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Announcements

• Is your account working yet?

– Watch out for ^M and missing newlines

• Assignment 1 is due Friday at midnight

• Check the webpage and bboards for answers to questions
about the assignment

• Questions on Assignment 1?



Transformations
Vectors, bases, and matrices
Translation, rotation, scaling
Postscript Examples
Homogeneous coordinates
3D transformations
3D rotations
Transforming normals
Nonlinear deformations

Watt, Chapter 1.1-1.3

Chapter 5.1
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Uses of Transformations
• Modeling transformations

– build complex models by positioning simple components
– transform from object coordinates to world coordinates

• Viewing transformations
– placing the virtual camera in the world
– i.e. specifying transformation from world coordinates to camera

coordinates

• Animation
– vary transformations over time to create motion

WORLD

OBJECT
CAMERA
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General Transformations

Q = T(P) for points
V = R(u) for vectors
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Rigid Body Transformations

Rotation angle and line
about which to rotate
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Non-rigid Body Transformations



7Computer Graphics 15-462

Background Math: Linear Combinations of Vectors

• Given two vectors, A and B, walk any distance you like
in the A direction, then walk any distance you like in the
B direction

• The set of all the places (vectors) you can get to this
way is the set of linear combinations of A and B.

• A set of vectors is said to be linearly independent if none
of them is a linear combination of the others.

V = v1A + v2B, (v1,v2) ∈ ℜ
A

B

V
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Bases

• A basis is a linearly independent set of vectors whose
combinations will get you anywhere within a space, i.e.
span the space

• n vectors are required to span an n-dimensional space

• if the basis vectors are normalized and mutually
orthogonal the basis is orthonormal

• there are lots of possible bases for a given vector space;
there’s nothing special about a particular basis—but our
favorite is probably one of these.

y

x

z

z
x

y
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Vectors Represented in a Basis

• Every vector has a unique representation in a
given basis
–the multiples of the basis vectors are the vector’s

components or coordinates
–changing the basis changes the components, but not

the vector

–V = v1E1 + v2E2 + … vnEn

The vectors {E1, E2, …, En} are the basis
The scalars (v1, v2, …, vn) are the components of V

with respect to that basis
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Rotation and Translation of a Basis

,

,

,
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Linear and Affine Maps
• A function (or map, or transformation) F is linear if

for all vectors A and B, and all scalars k.
• Any linear map is completely specified by its effect on a set of basis

vectors:

• A function F is affine if it is linear plus a translation
– Thus the 1-D transformation y=mx+b is not linear, but affine
– Similarly for a translation and rotation of a coordinate system
– Affine transformations preserve lines

F(A+B) = F(A) + F(B)
F(kA) = k F(A)

V = v1E1 + v2E2 +v3E3
F(V) = F(v1E1 + v2E2 +v3E3)

= F(v1E1) + F(v2E2) + F(v3E3)
= v1F(E1) + v2F(E2) +v3F(E3)

A

BA+B
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Transforming a Vector
• The coordinates of the transformed basis vector (in

terms of the original basis vectors):

• The transformed general vector V becomes:

and its coordinates (still w.r.t. E) are

or just The matrix multiplication formula!

F(E1) = f11E1 + f21E2 +f31E3
F(E2) = f12E1 + f22E2 +f32E3
F(E3) = f13E1 + f23E2 +f33E3

F(V) = v1F(E1) + v2F(E2) +v3F(E3)
= (f11E1 + f21E2 +f31E3)v1 + (f12E1 + f22E2 +f32E3)v2 + (f13E1 + f23E2 +f33E3)v3
= (f11v1 + f12v2 + f13v3)E1 + (f21v1 + f22v2 + f23v3)E2 + (f31v1 + f32v2 + f33v3)E3

v1 = (f11v1 + f12v2 + f13v3)
v2 = (f21v1 + f22v2 + f23v3)
v3 = (f31v1 + f32v2 + f33v3)

vi = fijΣj vj
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Matrices to the Rescue

• An nxn matrix F represents a linear function in n
dimensions

– i-th column shows what the function does to the corresponding
basis vector

• Transformation = linear combination of columns of F
– first component of the input vector scales first column of the

matrix
– accumulate into output vector
– repeat for each column and component

• Usually compute it a different way:
– dot row i with input vector to get component i of output vector

{ }v1

v2

v3
{ }=

f11 f12 f13

f21 f22 f23

f31 f32 f33

{ }v1
v2
v3

vi = fijΣj vj
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Basic 2D Transformations
Translate

Scale

Rotate

Parameters t, s, and θ are the “control knobs”

x'==== x++++ tx

y'==== y++++ ty

x'

y'
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• Build compound transformations by stringing basic ones together, e.g.

– “translate p to the origin, rotate, then translate back”
can also be described as a rotation about p

• Any sequence of linear transformations can be collapsed into a single
matrix formed by multiplying the individual matrices together

• This is good: can apply a whole sequence of transformation at once

Compound Transformations

Translate to the origin, rotate, then translate back.

0 1 2 3

vi = fijΣj ( )gjkΣk vk

= Σk ( )fijgjkΣj vk

mij = fij gjkΣj
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Postscript (Interlude)

• Postscript is a language designed for
–Printed page description
–Electronic documents

• A full programming language, with variables,
procedures, scope, looping, …
–Stack based, i.e. instead of “1+2” you say “1 2 add”
–Portable Document Format (PDF) is a semi-compiled

version of it (straight line code)

• We’ll briefly look at graphics in Postscript
–elegant handling of 2-D affine transformations and

simple 2-D graphics
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2D Transformations in Postscript, 1

0 0 moveto
(test) show

test

1 0 translate
0 0 moveto
(test) show

test

30 rotate
0 0 moveto
(test) show

test
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2D Transformations in Postscript, 2

1 2 scale
0 0 moveto
(test) show

1 0 translate
30 rotate
0 0 moveto
(test) show

30 rotate
1 0 translate
0 0 moveto
(test) show

test test test
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2D Transformations in Postscript, 3

30 rotate
1 2 scale
0 0 moveto
(test) show

1 2 scale
30 rotate
0 0 moveto
(test) show

-1 1 scale
0 0 moveto
(test) show

test tes
t

test
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Homogeneous Coordinates
•Translation is not linear--how to represent as a matrix?
•Trick: add extra coordinate to each vector

•This extra coordinate is the homogeneous coordinate, or w
•When extra coordinate is used, vector is said to be
represented in homogeneous coordinates
•Drop extra coordinate after transformation (project to w=1)
•We call these matrices Homogeneous Transformations
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W!? Where did that come from?
• Practical answer:

–W is a clever algebraic trick.
–Don’t worry about it too much. The w value will be 1.0

for the time being.
–If w is not 1.0, divide all coordinates by w to make it

so.

• Clever Academic Answer:
–(x,y,w) coordinates form a 3D projective space.
–All nonzero scalar multiples of (x,y,1) form an

equivalence class of points that project to the same
2D Cartesian point (x,y).

–For 3-D graphics, the 4D projective space point
(x,y,z,w) maps to the 3D point (x,y,z) in the same way.
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Homogeneous 2D Transformations

The basic 2D transformations become
Translate: Scale: Rotate:

Any affine transformation can be expressed as a
combination of these.
We can combine homogeneous transforms by
multiplication.
Now any sequence of translate/scale/rotate operations
can be collapsed into a single homogeneous matrix!

1 0 tx

0 1 ty

0 0 1
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Postscript and OpenGL Transformations

Postscript

30 rotate
1 0 translate
draw something

Equivalent OpenGL

glRotatef(30, 0,0,1);
// rot 30° about z axis

glTranslatef(1,0,0);
draw something
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Sequences of Transformations

M

M

M

x x x x x x x x x x

x' x' x' x' x' x' x' x' x'

P
A

R
A

M
E

T
E

R
S

M
A

T
R

IC
E

S
UNTRANSFORMED
POINTS

TRANSFORMED
POINTS

• Often the same
transformations are applied to
many points

• Calculation time for the
matrices and combination is
negligible compared to that
of transforming the points

• Reduce the sequence to a
single matrix, then transform
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Collapsing a Chain of Matrices.

• Consider the composite function ABCD, i.e. p’ = ABCDp
• Matrix multiplication isn’t commutative - the order is important
• But matrix multiplication is associative, so can calculate from right

to left or left to right: ABCD = (((AB) C) D) = (A (B (CD))).
• Iteratively replace either the leading or the trailing pair by its

product

• Postmultiply: left-to-right
(reverse of function
application.)

• Premultiply: right-to-left
(same as function
application.)

M ←←←← D

M ←←←← CM

M ←←←← BM

M ←←←← AM

M ←←←← A

M ←←←← MB

M ←←←← MC

M ←←←← MD

or both give the
same result.

Premultiply Postmultiply
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Implementing Transformation Sequences
• Calculate the matrices and cumulatively multiply them into a global

Current Transformation Matrix
• Postmultiplication is more convenient in hierarchies -- multiplication

is computed in the opposite order of function application
• The calculation of the transformation matrix, M,

– initialize M to the identity
– in reverse order compute a basic transformation matrix, T
– post-multiply T into the global matrix M, M ← MT

• Example - to rotate by θ around [x,y]:

• Remember the last T calculated is the first applied to the points
– calculate the matrices in reverse order

glLoadIdentity() /* initialize M to identity mat.*/
glTranslatef(x, y, 0) /* LAST: undo translation */
glRotatef(theta,0,0,1) /* rotate about z axis */
glTranslatef(-x, -y, 0) /* FIRST: move [x,y] to origin. */
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Column Vector Convention

• The convention in the previous slides
–transformation is by matrix times vector, Mv
–textbook uses this convention, 90% of the world too

• The composite function A(B(C(D(x)))) is the matrix-
vector product ABCDx

x'
y'
1
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Beware: Row Vector Convention
• The transpose is also possible

• How does this change things?
–all transformation matrices must be transposed
– ABCDx transposed is xTDTCTBTAT

– pre- and post-multiply are reversed
• OpenGL uses transposed matrices!

– You only notice this if you pass matrices as arguments to
OpenGL subroutines, e.g. glLoadMatrix.

– Most routines take only scalars or vectors as arguments.

x' y' 1[[[[ ]]]]==== x y 1[[[[ ]]]]
m11 m21 m31

m12 m22 m32

m13 m23 m33
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Rigid Body Transformations

•A transformation matrix of the form

where the upper 2x2 submatrix is a rotation matrix
and column 3 is a translation vector, is a rigid
body transformation.
•Any series of rotations and translations results in
a rotation and translation of this form

xx xy tx

yx yy ty

0 0 1
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Viewport Transformations
• A transformation maps the visible (model) world onto screen or

window coordinates
• In OpenGL a viewport transformation, e.g. glOrtho(), defines

what part of the world is mapped in standard “Normalized
Device Coordinates” ((-1,-1) to (1,1))

• The viewpoint transformation maps NDC into actual window,
pixel coordinates

– by default this fills the window
– otherwise use glViewport

(2,0)

(4.7,2)

(0,0)

(640,480)
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3D Transformations

• 3-D transformations are very similar to the 2-D case
• Homogeneous coordinate transforms require 4x4

matrices
• Scaling and translation matrices are simply:

• Rotation is a bit more complicated in 3-D
– left- or right-handedness of coordinate system affects direction of

rotation
– different rotation axes

S =

s0 0 0 0
0 s1 0 0
0 0 s2 0
0 0 0 1

T =

1 0 0 t0

0 1 0 t1

0 0 1 t2

0 0 0 1
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• Right-handed vs. left-handed

• Z-axis determined from X and Y by cross product: Z=X×Y

• Cross product follows right-hand rule in a right-handed coordinate
system, and left-hand rule in left-handed system.

3-D Coordinate Systems

(out of page) X

Y

Z
X

Y

Z
(into page)

�
�
�

�

�

�
�
�

�

ÿ

−
−
−

=×=

1221

3113

2332

YXYX

YXYX

YXYX

YXZ
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Aside: The Dual Matrix

v * =
0 −z y

z 0 −x

−y x 0

ÿ 

�  

�  
�  
�  

�  

�  

�  
�  
�  

•If v=[x,y,z] is a vector, the matrix

is the dual matrix of v
•Cross-product as a matrix multiply: v*a = v x a

•helps define rotation about an arbitrary axis
•angular velocity and rotation matrix time derivatives

•Geometric interpretation of v*a
•project a onto the plane normal to v
•rotate a by 90° about v
•resulting vector is perpendicular to v and a
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Euler Angles for 3-D Rotations

• Euler angles - 3 rotations about each coordinate axis,
however

– angle interpolation for animation generates bizarre motions
– rotations are order-dependent, and there are no conventions about

the order to use

• Widely used anyway, because they're “simple”
• Coordinate axis rotations (right-handed coordinates):

Rx =

1 0 0 0
0 cos θθθθ –sin θθθθ 0

0 sin θθθθ cos θθθθ 0
0 0 0 1

Ry =

cos θθθθ 0 sin θθθθ 0
0 1 0 0

–sin θθθθ 0 cos θθθθ 0
0 0 0 1

Rz =

cos θθθθ –sin θθθθ 0 0

sin θθθθ cos θθθθ 0 0

0 0 1 0

0 0 0 1



35Computer Graphics 15-462

Euler Angles for 3-D Rotations
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Axis-angle rotation

unit.)is(assumes

planenormalinbyRotatesin,cos

09byflipplane,normalontoProjectmatrix.Dual

planenormals'ontoProject

ontoProject

sin)(cos

*

*

v

v

vvvI

vvv

vvvIvvR

ααα

αα

°

−

+−+=

T

T

TT

The matrix R rotates by α about axis (unit) v:
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Quaternions

• Complex numbers can represent 2-D rotations
• Quaternions, a generalization of complex numbers, can

represent 3-D rotations
• Quaternions represent 3-D rotations with 4 numbers:

– 3 give the rotation axis - magnitude is sin α/2
– 1 gives cos α/2
– unit magnitude - points on a 4-D unit sphere

• Advantages:
– no trigonometry required
– multiplying quaternions gives another rotation (quaternion)
– rotation matrices can be calculated from them
– direct rotation (with no matrix)
– no favored direction or axis
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What is a Normal?

Indication of outward facing direction
for lighting and shading

Order of definition of
vertices in OpenGL

Right hand rule
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Transforming Normals

• It’s tempting to think of normal vectors as being like
porcupine quills, so they would transform like points

• Alas, it’s not so, consider the 2D affine transformation
below.

• We need a different rule to transform normals.
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Normals Do Not Transform Like Points

• If M is a 4x4 transformation matrix, then
–To transform points, use p’=Mp, where p=[x y z 1]T

–So to transform normals, n’=Mn, where n=[a b c 1]T

right?
–Wrong! This formula doesn’t work for general M.
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Normals Transform Like Planes

[ ] [ ]

planetransformto

pointtransformto
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spaceoriginalinplaneonpointforequation
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Transforming Normals - Cases

• For general transformations M that include perspective,
use full formula (M inverse transpose), use the right d
–d matters, because parallel planes do not transform to

parallel planes in this case
• For affine transformations, d is irrelevant, can use d=0.
• For rotations only, M inverse transpose = M, can

transform normals and points with same formula.
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Spatial Deformations

• Linear transformations
–take any point (x,y,z) to a new point (x’,y’,z’)
–Non-rigid transformations such as shear are

“deformations”

• Linear transformations aren’t the only types!
• A transformation is any rule for computing (x’,y’,z’) as a

function of (x,y,z).

• Nonlinear transformations would enrich our modeling
capabilities.

• Start with a simple object and deform it into a more
complex one.
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Bendy Twisties
• Method:

–define a few simple shapes
–define a few simple non-linear transformations

(deformations e.g. bend/twist, taper)
–make complex objects by applying a sequence of

deformations to the basic objects

• Problem:
–a sequence of non-linear transformations can not be

collapsed to a single function
–every point must be transformed by every

transformation
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Example: Z-Taper
• Method:

–align the simple object with the z-axis
–apply the non-linear taper (scaling) function to alter its

size as some function of the z-position

• Example:
–applying a linear taper to a cylinder generates a cone

x' = k1z+ k2( )x
y' = k1z+ k2( )y
z' = z

x' = f (z)x

y' = f (z)y

z' = z

“Linear” taper: General taper (f is any
function you want):
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Example: Z-twist

• Method:
–align simple object with the z-axis
–rotate the object about the z-axis as a function of z

• Define angle, θ, to be an arbitrary function f (z)
• Rotate the points at z by θ = f (z)

“Linear” version:

θ = f (z)

x' = xcos(θ) − ysin(θ)

y' = xsin(θ) + ycos(θ)

z' = z

f (z) = kz
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Extensions

• Incorporating deformations into a modeling system
– how to handle UI issues?

• “Free-form deformations” for arbitrary warping of space

–Use a 3-D lattice of control points to define Bezier
cubics:

(x’,y’,z’) are piecewise cubic functions of (x,y,z)

–Widely used in commercial animation systems

• Physically based deformations
– Based on material properties

– reminiscent of finite element analysis
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Announcements

• Is your account working yet?

– Watch out for ^M and missing newlines

• Assignment 1 is due Friday at midnight

• Questions on assignment 1?


