Announcements

- Is your account working yet?
	- –Watch out for ^M and missing newlines
- Assignment 1 is due Friday at midnight
- Check the webpage and bboards for answers to questions about the assignment
- Questions on Assignment 1?

Transformations

Vectors, bases, and matrices Translation, rotation, scaling Postscript Examples Homogeneous coordinates 3D transformations3D rotationsTransforming normals Nonlinear deformations

Watt, Chapter 1.1-1.3

Chapter 5.1

Uses of Transformations

- Modeling transformations
	- build complex models by positioning simple components
	- transform from object coordinates to world coordinates
- Viewing transformations
	- placing the virtual camera in the world
	- i.e. specifying transformation from world coordinates to camera coordinates
- •Animation

– vary transformations over time to create motion

General Transformations

$$
Q = T(P)
$$
 for points

$$
V = R(u)
$$
 for vectors

Rigid Body Transformations

Non-rigid Body Transformations

Background Math: Linear Combinations of Vectors

- Given two vectors, A and B, walk any distance you like in the A direction, then walk any distance you like in the B direction
- The set of all the places (vectors) you can get to this way is the set of linear combinations of A and B.
- A set of vectors is said to be linearly independent if none of them is a linear combination of the others.

$$
\mathbf{V} = \mathsf{v}_1 \mathbf{A} + \mathsf{v}_2 \mathbf{B}, (\mathsf{v}_1, \mathsf{v}_2) \in \mathfrak{R}
$$

Bases

- A *basis* is a linearly independent set of vectors whose combinations will get you anywhere within ^a space, i.e. span the space
- n vectors are required to span an n -dimensional space
- if the basis vectors are normalized and mutually orthogonal the basis is orthonormal
- there are *lots* of possible bases for a given vector space; there's nothing special about ^a particular basis—but our favorite is probably one of these. **y**

Vectors Represented in ^a Basis

- Every vector has ^a unique representation in ^a given basis
	- –the multiples of the basis vectors are the vector's components or coordinates
	- –changing the basis changes the components, but not the vector

$$
-V = v_1 E_1 + v_2 E_2 + \dots v_n E_n
$$

The vectors $\{E_1, E_2, ..., E_n\}$ are the *basis*

The scalars $(v_1, v_2, ..., v_n)$ are the *components* of V with respect to that basis

Rotation and Translation of a Basis

Linear and Affine Maps

• A function (or map, or transformation) F is *linear* if

 $F(A+B) = F(A) + F(B)$ $F(kA) = kF(A)$

for all vectors A and B, and all scalars k.

•Any linear map is *completely specified* by its effect on a set of basis vectors:

A

A+B

B

 $\mathsf{V} = \mathsf{v}_1 \mathsf{E}_1 + \mathsf{v}_2 \mathsf{E}_2 + \mathsf{v}_3 \mathsf{E}_3$ $F(V) = F(v_1E_1 + v_2E_2 + v_3E_3)$ = **F**(v1**E**1) ⁺ **F**(v2**E**2) ⁺ **F**(v3**E**3) = v1**F**(**E**1)+v2**F**(**E**2) +v3**F**(**E**3)

- $\bullet~$ A function F is *affine* if it is linear plus a translation
	- Thus the 1-D transformation y *=mx+b* is not linear, but affine
	- Similarly for ^a translation and rotation of ^a coordinate system
	- Affine transformations preserve lines

Transforming ^a Vector

• The coordinates of the transformed basis vector (in terms of the original basis vectors):

> $\mathbf{F}(\mathbf{E}_1) = \mathbf{f}_{11} \mathbf{E}_1 + \mathbf{f}_{21} \mathbf{E}_2 + \mathbf{f}_{31} \mathbf{E}_3$ $\mathbf{F}(\mathsf{E}_2) = \mathsf{f}_{12}\mathbf{E}_1 + \mathsf{f}_{22}\mathbf{E}_2 + \mathsf{f}_{32}\mathbf{E}_3$ $$

• The transformed general vector V becomes:

$$
F(V) = v_1 F(E_1) + v_2 F(E_2) + v_3 F(E_3)
$$

\n
$$
= (f_{11}E_1 + f_{21}E_2 + f_{31}E_3)v_1 + (f_{12}E_1 + f_{22}E_2 + f_{32}E_3)v_2 + (f_{13}E_1 + f_{23}E_2 + f_{33}E_3)v_3
$$

\n
$$
= (f_{11}V_1 + f_{12}V_2 + f_{13}V_3)E_1 + (f_{21}V_1 + f_{22}V_2 + f_{23}V_3)E_2 + (f_{31}V_1 + f_{32}V_2 + f_{33}V_3)E_3
$$

\nand its coordinates (still w.r.t. E) are
\n
$$
\hat{v}_1 = (f_{11}V_1 + f_{12}V_2 + f_{13}V_3)
$$

\n
$$
\hat{v}_2 = (f_{21}V_1 + f_{22}V_2 + f_{23}V_3)
$$

\n
$$
\hat{v}_3 = (f_{31}V_1 + f_{32}V_2 + f_{33}V_3)
$$

The matrix multiplication formula! $\mathrm{\tilde{v}}_{\mathrm{i}} = \sum_\mathrm{j} \mathrm{f}_{\mathrm{ij}} \mathrm{v}_{\mathrm{j}}$

Matrices to the Rescue

- An nxn matrix F represents ^a linear function in ⁿ dimensions
	- $-$ i-th column shows what the function does to the corresponding basis vector
- \bullet Transformation = linear combination of columns of F
	- first component of the input vector scales first column of the matrix
	- accumulate into output vector
	- repeat for each column and component
- Usually compute it ^a different way:
	- $-$ dot row i with input vector to get component i of output vector

$$
\left\{\begin{array}{c}\hat{V}_1\\\hat{V}_2\\\hat{V}_3\end{array}\right\} = \left\{\begin{array}{c}\n f_{11} f_{12} f_{13} \\
 f_{21} f_{22} f_{23} \\
 f_{31} f_{32} f_{33}\end{array}\right\} \left\{\begin{array}{c}\n V_1 \\
 V_2 \\
 V_3\end{array}\right\} \qquad V_i = \sum_j f_{ij} V_j
$$

Basic 2D Transformations

Translate

$$
x'=x+t_x \t\t |x'| = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t \\ t_x \\ t_y \end{bmatrix} \t\t x'=x+t
$$

\nScale
\n
$$
x'=s_x x \t\t |x'| = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \t\t x'=Sx
$$

\nNotice
\n
$$
x'=x \cos \theta - y \sin \theta \t\t |x'| = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \t\t x'=Sx
$$

\n
$$
y'=x \cos \theta - y \sin \theta \t\t \begin{bmatrix} x' \\ x' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \t\t x'=Rx
$$

Parameters t, s, and θ are the "control knobs"

Compound Transformations

• Build *compound* transformations by stringing basic ones together, e.g.

Links of the Common "translate p to the origin, rotate, then translate back" can also be described as ^a rotation about p

• Any sequence of linear transformations can be collapsed into ^a single matrix formed by multiplying the individual matrices together

$$
\hat{v}_i = \sum_j f_{ij} \left(\sum_k g_{jk} v_k \right)
$$

= $\sum_k \left(\sum_j f_{ij} g_{jk} \right)$

$$
m_{ij} = \sum_j f_{ij} g_{jk}
$$

•This is good: can apply ^a whole sequence of transformation at once

Translate to the origin, rotate, then translate back.

Computer Graphics 15-462 ¹⁵

Postscript (Interlude)

- Postscript is ^a language designed for
	- –Printed page description
	- –Electronic documents
- A full programming language, with variables, procedures, scope, looping, …
	- –Stack based, i.e. instead of "1+2" you say "1 2 add"
	- –Portable Document Format (PDF) is ^a semi-compiled version of it (straight line code)
- We'll briefly look at graphics in Postscript
	- –elegant handling of 2-D affine transformations and simple 2-D graphics

2D Transformations in Postscript, 1

0 0 moveto(test) show

1 0 translate 0 0 moveto (test) show

30 rotate0 0 moveto(test) show

2D Transformations in Postscript, 2

1 2 scale0 0 moveto(test) show

1 0 translate 30 rotate 0 0 moveto(test) show

30 rotate1 0 translate0 0 moveto(test) show

2D Transformations in Postscript, 3

30 rotate1 2 scale0 0 moveto (test) show

1 2 scale 30 rotate 0 0 moveto(test) show

-1 1 scale0 0 moveto(test) show

Homogeneous Coordinates

•Translation is not linear--how to represent as ^a matrix?

•Trick: add extra coordinate to each vector

$$
\begin{bmatrix} x' & 1 & 1 & 0 & t_x & \mathbb{F}_x \\ y' & = & 0 & 1 & t_y & \mathbb{F}_y \\ 1 & 0 & 0 & 1 & \mathbb{F}_y \end{bmatrix}
$$

 \bullet This extra coordinate is the *homogeneous* coordinate, or w

•When extra coordinate is used, vector is said to be represented in homogeneous coordinates

- •Drop extra coordinate after transformation (project to w=1)
- •We call these matrices Homogeneous Transformations

W!? Where did that come from?

- Practical answer:
	- –W is ^a clever algebraic trick.
	- –Don't worry about it too much. The ^w value will be 1.0 for the time being.
	- –If ^w is not 1.0, divide all coordinates by ^w to make it so.
- Clever Academic Answer:
	- –(x,y,w) coordinates form ^a 3D projective space.
	- $-$ All nonzero scalar multiples of $(x,y,1)$ form an equivalence class of points that project to the same 2D Cartesian point (x,y).
	- –For 3-D graphics, the 4D projective space point (x,y,z,w) maps to the 3D point (x,y,z) in the same way.

Homogeneous 2D Transformations

The basic 2D transformations becomeTranslate: Scale: Rotate:

Any affine transformation can be expressed as ^a combination of these.

We can combine homogeneous transforms by multiplication.

Now any sequence of translate/scale/rotate operations can be collapsed into ^a single homogeneous matrix!

Postscript and OpenGL Transformations

Postscript

Equivalent OpenGL

$$
\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}
$$

in this case $\theta = 30^\circ$, $t_x = 1$, $t_y = 0$

Computer Graphics 15-462 ²³

Sequences of Transformations

- Often the sametransformations are applied to many points
- Calculation time for the matrices and combination isnegligible compared to that of transforming the points
- Reduce the sequence to ^a single matrix, then transform

Collapsing ^a Chain of Matrices.

- Consider the composite function ABCD, i.e. p' ⁼ ABCDp
- •Matrix multiplication isn't commutative - the order is important
- \bullet But matrix multiplication is associative, so can calculate from right to left or left to right: $ABCD = (((AB) C) D) = (A (B (CD))).$
- •Iteratively replace *either* the leading or the trailing pair by its product

Implementing Transformation Sequences

- Calculate the matrices and cumulatively multiply them into ^a global Current Transformation Matrix
- Postmultiplication is more convenient in hierarchies -- multiplication is computed in the opposite order of function application
- The calculation of the transformation matrix, M,
	- initialize M to the identity
	- in reverse order compute ^a basic transformation matrix, T
	- post-multiply T into the global matrix M, M \leftarrow MT
- Example to rotate by θ around [x,y]:

```
glLoadIdentity() /* initialize M to identity mat.*/
glTranslatef(x, y, 0) /* LAST: undo translation */
glRotatef(theta,0,0,1) /* rotate about z axis */
glTranslatef(-x, -y, 0) /* FIRST: move [x,y] to origin. */
```
- Remember the last T calculated is the first applied to the points
	- calculate the matrices in reverse order

Column Vector Convention

- The convention in the previous slides
	- –transformation is by matrix times vector, Mv
	- –textbook uses this convention, 90% of the world too

$$
\begin{bmatrix} x' & \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \\ 1 \end{bmatrix} = \begin{bmatrix} m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} \begin{bmatrix} y \\ y \end{bmatrix}
$$

• The composite function $A(B(C(D(x))))$ is the matrixvector product ABCDx

Beware: Row Vector Convention

• The transpose is also possible

$$
\begin{bmatrix} x' & y' & 1 \end{bmatrix} = \begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} m_{11} & m_{21} & m_{31} \ m_{12} & m_{22} & m_{32} \ m_{13} & m_{23} & m_{33} \end{bmatrix}
$$

- How does this change things?
	- –all transformation matrices must be transposed
	- <code>ABCD</code>x transposed is $\mathsf{x}^\mathsf{T}\mathsf{D}^\mathsf{T}\mathsf{C}^\mathsf{T}\mathsf{B}^\mathsf{T}\mathsf{A}^\mathsf{T}$
	- –pre- and post-multiply are reversed
- OpenGL uses transposed matrices!
	- – You only notice this if you pass matrices as arguments to OpenGL subroutines, e.g. glLoadMatrix.
	- –Most routines take only scalars or vectors as arguments.

Rigid Body Transformations

•A transformation matrix of the form

$$
\begin{bmatrix} \mathbf{x}_{\mathbf{x}} & \mathbf{x}_{\mathbf{y}} & \mathbf{t}_{\mathbf{x}} \\ \mathbf{y}_{\mathbf{x}} & \mathbf{y}_{\mathbf{y}} & \mathbf{t}_{\mathbf{y}} \\ 0 & 0 & 1 \end{bmatrix}
$$

where the upper 2x2 submatrix is a rotation matrix and column 3 is a translation vector, is a rigid body transformation.

•Any series of rotations and translations results in a rotation and translation of this form

Viewport Transformations

- A transformation maps the visible (model) world onto screen or window coordinates
- In OpenGL ^a viewport transformation, e.g. glOrtho(), defines what part of the world is mapped in standard "Normalized Device Coordinates" ((-1,-1) to (1,1))
- The viewpoint transformation maps NDC into actual window, pixel coordinates

by default this fills the window

otherwise use glViewport

3D Transformations

- 3-D transformations are very similar to the 2-D case
- \bullet Homogeneous coordinate transforms require 4x4 matrices
- Scaling and translation matrices are simply:

$$
\mathbf{S} = \begin{bmatrix} \mathbf{s}_0 & 0 & 0 & 0 \\ 0 & \mathbf{s}_1 & 0 & 0 \\ 0 & 0 & \mathbf{s}_2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \qquad \mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & \mathbf{t}_0 \\ 0 & 1 & 0 & \mathbf{t}_1 \\ 0 & 0 & 1 & \mathbf{t}_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

- Rotation is ^a bit more complicated in 3-D
	- left- or right-handedness of coordinate system affects direction of rotation
	- different rotation axes

3-D Coordinate Systems

 $\bullet~$ Z-axis determined from X and Y by cross product: Z=X \times Y

$$
\mathbf{Z} = \mathbf{X} \times \mathbf{Y} = \begin{bmatrix} X_2 Y_3 - X_3 Y_2 \\ X_3 Y_1 - X_1 Y_3 \\ X_1 Y_2 - X_2 Y_1 \end{bmatrix}
$$

 \bullet Cross product follows right-hand rule in ^a right-handed coordinate system, and left-hand rule in left-handed system.

Aside: The Dual Matrix

•If $v=[x, y, z]$ is a vector, the matrix

v * = 0 [−]*z y ^z* 0 [−]*^x* [−]*y ^x* 0 $\overline{}$ $\begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}$

is the *dual matrix* of v

•Cross-product as a matrix multiply: $v^*a = v \times a$

•helps define rotation about an arbitrary axis

•angular velocity and rotation matrix time derivatives

•Geometric interpretation of ^v*a

- •project ^a onto the plane normal to ^v
- •rotate ^a by 90° about ^v
- •resulting vector is perpendicular to ^v and ^a

Euler Angles for 3-D Rotations

- Euler angles 3 rotations about each coordinate axis, however
	- angle interpolation for animation generates bizarre motions
	- rotations are order-dependent, and there are no conventions about the order to use
- Widely used anyway, because they're "simple"
- Coordinate axis rotations (right-handed coordinates):

$$
R_x = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

\n
$$
R_y = \begin{bmatrix} \cos\theta & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

\n
$$
R_z = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

Euler Angles for 3-D Rotations

Axis-angle rotation

The matrix R rotates by α about axis (unit) v:

$$
\mathbf{R} = \mathbf{v}\mathbf{v}^T + \cos \alpha (\mathbf{I} - \mathbf{v}\mathbf{v}^T) + \sin \alpha \mathbf{v}^*
$$

\n
$$
\mathbf{v}\mathbf{v}^T \qquad \text{Project onto } \mathbf{v}
$$

\n
$$
\mathbf{I} - \mathbf{v}\mathbf{v}^T \qquad \text{Project onto } \mathbf{v} \text{ 's normal plane}
$$

\n
$$
\mathbf{v}^*
$$

\nDual matrix. Project onto normal plane, flip by 90°
\n
$$
\cos \alpha, \sin \alpha \quad \text{Rotate by } \alpha \text{ in normal plane}
$$

\n(assumes **v** is unit.)

Quaternions

- Complex numbers can represent 2-D rotations
- Quaternions, ^a generalization of complex numbers, can represent 3-D rotations
- Quaternions represent 3-D rotations with 4 numbers:
	- 3 give the rotation axis magnitude is sin $\alpha\!/\!2$
	- 1 gives cos $\alpha/2$
	- unit magnitude points on ^a 4-D unit sphere
- Advantages:
	- no trigonometry required
	- multiplying quaternions gives another rotation (quaternion)
	- rotation matrices can be calculated from them
	- direct rotation (with no matrix)
	- no favored direction or axis

What is a Normal?Indication of outward facing direction for lighting and shading

Order of definition of vertices in OpenGL

Right hand rule

Computer Graphics 15-462 ³⁸

Transforming Normals

- It's tempting to think of normal vectors as being like porcupine quills, so they would transform like points
- Alas, it's not so, consider the 2D affine transformation below.
- We need a different rule to transform normals.

Normals Do Not Transform Like Points

- If M is ^a 4x4 transformation matrix, then
	- $-$ To transform points, use p'=Mp, where p=[x y z 1]^T
	- $-$ So to transform normals, n'=Mn, where n=[a b c 1]^T right?
	- –Wrong! This formula doesn't work for general M.

Normals Transform Like Planes

 T **p** = 0, where **n** = $[a \quad b \quad c \quad d]^T$, **p** = $[x \quad y \quad z \quad 1]^T$ (a,b,c) is the plane normal, d is the offset. $\mathbf{n} \cdot \mathbf{p} = \mathbf{n}' \mathbf{p} = 0$, where $\mathbf{n} = \begin{bmatrix} a & b & c & d \end{bmatrix}$, $\mathbf{p} = \begin{bmatrix} x & y & z & 1 \end{bmatrix}$ A plane $ax + by + cz + d = 0$ can be written If **p** is transformed, how should **n** transform? To find the answer, do some magic : \cdot p = n p = v, where $n = |a \, b \, c \, a|$, p =

to transform plane $\mathbf{p'} = \mathbf{Mp}$ *to transform point* $= \mathbf{n'}^T \mathbf{p'}$ equation for point on plane in transformed space $0 = \mathbf{n}^T \mathbf{I} \mathbf{p}$ *equation for point on plane in original space* $T \cdot T^{-1}$ T $\left[\cdot \right]$ T^{-1} $=(\mathbf{n}^T \mathbf{M}^{-1})(\mathbf{M} \mathbf{p})$ $=\mathbf{n}^T\,(\mathbf{M}^{-1}\mathbf{M})\mathbf{p}$ $\mathbf{n}' = (\mathbf{n}^T \mathbf{M}^{-1})^T = \n\begin{bmatrix} \mathbf{M}^{-1} & \mathbf{n} \end{bmatrix}$ $=$ $($ **n** \mathbf{M} $)$ $=$ = ${'}^T{\bf p'}$

Transforming Normals - Cases

- For general transformations M that include perspective, use full formula (M inverse transpose), use the right d
	- d matters, because parallel planes do not transform to parallel planes in this case
- $\bullet\,$ For affine transformations, d is irrelevant, can use $d\!\!=\!\!0.$
- For rotations only, M inverse transpose ⁼ M, can transform normals and points with same formula.

Spatial Deformations

- Linear transformations
	- -take any point (x,y,z) to a new point (x',y',z')
	- –Non-rigid transformations such as shear are "deformations"
- Linear transformations aren't the only types!
- A transformation is any rule for computing (x',y',z') as ^a function of (x,y,z) .
- Nonlinear transformations would enrich our modeling capabilities.
- Start with ^a simple object and deform it into ^a more complex one.

Bendy Twisties

- Method:
	- –define ^a few simple shapes
	- –define ^a few simple non-linear transformations (deformations e.g. bend/twist, taper)
	- –make complex objects by applying ^a sequence of deformations to the basic objects
- Problem:
	- –a sequence of non-linear transformations can not be collapsed to ^a single function
	- –every point must be transformed by every transformation

Example: Z-Taper

- Method:
	- –align the simple object with the z-axis
	- –apply the non-linear taper (scaling) function to alter its size as some function of the z-position
- Example:
	- –applying ^a linear taper to ^a cylinder generates ^a cone

"Linear" taper: General taper (f is any function you want):

 $x' = (k_1 z + k_2)x$ $y' = (k_1 z + k_2) y$ *z* ' $z = z$ $x' = f(z)x$ $y' = f(z)y$ z' $=$ z

Example: Z-twist

- Method:
	- –align simple object with the z-axis
	- **Links of the Common** rotate the object about the z-axis as ^a function of ^z
- Define angle, $θ$, to be an arbitrary function f (z)
- Rotate the points at z by $\theta = f(z)$

"Linear" version:
$$
f(z) = kz
$$

\n $\theta = f(z)$
\n $x' = x \cos(\theta) - y \sin(\theta)$
\n $y' = x \sin(\theta) + y \cos(\theta)$
\n $z' = z$

Extensions

- Incorporating deformations into ^a modeling system – how to handle UI issues?
- "Free-form deformations" for arbitrary warping of space
	- –Use ^a 3-D lattice of control points to define Bezier cubics:

 (x', y', z') are piecewise cubic functions of (x, y, z)

- –Widely used in commercial animation systems
- Physically based deformations
	- Based on material properties
	- reminiscent of finite element analysis

Announcements

- Is your account working yet?
	- –Watch out for ^M and missing newlines
- Assignment 1 is due Friday at midnight
- Questions on assignment 1?