Simulink Libraries for Visual Programming of
VTK and ITK

Release 1.0

D. G. Gobbil, P. Mousavil, K. M. Lit, J. Xiangl, A. Campigottol, A. LaPointel,
G. Fichtinger1 and P. Abolmaesumil-2

July 21, 2008

1School of Computing, Queen’s University, Kingston, Orda@anada
2Department of Electrical and Computer Engineering, Quedmiversity, Kingston, Ontario, Canada
email:dgobbi@cs.queensu.ca, purang@cs.queensu.ca

Abstract

We have created open-source Simulink block libraries fa¢ Bhd VTK that allow pipelines for
these toolkits to be built in a visual, drag-and-drop styl¢éhinm MATLAB. Each block contains an
instance of an ITK or VTK class. Any block connections andapaeters that the user makes within
MATLAB's Simulink visual environment are converted intoratections and parameters for the ITK and
VTK pipelines. In addition, we provide conversion of imagesand from MATLAB arrays to allow
MATLAB image processing blocks to be mixed with ITK and VTKocks. The code for our block
libraries is generated automatically from XML descripsaf the inputs, outputs, and parameters of the
ITK and VTK classes. We have used these block libraries tlllsaime example pipelines and believe
that they will be useful for developing applications in ineagnalysis and image-guided therapy.

Contents

1 Introduction 2

2 Architecture 2
2.1 SimITK Architecture e e e 3
2.2 SImVTKArchitecture e 4
2.3 Code Generation. e e e e e e e 6

3 Results 7

4 Discussion and Conclusion 7

5 Acknowledgements 8

1 Introduction

Both the Insight Toolkit (ITK) and the Visualization TootKiVTK) have established themselves as invalu-
able software packages for image analysis, visualizatind,image-guided surgery applicatiod§ [[5]. Al-
though these packages are often used directly as C++ Bigrdrigher-level interfaces can be useful where
the toolkit user either lacks knowledge of C++, or requireaae rapid development schedule than C++
allows. Such high-level interfaces come in three varietiesst, scripting languages such as Python and
Tcl have been interfaced to the toolkits in order to simplifg programming§]. Second, general purpose
open-source applications have been written that provides@iat expose either a broad range of the toolk-
its’ functionality, such as SliceB], or a range of functionality that pertains a certain tasikjsas ITK-SNAP
[12]. Third, visual programming environments are availablevhich the toolkit classes are represented as
graphical “blocks” that can be connected with the mouse. l&tier category includes MeVisLal][and
SciRun [LQ], which are reviewed in detail by Bittest al.[2], as well as ITKBoardT] and XIP [11]. Itis to

this category that our contributions, which we call SImITide5imVTK, belong.

Our choice was to use MATLA@ (MathWorks, Natick, MA, USA) as our platform, due to its ubity and
its capacity to provide a broad range of computational fonetity complementary to ITK and VTK. The
ability to utilize ITK from MATLAB has been demonstrated ime MATITK package of Chu and Hamarneh
[3], which provides a large collection of ITK filters as MATLABufictions. SimITK and SIimVTK, in
contrast, provide the ability to use ITK and VTK within MATLBs powerful Simulink visual programming
environment. With Simulink, the algorithmic component ¢ddks can be written in either MATLAB or
C/C++, which are the most commonly used computer languamesmfige analysis. We have the following
design requirements for our software:

1. It must be possible to mix SImITK, SImVTK, and other Sinmiliblocks in a pipeline.
2. It must be possible to set the ITK and VTK parameters fromulink.
3. The SimVTK and SimITK blocks must be automatically getextdrom XML.

4. The full package must be open source, apart from MATLAB &mdulink themselves.

We have collected our blocks into libraries, where eaclalypconsists of the loadable modules (i.e. DLLS)
that contain the code for each block, plus a text-based .fedhfit specifies how the blocks will be displayed
within Simulink. The block code and the .mdl files are geredrom XML descriptions of the inputs,
outputs, and parameters for each ITK and VTK class (FidlreSince the ITK classes are templated over
data type and dimensionality, several SImITK libraries@eated, each of which is dimension-specific and
type-specific. When these block libraries are loaded intofM#B, the user can drag-and-drop the blocks
into a Simulink model to create his or her desired procesgipgline. If a block is double-clicked with the
mouse, a dialog box appears that allows any parametersdamitierlying ITK or VTK object to be set.

2 Architecture

The way in which blocks are created for Simulink is througbdfitalled “S-functions,” which can either be
MATLAB code or loadable modules (i.e. DLLs) compiled from €@++, that implement a set of callback
functions that Simulink uses to execute the code in the blgdthough both ITK and VTK utilize pipeline
architectures with many similarities, there are two fundatal differences between these two toolkits which
made us choose to utilize a different S-function architecfar each. First, only ITK filters are templated

2.1 SimITK Architecture 3

<Filter>
<Filter_Name>BinaryThresholdimageFilter</Filter_Name>
<Template_Parameters>2</Template_Parameters>
<Filter_Inputs>

il Library: SimITKLibraryFL2
File Edit Wew Format Help

~ b L <Input>
D = n % ‘% - = H @ DE <Input_Name>Input</Input_Name>
M <Input_Type>InputPixelType</Input_Type>
</Input>
infa info </Filter_Inputs>
<Filter_Parameters>
data data <Parameter>

<Parameter_Name>InsideValue</Parameter_Name>
<Parameter_Type>OutputPixelType</Parameter_Type>
<Parameter_Size>1,1</Parameter_Size>

</Parameter>
Dbl
<Parameter_Name>LowerThreshold</Parameter_Name>

itkReaderFL2 itiriterF L2

ithHodeContainerFL2 itkLinearinterpolatelmageFunctionFL2 <Parameter_Type>InputPixelType</Parameter_Type>
<Parameter_Size>1,1</Parameter_Size>
</Parameter>
. . . . <Parameter>
info info info info <Parameter_Name>OutsideValue</Parameter_Name>
<Parameter_Type>OutputPixelType</Parameter_Type>
data data data data <Parameter_Size>1,1</Parameter_Size>
itBinanyThresholdimageFilterF L2 iteBinomialBlulmageFilterF L2 :’Ff’;:‘r;”eelt::
<Parameter_Name>UpperThreshold</Parameter_Name>
" - e <Parameter_Type>InputPixelType</Parameter_Type>
info infa dat infa <Parameter_Size>1,1</Parameter_Size>
; :f: </Parameter>
data data data </Filter_Parameters>
data <Filter_Outputs>
itCannyEdgebetectionimageFilterFL2 iy annySegmentationLevelSetimageFilterF L2 <Output>
<Output_Name>Output</Output_Name>
. <Output_Type>OutputPixelType</Output_Type>
>|'“f° e >|info info I; v </Output>
Ready 100%: Unlocked <_/Fi\ter70utputs>
</Filter>

Figure 1: A library of SimITK filter blocks, and the XML desption used to generate one of the blocks.
The suffix FL2 indicates the type and dimensionality: thisdry is for operations on floating-point, two-
dimensional images.

over data type and dimensionality, and second, ITK parasmete usually class-specific defined types, e.g.
itk::AnisotropicDiffusionFunction::Radius, while VTKgrameters are fundamental C types such as float,
int, or arrays. As a result, the architecture for SimITK nsiicantly more complex than for SimVTK.

2.1 SimlITK Architecture

In SimITK, data is transferred between blocks via two cotioes, each of which carries a MATLAB array.
The first connection carries information about the image (pixel origin and spacing), while the second
connection carries the image data itself. The central feaitithe SimITK architecture are “VirtualBlock”
helper classes that receive the contents of the MATLAB atrayd convert those contents to the ITK-
specific types used by the ITK filters (see Fig@je By placing this conversion in a helper class, we keep
the S-function source code more clean and understandable.

The way in which the S-function utilizes a VirtualBlock tors@rt MATLAB arrays to ITK data types is as
follows. First, the S-function reads the image origin andcépg from the “information” connections and
sets it in the VirtualPorts. Next, the MATLAB arrays thatgathe image data are retrieved from each input
and output connection, and the memory address of their ofsnie set in the corresponding VirtualPort.
Then, inside of the VirtualBlock, itkimage objects are ¢teeband given these memory addresses to use as
their own storage space, so that the memory is shared betMAEhAB and ITK and no data copying is
necessary. After this, Simulink reads the parameter vahsgsvere set by the user, and sets the parameter
variables in the VirtualBlock to the same values. Finalg Run() method of the VirtualBlock is executed,
causing the ITK filter to process the data.

2.2 SimVTK Architecture 4

Internal Structure of a VirtualBlock

Input _
Spacing & Origin . Conversion itk
pacing & Origin (VirtualPort | — itkimage
Data
Conversion
Parameters .
——>| Parameter Run ITK Image Filter
—_ !
—p Variables
i Output
Conversion . 9
itkimage ——— VirtualPort | Spacing & Origin
Data

Figure 2: Internal structure of a VirtualBlock. The primasyrpose of the block is to convert between
the standard C data types used by Simulink, and the spedakyzes used by ITK. No ITK-specific data
structures are exposed to Simulink.

Certain ITK filter parameters are special ITK types that riedak treated differently from other parameters.
An example is the NodeContainer type that is used in leveseginentation algorithms to store the values
and positions of seed points. In SimITK, we handle the Node&oer by including it in the library as a
separate block. This block takes MATLAB arrays containing hode values and positions as parameters,
and produces a “self” reference (i.e. a pointer) as outptt¢hn be passed as an input to a SimITK filter
block. These NodeContainer blocks are generated by thespepits directly and do not utilize an XML
description. We have created Transform and Interpolatmeks| with a similar approach, and will continue
to add support for more special blocks.

Since we do not yet have support for all the special typesatgatequired to build a component-wise image
registration pipeline in SImITK, we use the ITK Image Regidbn Helper classes of Aylwaret al. [1]
instead. Whereas image registration in ITK typically regsiseveral C++ objects to be connected together
(an ImageTolmageMetric object, a Transform object, an@iggr object, and an Interpolator object), their
ImageRegistrationHelperClass encapsulates all of thedeva provide it as a SimITK block.

2.2 SimVTK Architecture

In SIMVTK, data is passed between blocks by reference, andtisonverted into MATLAB arrays as for
SimITK. This allows a uniform approach to all varieties of K fata sets, including images, polydata, and
the various grid formats. The tradeoff to using this appnoecthat transferring data from SimVTK to
MATLAB arrays, or vice versa, requires the use of specialarhjand export blocks at either end of the
VTK pipeline. We currently provide such blocks for imagealbtit not yet for other data types.

The way in which data is passed by reference, is that the groiatthe vtkObject containing the data is
stored in a X1 MATLAB array that is passed between blocks. When Simulimst these pointers are used
by the S-functions to connect the VTK pipeline such that actly mirrors the connections between the
SimVTK blocks, and any necessary type checking is done vil’¥Tun-time type information methods.

While the only way that parameters can be set for SimITK isubh the block dialog boxes, for SImVTK it
is also possible to set parameters via input connectiorgetblocks. This provides a great deal of flexibility
in constructing pipelines. The manner in which a particglarameter is handled depends on the names
of the interface methods for that parameter as they appahei€++ header file for the VTK class. The

2.2 SimVTK Architecture 5

Ozdsa el - 1L S W inf Marmal hud @

¥

B—. Center Output ——s Input Self Mapper Self M Visualization Toolkit - Win320... @@
Sine Wave —‘

wikConeSource vtk ataSethapper wlichctor
LAc{or .
Self—pe{Rend Self | Renderiind
Actor
wikRenderer AR
Output — Input Self — Mapper SelfJ
it kD 1 whchetort

Running [100% [] T=4022,800 [Fixedstepnd

Figure 3: A SimVTK model that connects a cone to a sinusoidcgu/Nhen the model runs, the sinusoid
source generates a vector signal that varies between [-ai0dJH1 0 0], causing the cone to oscillate back
and forth and hit the target sphere.

following rules apply for SImVTK, we intend to develop a slariset of rules for SImITK:

“Set” and “Get” methods with scalar and array parameters, e.g. SetPoint(double p[3]). The dialog
box allows the user to select from four options for the patemeds Parameter:use an entry box
to set the parametefs Input: add a block input to set this paramet&sg Output:add a block output
to get this parametel)se Default:don’t call either method, use the default parameter value.

“Set” and “Get” methods with object parameters, e.g. SetMapper(vtkMapper *). For each Set method
and Get method there is a checkbox for adding an input, oubuipthe block.

“Add” methods with an object parameter, e.g. AddActor(vtkActor *). The dialog has an entry box to
select how many inputs the block should have corresponditigis method.

Outputs for algorithms, e.g. GetOutputPort(). All algorithm outputs are includedbock outputs.

Inputs for algorithms, e.g. SetlnputConnection(). All mandatory algorithm irgoate included as block
inputs. We will also add a checkbox for each optional inpnt an entry box to select the number of
inputs for each repeatable input. The latter will supportikagutConnection() methods.

“Self” as an output. All blocks have a checkbox to select whether the object poiitself should be in-
cluded as a block output, so that it can be used as an inpubtbexrblock.

While Simulink is running the pipeline, all RenderWindowsdeRenderWindowInteractors are re-rendered
at each time step, so that user interactions with the Rendeddly behave as usual. Furthermore, if the val-
ues change for any inputs change while Simulink is runnimgn tthe result of the change will be displayed
when the next render occurs.

2.3 Code Generation 6

File Edt Wiew Simulation Format Tools Help

M Visualization Toolkit - ... E@g|

O es:EHS = » inf Harmal -
infa o info info pinfo
Dutput
data o data data {data
ikReaderF L2 ithCannyEdgelbetectionlmageFiltaFL2 el TKImagelmport

Output

b i

Input

Llnput
-
-

LookupTable

Self

vikimagemMapToColors wiklmageWiewer

wlkiLookupTable

Ready 100% FixedStepDiscrete

Figure 4: A Simulink model that combines ITK and VTK. This glime performs ITK Canny edge detec-
tion, applies a greyscale lookup table, and displays thdtredth vtkimageViewer.

=1 Function Block Parameters: itkCannyEdgeDetect... g| =] Function Block Parameters: vtkimageMapToColors E|

S-Function [maszk] [link] S-Function [mazk] [link]
Farameters Parameters
LowerT hreshold LookupT able az Input
10 ActiveComponent Parameter|Use Default
Wiy MurnberDfThreads Parameter|Use Default w
[0.01 0.01]
Outsidevalue OutputFormat Parameter | Az Parameter -
il OutputFormat Yalue
0

UpperT hreshold
a0 PazstlphaT o0utput Parameter| Use Default v
Vanance] Self as Output
[0.10.1]

I oK l [LCancel] [Help] Apply I oK l [LCancel] [Help] Apply

Figure 5: ITK and VTK parameter dialog boxes. In the VTK d@lbox (right), the checkboxes and
selection boxes indicate parameters that are to appeap@s ior outputs of the block.

2.3 Code Generation

For both VTK and ITK, we have developed a straightforward XN#escription of the classes that provides
the following necessary information:

e the class name

inputs and outputs of the class

image data types and dimensionalities that are supportéddily)

names of all parameters

the parameter size, for vector and matrix parameters

the parameter type, and if it is a typedef, the C equivalent

These XML files are processed by a perl script which genethte$ollowing: 1) the C/C++ source code
for the Simulink S-function that will call VTK or ITK from thélocks, and 2) the Simulink library files that
describe a suitable graphical user interface for each bleckthe ITK filters, several blocks are generated
from each XML description since ITK objects are template@rodata type and dimensionality. Certain
special VTK and ITK classes such as vtkITKImagelmport,ntkgeFileReader/Writer and itkLevelSetNode
do not utilize XML descriptions and are instead generateectly by the perl script. The entire process of
generating the code and compiling the libraries is driverCbjake P]. Our ultimate goal is to generate
the libraries from the information in the ITK and VTK C++ headiles, with the XML descriptions as only
an intermediate step. For ITK, we have investigated Wrap|8kand intend to filter its gccxml output to
create our own XML. For VTK, we have written an XML generat@sbd on the parser for VTK-Python,
and we have fully automated SimVTK generation with a CMaki&dtacript.

3 Results

We have built and tested our libraries under MATLAB versi@@97a and 2008a, with Visual Studio 2005
as the compiler on Windows XP, and gcc 3.4 as the compiler nux.and Linux64 (Ubuntu 6.06 and 8.04).
ITK 3.6 and VTK 5.2 were used, as these were the latest versigailable at the time.

The SimVTK model shown in Figur@ demonstrates a simple VTK pipeline that includes a Simuledtor
input (in this case, a Sine source) that is used for animatiod a vtkRenderWindowlnteractor block that
allows user interaction with the 3D scene. Such a pipelimmiexample of how SimVTK could be utilized
for image-guided surgery, given a Simulink block that ifgees to a surgical tracking system to provide
position and rotation information. We have also built pipes that combine ITK and VTK blocks, for
instance Figurel demonstrates the use of ITK to read and process an imagesttian sent to VTK for
display. Note that the SimITK blocks are connected by twedirone for the image information (the origin
and spacing) and another for a MATLAB array that holds theslpdata values. The SimVTK blocks are
connected by a single line which represents the transfent@bject pointer from one block to the next.
Representative dialog boxes for SimITK and SimVTK are showrigure5.

4 Discussion and Conclusion

We have presented a practical approach to visual progragwith ITK and VTK, and anticipate that it will
be suitable for a range of image computing applications. alvantage of our visual programming approach
to ITK and VTK, as compared to scripting languages or stitaigfh+ applications, are short development
times and high maintainability due to the existence of SiIMTK models as, essentially, block diagrams
that express the connections between components. Fudheriha pure C++ application was necessary, it
would be possible to write a utility which could read a SimfWVKK model file and automatically produce
the C++ code that will connect ITK and VTK objects in a way thatrors that model.

Our particular interest is image-guided therapy. To suipibis, we will create SImVTK blocks from our
VTK code for surgical tracking devices and ultrasound videquisition, and will directly use classes de-
rived from ITK and VTK for the necessary calibration, imagebsis, and visualization components of
our image guidance system. Furthermore, since Slicer us@¥eclass as its plug-in module interface, a
SimVTK block can be created that links Simulink to Slicer.isWwill allow us to use Slicer as the front-end
for SIMITK/VTK image-guided therapy applications.

In the future, we will fully automate the generation of Similblocks from ITK header files, similar to

what we achieved for VTK. There are also several ITK classasiwrequire special considerations in order
to be usefully represented by Simulink blocks, and we wititcmie to improve support for these classes.

5 Acknowledgements

The authors wish to thank the Natural Sciences and Engimge&esearch Council (NSERC), the Cana-
dian Institutes of Health Research (CIHR), and the Natigiihnce in Medical Image Computing (NIH
5U54EB005149-03) for funding this project.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]
[12]

S. Aylward, J. Jomier, S. Barre, B. Davis, and L. Ibanezti@izing ITK’s registration methods for
multi-processor, shared-memory systeinsight Journal (www.insight-journal.orgpaper 172, 2007.
2.1

I. Bitter, R. Van Uitert, I. Wolf, L. Ibafiez, and J.-M. nigk. Comparison of four freely available
frameworks for image processing and visualization thatllige IEEE Trans. Vis. Comp. Graph.
13:483-493, 20071

V. Chu and G. Hamarneh. MATLAB-ITK interface for medicahage filtering, segmentation, and
registration. InMedical Imaging 2006: Image Processijrigroc. SPIE, 6144:3T, 2006.

K. Gary, L. Ibafiez, S. Aylward, D. Gobbi, M.B. Blake, @iK. Cleary. IGSTK: An open source
software toolkit for image-guided surgefEE Computer39:46-53, 20061

N. Hata, S. Piper, F.A. Jolesz, C.M.C. Tempany, P. Bl&HKyiorikawa, H. Iseki, M. Hashizume, and
R. Kikinis. Application of open source image guided therapftware in MR-guided therapies. In
MICCAI 2007 pages 491-498, 2001.

M. Koenig, W. Spindler, J. Rexilius, J. Jomier, F. LinkjdaH.-O. Peitgen. Embedding VTK and ITK
into a visual programming and rapid prototyping platform.Medical Imaging 2006: Image-Guided
Procedures and DisplayProc. SPIE, 6141:20, 2006.

H.E.K. Le, R. Li, and S. Ourselin. Towards a visual pragraing environment based on ITK for
medical image analysis. IDigital Image Computing: Techniques and Applications (DA, pages
558-565, 20051

G. Lehmann, Z. Pincus, and B. Regrain. WrapITK: Enharlaaduages support for the Insight Toolkit.
Insight Journal (www.insight-journal.org). January—&jmpaper 85, 20061, 2.3

K. Martin and B. Hoffman.Mastering CMakeKitware, Inc., Clifton Park, New York, 200&.3

S.G. Parker and C.R. Johnson. SCIRun: A scientific @nogning environment for computational
steering. Proc. Supercomputing, 1995.

XIP: Extensible Imaging Platform, https://collabOder.siemens.com/xipwikifl

P.A. Yushkevich, J. Piven, H. Cody Hazlett, R. Gimpeli®mnS. Ho, J.C. Gee, and G. Gerig. User-
guided 3D active contour segmentation of anatomical strast Significantly improved efficiency and
reliability. Neuroimage31(3):1116-1128, 2004.

	Introduction
	Architecture
	SimITK Architecture
	SimVTK Architecture
	Code Generation

	Results
	Discussion and Conclusion
	Acknowledgements

