
Name:

Mid-term examination

Computer Graphics 1 (15-462)

Grade value: 13%

Duration: 1 hour 10 minutes

Answer all questions for full credit

Question 1: Constructive Solid Geometry - CSG (again) (27)

(a) Explain what a parametric function is. Give a practical example and say what parametric
functions are useful for and why. (3)

A parametric function is a function that maps a parameter space on
to a higher dimension world space.
Example, the parametric equation for a circle is:
x(�) = r cos(�); y(�) = r sin(�). � is the parameter.
They are useful for generating regular meshes of surfaces - varying
the parameters in a regular manner gives the function's value at
regular positions.

(b) Explain what an implicit function is. Give a practical example and say what implicit
functions are useful for and why. (3)

An implicit function de�nes a surface by assigning a value to a given
world coordinate - the surface is then de�ned to exist when this value
is zero (typically).
Example, the implicit function of a circle is: x2 + y2 � r2 = 0.
They are useful for calculating intersections - the intersection simply
requires the solution of an equation.

(c) What are the geometric primitives of CSG? Give some examples. (2)

Simple solids are the primitives. Typical primitives are: cubes,
cylinders and spheres.

(d) What are the three basic operations of CSG? (2)

The three basic operations of CSG are: adding together, intersecting
and subtracting objects.

1



(e) What boolean operations implement the basic CSG operations? (2)

Adding is done using the union (OR) operation.
Intersecting is done using the intersect (AND) operation.
Subtraction is done using minus and intersection (unary minus and
AND).

(f) What implicit functions implement the basic CSG operations? (2)

Union uses the minimum implicit function.
Intersection uses the maximum function.
Subtraction uses minus and maximum.

(g) Explain how the implicit functions achieve these operations. (3)

Minimum achieves union - because the resulting function is less
than zero (inside the object) when either object's value is than zero
- hence the minimum is less than zero.
Maximum achieves intersection - because the resulting function is
only less that zero when both object's values are less than zero -
hence the maximum of the two is less than zero.
Minus and maximum achieves subtraction because the resulting
function is less than zero when the value is inside the main object
and outside the removed object.

(h) Imagine a set of building blocks that interlock at the top and bottom faces. Explain how
the boolean functions would be used to form a piece of this building block set - you should
use all three CSG operations. Assume that your basic building blocks are cubes and that you
are given the implicit form of the surface that de�nes the interlocking shape. (5)

TOP BOTTOM

F > 0

F < 0

F’ > 0

F’ < 0

surface from bottom cube
Section removed by subtracting

surface
intersecting top cube with
Section removed by

of top and
made by union
Final cube

bottom cut cubes

To produce a block that is basically a cube with an inset on the base
and a matching lug on the top:
For the top of the cube - intersect the cube and the cutting surface
to obtain a partial cube with a suitable lug.
For the bottom of the cube - subtract the cutting surface from the
cube.
Then join these two pieces together using a union operation.

2



(i) To display these building blocks on screen without ray tracing we require the polygonal
mesh of each block. Explain how to generate the polygonal mesh for a single block using the
method that you explained in part (h). Assume that you are given the polygonal meshes for
a cube and for the surface that de�nes the interlocking shape. (5)

To generate the polygonal mesh for such a building block:

We need the following de�nitions:

top cutting surface de�nes the half space F < 0,
bottom cutting surface de�nes the half space F 0 < 0,
the top cube is de�ned such that C < 0 is inside it,
similarly the bottom cube is de�ned C 0 < 0.

The mesh for the top part of the block:
includes the mesh for the cube inside the cutting surface (F < 0)
and the mesh of the cutting surface inside the cube (C < 0).

The mesh for the bottom part of the block:
includes the mesh of the cube outside the cutting surface (F ` > 0)
and the mesh of the cutting surface inside the cube (C 0 < 0).

The complete mesh: consists of the above two meshes, excluding
the parts that are inside the �nal result, ie those for which:
min(max(C;F );max(C 0;�F 0)) < 0.

3



Question 2: Image processing (26)

(a) Explain what point processing is. (1)

The application of a 1-D function or look-up table to the individual
pixels of an image.

(b) Given the point processing function f(v) = vp, what is its e�ect on the image if p > 1?
How does it work? What range of values must the pixel value v be made to lie between? (3)

For p > 1 this function darkens the image.
v must be between 0 and 1. It darkens the
image by making small (dark) values of v
smaller (darker).

1

v

1 1

f(v)

0

1

0

(c) Filtering can be applied to any kind of signal. What kind of signal is an image? (1)

A computer image is a 2-D discrete (digital) signal.

(d) What is a linear, shift-invariant �lter? (2)

It is a �lter that uses only linear operations (ie multiplication and
addition (accumulation)) which operates with the same parameters
where ever it is applied.

(e) Convolution implements a linear, shift-invariant �lter. Explain what convolution is. What
is a convolution matrix? (1)

Convolution is the multiplication of a set of �xed values with cor-
responding pixel values - the results of these multiplications are ac-
cumulated (added together) to give a single result. The convolution
matrix de�nes the multiplier values.

(f) Blurring is a convolution. Give a convolution matrix for a 3x3 blur. (1)

1

9

0
BBB@

1 1 1
1 1 1
1 1 1

1
CCCA

4



(g) The following convolution matrices form part of the edge �lter calculation. What functions
of the image values do they calculate? Explain how they calculate these functions. (4)

0
B@
�1 0 1
�2 0 2
�1 0 1

1
CA

This convolution matrix calculates the horizontal derivative of an
image (with some averaging). The derivative is the 1rate of change
of the function (values), and is approximated by taking the di�er-
ence between the two neighboring values. The matrix returns the
di�erence between the pixels to the right of the current pixel and
pixels to the left of the current pixel for the current line and its two
neighbors. The di�erence for the current line is weighted twice as
heavily as that for the neighbors.

0
B@

1 2 1
0 0 0
�1 �2 �1

1
CA

This convolution matrix calculates the vertical derivative of an image
(with some averaging). The matrix returns the di�erence between
the pixels above and below the current pixel for the current column
and its two neighbors. The di�erence for the current column is
weighted twice as heavily as that for the neighbors.

(h) What is an image edge? Why is the full edge �lter a non-linear �lter? (3)

An image edge is a part of the image that has a high image gradient
- ie the pixel values are changing rapidly.
The full edge �lter is non-linear because it uses non-linear functions
(square and square-root).

5



(i) Convolve the following image patch with the blurring �lter and the two convolution matrices
above. Apply each convolution to the original image patch (not the new convolved one).
Explain what you do at the edge of the image patch. (10)

100 110 120 123
100 110 120 97

90 100 80 120
85 90 72 100

Ignore the edges of the image patch - the derivative is not easily
de�ned there and it adds unnecessary complexity to the blurring.

Blurring:

930

9

980

9

847

9

7

9

=

1031

3
1088

9

941

9

889

9

Horizontal derivative:

440 � 390 437 � 430

352 � 365 437 � 400

=
50 7

�13 37

Vertical derivative:

440 � 370 473 � 380

440 � 337 447 � 334

=
70 93
103 113

6



Question 3: Clipping (29)

(a) Why is the image forming process from the world to an image known as a projective
transformation? (1)

It \projects" 3-D to 2-D.

(b) This projective transformation is expensive to compute, and so only the viewable world
should be projected. What part of the world is visible in an image? Illustrate with a diagram.
You should include 6 clipping planes in the diagram. (4)

The viewable world is what can be seen from the camera centre
through the rectangle if the image in the image plane.

Viewable

plane
Far clipping

plane
Near clipping

area

Right clipping plane

Left clipping plane

Top view
Top clipping plane

Bottom clipping plane

Side view

Image plane

focal point
centre/

Camera

(c) What is the name of this viewable region of space? (1)

The Frustum

(d) There are two approaches to ensuring that only the viewable regions of space are projected.
Brie
y describe what they are. (2)

1. During scan conversion check pixel by pixel, or the ends of lines.

2. Analytically clip the lines before scan conversion.

(e) What are the three possible conditions for the two end points of a line when it is being
clipped? What are the implications of each of these conditions? (6)

1. Both inside frustum - trivially accept.

2. One inside, one outside - take inside one and intersection of line
with �rst clipping plane crossed.

3. Both outside - part of the line may be visible - further analysis
is required.

7



(f) The Cohen-Sutherland algorithm uses the concept of out-codes for each end of the line.
What are out-codes? (1)

Outcodes indicate whether a point is on the viewable (0) or un-
viewable (1) side of a clipping plane. Each vertex has an outcode
for each clipping plane.

(g) De�ne the out-codes for a typical rectangular clipping area and show all the possible
values. (6)

Outcode
1 (MSB) y > ymax

2 y < ymin

3 x > xmax

4 (LSB) x < xmin

1 0 0 0 1 0 1 0

0 0 1 0

0 1 1 0

1 0 0 1

0 0 0 1

0 1 0 1 0 1 0 0

0 0 0 0

xmin xmax

ymin

ymax

(h) Explain how out-codes are used to calculate the visible parts of lines. Describe in detail
how the algorithm determines the visible section of a line that can not be trivially accepted
or rejected. (8)

1. If both outcodes are all zero - trivially accept the line.

2. If the outcodes bits for the same plane are both 1 (the bitwise
AND of the outcodes is non-zero) - trivially reject.

3. Otherwise:

(a) for a non-zero outcode (an outside point) select a non-zero
bit (a plane that the point is outside),

(b) intersect the line with that plane - replace the point under
consideration with the intersection

(c) recalculate the outcode for the point - ie set that bit of the
outcode to zero

(d) repeat from (1) until trivial accept/reject

8


