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Abstract

We have created open-source Simulink block libraries for ITK and VTK that allow pipelines for
these toolkits to be built in a visual, drag-and-drop style within MATLAB. Each block contains an
instance of an ITK or VTK class. Any block connections and parameters that the user makes within
MATLAB’s Simulink visual environment are converted into connections and parameters for the ITK and
VTK pipelines. In addition, we provide conversion of imagesto and from MATLAB arrays to allow
MATLAB image processing blocks to be mixed with ITK and VTK blocks. The code for our block
libraries is generated automatically from XML descriptions of the inputs, outputs, and parameters of the
ITK and VTK classes. We have used these block libraries to build some example pipelines and believe
that they will be useful for developing applications in image analysis and image-guided therapy.
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1 Introduction

Both the Insight Toolkit (ITK) and the Visualization Toolkit (VTK) have established themselves as invalu-
able software packages for image analysis, visualization,and image-guided surgery applications [4],[5]. Al-
though these packages are often used directly as C++ libraries, higher-level interfaces can be useful where
the toolkit user either lacks knowledge of C++, or requires amore rapid development schedule than C++
allows. Such high-level interfaces come in three varieties. First, scripting languages such as Python and
Tcl have been interfaced to the toolkits in order to simplifythe programming [8]. Second, general purpose
open-source applications have been written that provide GUIs that expose either a broad range of the toolk-
its’ functionality, such as Slicer [5], or a range of functionality that pertains a certain task, such as ITK-SNAP
[12]. Third, visual programming environments are available inwhich the toolkit classes are represented as
graphical “blocks” that can be connected with the mouse. Thelatter category includes MeVisLab [6] and
SciRun [10], which are reviewed in detail by Bitteret al. [2], as well as ITKBoard [7] and XIP [11]. It is to
this category that our contributions, which we call SimITK and SimVTK, belong.

Our choice was to use MATLABR© (MathWorks, Natick, MA, USA) as our platform, due to its ubiquity and
its capacity to provide a broad range of computational functionality complementary to ITK and VTK. The
ability to utilize ITK from MATLAB has been demonstrated in the MATITK package of Chu and Hamarneh
[3], which provides a large collection of ITK filters as MATLAB functions. SimITK and SimVTK, in
contrast, provide the ability to use ITK and VTK within MATLAB’s powerful Simulink visual programming
environment. With Simulink, the algorithmic component of blocks can be written in either MATLAB or
C/C++, which are the most commonly used computer languages for image analysis. We have the following
design requirements for our software:

1. It must be possible to mix SimITK, SimVTK, and other Simulink blocks in a pipeline.

2. It must be possible to set the ITK and VTK parameters from Simulink.

3. The SimVTK and SimITK blocks must be automatically generated from XML.

4. The full package must be open source, apart from MATLAB andSimulink themselves.

We have collected our blocks into libraries, where each library consists of the loadable modules (i.e. DLLs)
that contain the code for each block, plus a text-based .mdl file that specifies how the blocks will be displayed
within Simulink. The block code and the .mdl files are generated from XML descriptions of the inputs,
outputs, and parameters for each ITK and VTK class (Figure1). Since the ITK classes are templated over
data type and dimensionality, several SimITK libraries arecreated, each of which is dimension-specific and
type-specific. When these block libraries are loaded into MATLAB, the user can drag-and-drop the blocks
into a Simulink model to create his or her desired processingpipeline. If a block is double-clicked with the
mouse, a dialog box appears that allows any parameters for the underlying ITK or VTK object to be set.

2 Architecture

The way in which blocks are created for Simulink is through files called “S-functions,” which can either be
MATLAB code or loadable modules (i.e. DLLs) compiled from C or C++, that implement a set of callback
functions that Simulink uses to execute the code in the block. Although both ITK and VTK utilize pipeline
architectures with many similarities, there are two fundamental differences between these two toolkits which
made us choose to utilize a different S-function architecture for each. First, only ITK filters are templated
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Figure 1: A library of SimITK filter blocks, and the XML description used to generate one of the blocks.
The suffix FL2 indicates the type and dimensionality: this library is for operations on floating-point, two-
dimensional images.

over data type and dimensionality, and second, ITK parameters are usually class-specific defined types, e.g.
itk::AnisotropicDiffusionFunction::Radius, while VTK parameters are fundamental C types such as float,
int, or arrays. As a result, the architecture for SimITK is significantly more complex than for SimVTK.

2.1 SimITK Architecture

In SimITK, data is transferred between blocks via two connections, each of which carries a MATLAB array.
The first connection carries information about the image (i.e. pixel origin and spacing), while the second
connection carries the image data itself. The central feature of the SimITK architecture are “VirtualBlock”
helper classes that receive the contents of the MATLAB arrays, and convert those contents to the ITK-
specific types used by the ITK filters (see Figure2). By placing this conversion in a helper class, we keep
the S-function source code more clean and understandable.

The way in which the S-function utilizes a VirtualBlock to convert MATLAB arrays to ITK data types is as
follows. First, the S-function reads the image origin and spacing from the “information” connections and
sets it in the VirtualPorts. Next, the MATLAB arrays that carry the image data are retrieved from each input
and output connection, and the memory address of their contents is set in the corresponding VirtualPort.
Then, inside of the VirtualBlock, itkImage objects are created and given these memory addresses to use as
their own storage space, so that the memory is shared betweenMATLAB and ITK and no data copying is
necessary. After this, Simulink reads the parameter valuesthat were set by the user, and sets the parameter
variables in the VirtualBlock to the same values. Finally, the Run() method of the VirtualBlock is executed,
causing the ITK filter to process the data.
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Figure 2: Internal structure of a VirtualBlock. The primarypurpose of the block is to convert between
the standard C data types used by Simulink, and the special data types used by ITK. No ITK-specific data
structures are exposed to Simulink.

Certain ITK filter parameters are special ITK types that needto be treated differently from other parameters.
An example is the NodeContainer type that is used in level setsegmentation algorithms to store the values
and positions of seed points. In SimITK, we handle the NodeContainer by including it in the library as a
separate block. This block takes MATLAB arrays containing the node values and positions as parameters,
and produces a “self” reference (i.e. a pointer) as output that can be passed as an input to a SimITK filter
block. These NodeContainer blocks are generated by the perlscripts directly and do not utilize an XML
description. We have created Transform and Interpolator blocks with a similar approach, and will continue
to add support for more special blocks.

Since we do not yet have support for all the special types thatare required to build a component-wise image
registration pipeline in SimITK, we use the ITK Image Registration Helper classes of Aylwardet al. [1]
instead. Whereas image registration in ITK typically requires several C++ objects to be connected together
(an ImageToImageMetric object, a Transform object, an Optimizer object, and an Interpolator object), their
ImageRegistrationHelperClass encapsulates all of these and we provide it as a SimITK block.

2.2 SimVTK Architecture

In SimVTK, data is passed between blocks by reference, and isnot converted into MATLAB arrays as for
SimITK. This allows a uniform approach to all varieties of VTK data sets, including images, polydata, and
the various grid formats. The tradeoff to using this approach is that transferring data from SimVTK to
MATLAB arrays, or vice versa, requires the use of special import and export blocks at either end of the
VTK pipeline. We currently provide such blocks for image data but not yet for other data types.

The way in which data is passed by reference, is that the pointer to the vtkObject containing the data is
stored in a 1×1 MATLAB array that is passed between blocks. When Simulink runs, these pointers are used
by the S-functions to connect the VTK pipeline such that it exactly mirrors the connections between the
SimVTK blocks, and any necessary type checking is done via VTK’s run-time type information methods.

While the only way that parameters can be set for SimITK is through the block dialog boxes, for SimVTK it
is also possible to set parameters via input connections to the blocks. This provides a great deal of flexibility
in constructing pipelines. The manner in which a particularparameter is handled depends on the names
of the interface methods for that parameter as they appear inthe C++ header file for the VTK class. The
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Figure 3: A SimVTK model that connects a cone to a sinusoid source. When the model runs, the sinusoid
source generates a vector signal that varies between [-1 0 0]and [+1 0 0], causing the cone to oscillate back
and forth and hit the target sphere.

following rules apply for SimVTK, we intend to develop a similar set of rules for SimITK:

“Set” and “Get” methods with scalar and array parameters, e.g. SetPoint(double p[3]). The dialog
box allows the user to select from four options for the parameter. As Parameter:use an entry box
to set the parameter,As Input:add a block input to set this parameter,As Output:add a block output
to get this parameter,Use Default:don’t call either method, use the default parameter value.

“Set” and “Get” methods with object parameters, e.g. SetMapper(vtkMapper *). For each Set method
and Get method there is a checkbox for adding an input, or output, to the block.

“Add” methods with an object parameter, e.g. AddActor(vtkActor *). The dialog has an entry box to
select how many inputs the block should have corresponding to this method.

Outputs for algorithms, e.g. GetOutputPort(). All algorithm outputs are included as block outputs.

Inputs for algorithms, e.g. SetInputConnection(). All mandatory algorithm inputs are included as block
inputs. We will also add a checkbox for each optional input, and an entry box to select the number of
inputs for each repeatable input. The latter will support AddInputConnection() methods.

“Self” as an output. All blocks have a checkbox to select whether the object pointer itself should be in-
cluded as a block output, so that it can be used as an input to another block.

While Simulink is running the pipeline, all RenderWindows and RenderWindowInteractors are re-rendered
at each time step, so that user interactions with the RenderWindow behave as usual. Furthermore, if the val-
ues change for any inputs change while Simulink is running, then the result of the change will be displayed
when the next render occurs.
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Figure 4: A Simulink model that combines ITK and VTK. This pipeline performs ITK Canny edge detec-
tion, applies a greyscale lookup table, and displays the result with vtkImageViewer.

Figure 5: ITK and VTK parameter dialog boxes. In the VTK dialog box (right), the checkboxes and
selection boxes indicate parameters that are to appear as inputs or outputs of the block.

2.3 Code Generation

For both VTK and ITK, we have developed a straightforward XMLdescription of the classes that provides
the following necessary information:

• the class name

• inputs and outputs of the class

• image data types and dimensionalities that are supported (ITK only)

• names of all parameters

• the parameter size, for vector and matrix parameters

• the parameter type, and if it is a typedef, the C equivalent
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These XML files are processed by a perl script which generatesthe following: 1) the C/C++ source code
for the Simulink S-function that will call VTK or ITK from theblocks, and 2) the Simulink library files that
describe a suitable graphical user interface for each block. For the ITK filters, several blocks are generated
from each XML description since ITK objects are templated over data type and dimensionality. Certain
special VTK and ITK classes such as vtkITKImageImport, itkImageFileReader/Writer and itkLevelSetNode
do not utilize XML descriptions and are instead generated directly by the perl script. The entire process of
generating the code and compiling the libraries is driven byCMake [9]. Our ultimate goal is to generate
the libraries from the information in the ITK and VTK C++ header files, with the XML descriptions as only
an intermediate step. For ITK, we have investigated WrapITK[8] and intend to filter its gccxml output to
create our own XML. For VTK, we have written an XML generator based on the parser for VTK-Python,
and we have fully automated SimVTK generation with a CMake build script.

3 Results

We have built and tested our libraries under MATLAB versions2007a and 2008a, with Visual Studio 2005
as the compiler on Windows XP, and gcc 3.4 as the compiler on Linux and Linux64 (Ubuntu 6.06 and 8.04).
ITK 3.6 and VTK 5.2 were used, as these were the latest versions available at the time.

The SimVTK model shown in Figure3 demonstrates a simple VTK pipeline that includes a Simulinkvector
input (in this case, a Sine source) that is used for animation, and a vtkRenderWindowInteractor block that
allows user interaction with the 3D scene. Such a pipeline isan example of how SimVTK could be utilized
for image-guided surgery, given a Simulink block that interfaces to a surgical tracking system to provide
position and rotation information. We have also built pipelines that combine ITK and VTK blocks, for
instance Figure4 demonstrates the use of ITK to read and process an image that is then sent to VTK for
display. Note that the SimITK blocks are connected by two lines, one for the image information (the origin
and spacing) and another for a MATLAB array that holds the pixel data values. The SimVTK blocks are
connected by a single line which represents the transfer of avtkObject pointer from one block to the next.
Representative dialog boxes for SimITK and SimVTK are shownin Figure5.

4 Discussion and Conclusion

We have presented a practical approach to visual programming with ITK and VTK, and anticipate that it will
be suitable for a range of image computing applications. Theadvantage of our visual programming approach
to ITK and VTK, as compared to scripting languages or straight C++ applications, are short development
times and high maintainability due to the existence of SimITK/VTK models as, essentially, block diagrams
that express the connections between components. Furthermore, if a pure C++ application was necessary, it
would be possible to write a utility which could read a SimITK/VTK model file and automatically produce
the C++ code that will connect ITK and VTK objects in a way thatmirrors that model.

Our particular interest is image-guided therapy. To support this, we will create SimVTK blocks from our
VTK code for surgical tracking devices and ultrasound videoacquisition, and will directly use classes de-
rived from ITK and VTK for the necessary calibration, image analysis, and visualization components of
our image guidance system. Furthermore, since Slicer uses aVTK class as its plug-in module interface, a
SimVTK block can be created that links Simulink to Slicer. This will allow us to use Slicer as the front-end
for SimITK/VTK image-guided therapy applications.

In the future, we will fully automate the generation of Simulink blocks from ITK header files, similar to
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what we achieved for VTK. There are also several ITK classes which require special considerations in order
to be usefully represented by Simulink blocks, and we will continue to improve support for these classes.
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