expectation:

E[VT™(s1,)] = w - () 0))
() = E[X52, v o (s0)|x], )

where v is a discount factor with 0 < v < 1. Nonethe-
less, in our mixed style tracker, both the policy 7 and re-
ward function parameter w is unknown, while only ground
truth trajectories are provided in the training set. In other
words, we are given the expert’s behavior sequence of each
object: D = {s¢,,at,, Sty, Gty, - - -, St , G, }. We need to find
an optimal reward function R(& a) and policy 7 which best
approximates the expected policy value E[V7(s;,)] to the
ground truth E*[V ™ (s;,)] at each time ¢;. Compared to rein-
forcement learning (RL) and inverse reinforcement learning
(IRL) where either reward function or policy is known, our
problem belongs to apprenticeship learning (AL) [16].

3. SOLUTION

In this section, we first describe our method utilizing offline
data by generating backward tracklets, named as rewind to
track. Then a parallel variant of AL is introduced to learn the
reward functions and policies in MDP. Feature representation
and implementation details are provided in Section 3.3, 3.4.

3.1. Future tracklet generation via rewinding

In order to obtain the similar observation groups in Fig 1, we
rewind the video sequence to generate “future” tracklets via
time efficient tracking algorithms. Such tracklets are actually
backward tracklets, which are complementary to the forward
ones. The association error usually happens when occlusion
occurring among similar detections belong to different object
in a single frame. However, when we tracking from backward,
the occlusion problem may be resolved since two targets usu-
ally do not occlude each other to an exact same ending frame.
Thus, some occlusions are easier to handle in one direction
than the other. Then we starts our mixed style tracker in for-
ward order from the first frame. We use a linear mapping func-
tion to measure the similarity between a tracklet and a single
object detection. The similarity of the i-th object of and the
k-th detection in the ¢-th frame is defined as follows:

sim(of, dy) = St_qwT ¢(ol, d?) + b, 3)

where di’q are sampled detections in frame ¢ 4 ¢ on the back-
ward tracklet that dj, belongs to. In other words, instead of cal-
culating the similarity purely based on an individual tracklet-
detection pair (of,d}), we utilize ¢’ additional object detec-
tions on the backward tracklet of d}, for measurement. Then
the sum along all tracklet-detection pairs’ similarity is em-
ployed for mixed style association.

3.2. Parallel apprenticeship learning for MDP tracker

The apprenticeship learning algorithm designed for a single
agent[16] begins by randomly picking up a policy 7(?) and
computing the related feature expectation u(ﬂ'(o)). Then the
parameters w(®) of reward function and the optimal policy
7(P) are iteratively learned until convergence, where p is the
index of iteration.

However, there are more than one expert behavior se-
quence D defining the ground truth trajectory for each ob-
jectin MOT task. a polling variant of AL[15] is employed by
conducting iterative AL algorithm for each individual object
sequentially. To be specific, the estimated reward function is
updated from a particular object o; independently at one time.
Later the new policy 7(P) is recomputed and applied to the
next object 0;1 in the polling sequence in order to obtain its
feature expectation /i (7(P)). Assuming that a specific train-
ing video sequence has K frames and N ground truth object
to track, the video must be processed IV times for each object
in one iteration. The tracklet features need to be calculated
for N x K times as well, resulting in high computation cost.
In addition, since the expert’s behavior for each object are
learned via polling, the updated reward function and policy
from o; may not be generalizable to 0;41. Therefore, if the
behavior of neighboring objects fluctuates a lot, it is very dif-
ficult for the polling algorithm to converge to a good solution.

We propose a parallel variant of AL to address the above
issues by simultaneously considering all agents’ behavior. We



minimize the sum of the differences between estimated fea-
ture expectation j; and the expert’s counterpart pz ; as fol-
lowing:

w'P) = argmax min Zj—V:le(uj(w(p_l)) — p ; (®DY)

4)

®) — Al !
7P = argﬂmaxzjﬁE[Vj (s¢)] R (s,a)=w(®)-¢(s) ®
W, ) = gy (r @), ©

The optimization for w(?) in Eq.4 is actually equivalent to find
the maximum margin hyperplane to separate the set of points
from expert’s expectation and that of k objects simultane-
ously. This could be obtained via the solver for SVM classifier
efficiently. By employing our parallel apprenticeship learning
algorithm, a batch of features expectation from different ob-
jects are utilized when optimizing for w®). Besides, the video
only needs to be processed once since the optimal policy 7(?)
is also obtained by maximizing the sum of value expectation
of all agents in Eq.5.

We start from the lost state to explain the detailed imple-
mentation of our parallelized AL algorithm. Denote the j-th
specific object in i-th video sequence as o; ;. It enters the ¢-th
frame in lost state with a historic tracklet of ;. Assuming dj, is
the k-th object detection in this frame. The policy in lost state
should predict a binary label y of the tracklet-detection pair
(0f ;,d},) to determine whether they should be linked (with
y = +1, a5 is taken) or not (with y = —1, ag is taken). There-
fore, we could define reward function in lost state Ry,.(s,a)
as following:

(wlq;st¢(0§,j7 dy) + blost) ;
@)

R,y = (@) |, 2,

where V; is the number of detections in the ¢-th frame.

During the p-th iteration of the training for the lost state
policy, a ground truth tracklet-detection pair (of ;,d}) is
added to the training batch S as a positive sample when the
previous policy m®~1) misses the association. On the other
hand, a negative training sample is added to .S when 027 jiser-
roneously linked to a wrong detection df,. Via rewind to track
strategy, ¢’ extra tracklet-detection couples from the afterward
t+1to t + ¢’ frames are also added to S. Finally, our detailed
parallelized learning algorithm for /ost state data association
is illustrated in Algorithm 1. For each object in the training
sequence, we initialize it at the last frame it fails with policy
7(P=1)_ An object is kept in tracked as long as its Forward-
Backward (FB) error is smaller than a threshold according to
the TLD tracker assumption used in [15]. Otherwise, the ob-
ject is transited to lost. When an object is lost for a constant
frames, the policy will transit it to inactive. The updating is
conduced when all objects fail in tracking or the sequence is
processed to the last frame.

Algorithm 1 Parallelized apprenticeship learning for lost state with
backward tracklets utilization.

Input: Video sequences V = {v; }_,, ground truth trajectories O; = {o;,; };\;71
’
and object detections D; = {d; jY:il;
Output: reward function parameters (w;ost,b105¢) for lost status data association;
1: Initialization of reward function: w? _, < wo, b2 ., < by, S + 0
2: Initialization for each target o;, ; in each v;: set MDP of o; ; in tracked after
tstart(%,J) < index of the first frame where o;,; correctly detected

3:p+0

4: repeat

5 p—p+1

6: for each video v; in V do

7 t+ 1

8 while ¢ < last frame of v; do

9 for target o0; ; in v; which ts¢are (¢, 5) > t do

10: Follow policy 7P 1, compute 7 ; as Eq.6, choose action a
11: Compute ground truth action: a gy

12: if state is lost and a # a4+ then

13: S SU{(of ;. dL), ux}

14: S« Su{¢(o! ; dpD)surk, 1< g <t
15: Save failure position: ts¢qrt (2, ) < ¢

16: else

17: State transfer: Execute action a

18: end if

19: If all targets failed then break;

20: end for

21: end while

22: end for

23: Obtain new reward function parameters (w? st bfos .): solve Eq.4 with S

24: Obtain new policy ?: solve Eq.5 with (

h Wiostr Ylost
25: until all targets are successfully tracked.

3.3. Feature representation

In addition to encode the low-level features including FB er-
ror, distance, overlap, etc. In qb(o’g,j, dt) as used by [15], we
also employ person re-identification (ReID) features[17] as
high-level appearance representation. The motivation is that
finding the optimal detection to link is similar to retrieve the
nearest correspondence in the detection gallery with historic
tracklet as input. Since the RelD feature is designed to dis-
criminate person from different camera views, it is intrinsi-
cally robust to occlusion, pose and illumination changes hap-
pened in tracking videos. Our 256D RelD features are ex-
tracted from the fully connected layer of the domain guided
dropout CNN network[18]. Then the cosine similarity is em-
ployed to measure the correlation between the appearance
of trajectory of ; and the detection dj.. The policy for active
state is learned on the training set with ground truth bounding
boxes via a linear SVM classifier. The 2D positions, width,
height and detection scores are normalized as a 5D feature.

3.4. Implementation details

In each MDP process training iteration for the reward param-
eters w(®), we down sample the positive samples with a ratio
of 0.5, so that the numbers of positive and negative samples
are balanced. The number of detections from backward track-

IThe full list of low-level features is: FB error, Normalized Correla-
tion Coefficients (NCC), height ratio, overlap between predicted and actual
bounding box, normalized detection score, distance between object and de-
tection.



lets utilized in rewind to track t’ is 10 for both training and
test stages. In the test stage, rewind to track firstly uses an
online MDP tracker to generate backward tracklets. Then our
mixed style tracker is established for each object following
the learned policy. The number of templates used in the TLD
model is empirically set at 10 for all targets. A new associated
bounding box is added to the template when the object returns
to tracked from the lost state. The similarity measurement be-
tween tracklet and detection is calculated via Eq.3. Later, the
Hungarian algorithm is used for data association among lost
state objects and detections in each frame.

4. EXPERIMENTS

4.1. Experiment setup

Our mixed style tracker with parallelized AL algorithm is
assessed on Multiple Object Tracking (MOT) Challenge
2015[19]. It provides a large collection of datasets in the
multi-object tracking community with a common evaluation
metric for performance comparison. Both of the training set
and the test set contains 11 sequences. Since there is a time
limitation to submit results of test set to the online evaluation
protocol. We also follow the splitting strategy used in [15] to
separate a validation set including 6 sequences to evaluate the
impact of each component in our mixed style tracker. For all
evaluations, we employ the provided object detections from
the aggregated channel features (ACF) detector. The CLEAR

Table 1. Evaluation results on the 6 validation sequences of
MOT Challenge 2015 dataset.

Dataset Method MOTA| MOTP| MT| PT | ML| IDS
OnlineMDP[15] | 5153 | 7202 | 1 | 7 | 0 | 13

AL-poll-ReID 5492 | 7268 | 3 | 5| 0| 6

TUD-Campus | AL-parallel-online | 5571 | 7236 | 3 | 4 | 1 | 11
AL-parallel-mixed 57.61 | 71.55 3 5 0 5

OnlineMDP[15] | 3579 | 77.38 | 5 | 13 | 12 | 59

AL-poll-ReID 4769 | 7667 | 8 | 12 | 10 | 33

ETH-Sunnyday | AT parallel-online | 49.09 | 7634 | 5 | 13 | 13 | 17
AL-parallel-mixed | 51.08 | 76.67 8 12 10 16
OnlineMDP[15] | 9.13 | 7198 | 2 | 24 | 107| 80

AL-poll-ReID 1134 | 7126 | 4 | 31 | 98 | 79

ETH-Pedcross2| - AL -parallel-online | 1222 | 7152 | 3 | 23 | 107| 67
AL-parallel-mixed | 13.40 | 7251 | 5 | 30 | 97 | 64
OnlineMDP[15] | 1949 | 7274 | 6 | 13 | 9 | 28

AL-poll-RelD 1482 7258 | 5 | 14| 9 | 44

ADL-Rundle-8 | A1 parallel-online | 15.18 | 7208 | 6 | 14 | 8 | 114
AL-parallel-mixed 16.03 | 72.75 6 13 9 42
OnlineMDP[15] | 3221 | 7415 | 6 | 15 | 5 | 30

) AL-poll-ReID 317 | 7459 | 4 | 17 | 5 | 38
Venice-2 AL-parallel-online | 33.19 | 7406 | 6 | 14 | 6 | 40
AL-parallel-mixed | 34.90 | 7439 | 7 | 15 | 4 | 37
OnlineMDP[15] | 6223 | 7200 | 1 | 8 | 0 | 2

AL-poll-ReID 6287 | 7167 | 1 | 8 | 0 | 3

KITTI-17 AL-parallel-online | 6291 | 7178 | 1 | 8 | o | 3
AL-parallel-mixed 63.91 | 72.78 2 6 0 1

MOT metric is used to evaluate the performance, includ-
ing Multiple Object Tracking Accuracy (MOTA), measur-
ing the tracker performance; Multiple Object Tracking Pre-
cision (MOTP), measuring the object detection performance;

Mostly Tracked trajectories (MT), trajectories which are Par-
tially Tracked (PT), Mostly Lost trajectories (ML); number of
ID Switches (IDS).

4.2. Contribution of each component

We evaluate the contribution from each component of our
mixed style tracker to the tracking performance separately on
the validation set in Table 1:

OnlineMDP: original online MDP-based tracker trained via
polling variant of AL[15].

AL-poll-ReID: adding person RelD feature to OnlineMDP.
AL-parallel-online: replacing the poll variant of AL by par-
allel variant of AL in AL-poll-ReID.

AL-parallel-mixed: replacing the online style tracker with our
mixed counterpart.

Comparing AL-poll-ReID to OnlineMDP, we see that us-
ing person RelD features could improve the general tracking
performance (MOTA) on most sequences. Parallel variant of
AL (AL-parallel-online) does help to learn a better solution
compared to the polling variant of AL (AL-poll-ReID) and
improves the performance by 0.91%. Our full model, AL-
parallel-mixed, achieves the best performance on almost all
datasets with more tracked objects (MT, PT) and much fewer
ID-switches (IDS). This implies that employing backward
tracklets during data association could significant improve the
tracking stability. We also compare the convergence speed be-

Ratio of successfully tracked targets in each iteration
(polling variant of AL vs. parallel variant of AL)

=o-polling variant of AL parallel variant of AL
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Fig. 3. Ratio of objects successfully tracked in each iteration
on the ADL-Rundle-8 dataset.

tween AL-parallel-mixed with AL-poll-ReID. It is measured
by the ratio of successfully tracked targets. The comparison
between polling variant of AL and our parallelized version is
shown in Fig.3. Trained via parallel variant of AL, our tracker
could converge much faster than the polling version: in the
13-th of iteration, we have successfully tracked 100% of the
training targets, whereas the polling one needs 39 iterations.

4.3. Evaluation results on test set

We report the performance of our mixed style tracker on the
MOT Challenge 2015 test set in Table 2. The training se-



quences are selected according to their names for each test
sequence respectively. We compare our approach with both
offline methods[1, 2, 3] and the online counterparts[15, 4].
From Table 2, we could see that our framework improves sig-
nificantly over other methods on all metrics except MOTP.
The tracking precision (MOTA) outperforms the second best
with 2.3%. The IDS number is merely 580, which is also sig-
nificant lower than the others. We also obtains the most par-
tially tracked trajectories (16.00%) and the least lost trajecto-
ries (34.40%) on the test set. On the other hand, our tracking
precision (MOTP) representing the object detection perfor-
mance is a little bit lower than those of others (0.2% lower
than the best). This implies a few of the objects are misclassi-
fied to the inactive state.

Table 2. Evaluation results on MOT Challenge 2015 test set.

Method MOTA | MOTP| MT(%) PT(%)] ML(%) IDS
LP2D[1] 19.80 | 7120 | 6.70% | 52.10%| 41.20%| 1649
MotiCon[20] 2310 | 7090 | 10.40%| 48.30%| 41.30%| 1018
LINF1[2] 2450 | 7130 | 5.50% | 29.90%| 64.60%| 744
LP_SSVMI[3] 2520 | 7170 | 5.80% | 41.20%| 53.00%| 646
SCEA[4] 29.10 | 71.10 | 8.90% | 43.80%| 47.30%| 604
OnlineMDP[15] | 3030 | 71.50 | 13.00%| 48.60%| 38.40%| 690

AL-parallel-mixed | 32.60 | 7130 | 16.00%| 49.60%| 34.40%| 580

5. CONCLUSION

In this paper, we propose a mixed style tracker that incorpo-
rates “future” observations in a mixed style tracker to pro-
cess offline data. It not only retains the efficiency of online
tracker but also achieves robustness of offline tracker by uti-
lizing more observations. We model multiple object tracking
by viewing each object as an agent following the Markov
Decision Process. In order to effectively utilize offline data,
backward tracklets are generated by rewinding the video se-
quence. A parallelized apprenticeship learning algorithm is
proposed to efficiently learn both reward function and policy
for state transition. Furthermore, the person RelD features ex-
tracted from deep neural networks are used for appearance
measurement so that the robustness to occlusion and pose
change is improved. We evaluate our tracker on a challeng-
ing MOT benchmark and experiment results exhibit that our
framework outperforms the state-of-the-art methods signifi-
cantly.
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