Physics of a Mass Point
& Basics of Textures

Point mass simulation
Basics of texture mapping in OpenGL

Chapter 8 in Watt

Computer Graphics 15-462

Roller coaster

* Next programming assighment involves
creating a 3D roller coaster animation

* We must model the 3D curve describing
the roller coaster, but how?

 How to make the simulation obey the laws
of gravity?

Computer Graphics 15-462

Back to the physics of the roller-coaster:
mass point moving on a spline

Computer Graphics 15-462

frictionless model,
with gravity

* Velocity vector always points
in the tangential direction
of the curve

Mass point on a spline (contd.)
frictionless model, with gravity

Our assumption is : no friction among the point and the spline

Use the conservation of energy law to get the current velocity

Win+ We=const=m*g*h,_ .

h . reached when IvI=0

W, = kinetic energy = 1/2 * m * Iv?

W« = potential energy =m * g * h

h = the current z-coordinate of the mass point

g = acceleration of gravity = 9.81 ms

m = mass of the mass point

Computer Graphics 15-462

Mass point on a spline (contd.)
frictionless model, with gravity

* Given current h, we can always compute the corresponding |vl:

vI= 28 (hyo —h)

Computer Graphics 15-462

Mass point motion*

Assume we know the initial position of a mass point, and
velocity v=v(t)
Velocity is a 3-dim vector

Problem: compute the position of the point at an arbitrary
time #,

Has to integrate velocity over time:

x(t) =x(t,)+ _f v(t)dt

X, v are vectors

Computer Graphics 15-462

Mass point motion (contd.)*

Usually, cannot compute the integral symbolically
Numerical integration necessary

Standard numerical integration routines can be used
(i.e. Simpson, Trapezoid, etc.)

Integrate each of the coordinates x,y,z separately

This is a general approach
— For motion onh a spline, use arclength parameterization approach instead

Computer Graphics 15-462

Arclength Parametrization

There are an infinite number of parameterizations of a given
curve. Slow, fast, speed continuous or discontinuous,
clockwise (CW) or CCW...

A special one: arc-length-parameterization: u=s is arc
length. We care about these for animation.

X u=1 heed control over
s=7.4 velocity

1-0.8 velocity alun_g th:?
s=3.7 curve for animation

Problem: parameterizations usually aren’t arc-length

How to transform parameterization to
an arc-length parameterization?

Computer Graphics 15-462

Arclength Parametrization (contd.)

Assume a general parameterization p=p(u)

p(u) = [x(u), y(u), z(u)]"
arclength parameter s=s(u) is the distance from p(0) to p(u)
along the curve

Distance increases monotonically, hence s=s(u) is a
monotonically increasing function

It follows from Pitagora’s law that

s(u) = I\fx'(v)z +y' (V) + 7' (v)’dv

Computer Graphics 15-462

Arclength parameter s

The integral for s(u) usually cannot be evaluated
analytically, not even for cubic splines (simple polynomials)

Has to evaluate the integral numerically
Simpson’s integration rule (next slide)

Piecewise polynomial definition of the spline means we have
to break the integral over individual spline pieces

For a fixed spline, can pre-compute function s=s(u) for
certain values of u and store it into an array

For the next slides, we will assume we have a routine, which
computes s(u), given a value of u

Computer Graphics 15-462

Simpson integration rule

(n—=13/2

h 5
Z E[f(‘rik—l) +41(x,)+ f(x,,)]+ 007)

k=l

if(x)dxz

a = x,, b=x_, h=(b-a)/(n-1)

h = X,,_ 1-X,, = X;,~X,,. . = independent of k

n > 3 corresponds to the number of intervals

formula exact for a cubic polynomial

n MUST be odd

Must be able to evaluate the function at the points x,, ;.X5, X5, ¢

Alternative to Simpson: Trapeziod rule

" Lessaccurate: Error is O(h3)
" Simpler to compute than Simpson

Computer Graphics 15-462

Inverse u=u(s)

Inverse problem:
Given arclength s, determine the original parameter u

Since s=s(u) is monotonically increasing, so is u=u(s)
Useful (necessary) for animating motion along the curve

Since u=u(t) can only be computed numerically, there is no
exact formula for u=u(s)

Computer Graphics 15-462

Computing inverse u=u(s)

Given arclength s, we can use bisection to determine the
corresponding u

Can compute (using Simpson’s rule) the function s=s(u) in
the forward direction ‘ﬂ.\

\
Arclength g
parameter

S
»

—

e

we know

Original parameter

_.rr""* u
we look for —

Computer Graphics 15-462

Computing inverse u=u(s)

* Must have initial guess for the interval containing u

Bisection (umin, umax, s)

Forever
{
u = (umin + umax) / 2;
If |s(u)-s| < epsilon
Return u;
If s(u) > s
umax = u;
Else
umin = u;

Computer Graphics 15-462

Simulating mass point on a spline

Assume we know the size of the current velocity vector |vl of
a mass particle on the spline at a given moment in time t
— Can obtain this using the laws of physics, as shown before

Notation:
— u = original parameterization
— t=time
— s= hatural parameterization (i.e. arclength parameterization)

We keep current u, t and s in three separate variables

How to compute the next position of the particle?

Computer Graphics 15-462

Simulating mass point on a spline

Time step At
We have: As=1IvlI* At ands=s+ As.

We want the new value of u, so that can compute new point
location

Therefore:
We know s, need to determine u
Here we use the bisection routine to compute u=u(s).

Computer Graphics 15-462

Mass point simulation

* Assume we have a 32-piece spline, with a general
parameterization of ue[0,31]

MassPoint (tmax)

u
s
t
While t < tmax
{
Assert u < 31;
Determine current wvelocity |wv| using physics;
s s + |v]| * At;
u Bisection(u,u + delta, s);

P = pl(u);
Do some stuff with p, i.e. render point location, etc.
t =t + At;

Computer Graphics 15-462

Texture Mapping

* A way of adding surface details

* Two ways can achieve the goal:
— Model the surface with more polygons
+ Slows down rendering speed
» Hard to model fine features

— Map a texture to the surface
This lecture

lmage complexity does not affect complexity
of processing

Computer Graphics 15-462

The texture

Texture is a bitmap image
— Can use libpicio library to load image into memory
— Or can create image yourself within the program

2D array: texture[height][width][4]
Pixels of the texture called fexels

Texel coordinates (s,t) scaled to [0,1] range

Computer Graphics 15-462

Texture Value Lookup

* For given texture coordinates (s,t), we can find a unique
image value, corresponding to the texture image at that
location

Texture (5x5):
]

inverse texture ma
(0,0) (0.25,0) (0.5,0) (0.75,0) (1,0) P

Computer Graphics 15-462

Interpolating colors

» Some (s.t) coordinates not directly at pixel in the texture, but in
between

» Minifaction, magnification

» Solutions:
— Nearest neighbor
» Use the nearest neighbor to determine color
» Faster, but worse quality
» glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER. GL_NEAREST);

— Linear interpolation
» Incorporate colors of several neighbors to determine color
» Slower, better quality
» glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER, GL_LINEAR)

Computer Graphics 15-462

Map textures to surfaces

The polygon can have
arbitrary size and shape

‘

Computer Graphics 15-462

Color blending

* Final pixel color = f (texture color, object color)

* How to determine the color of the final pixel?
— GL_MODULATE — multiply texture and object color
— GL_BLEND - linear combination of texture and object color
— GL_REPLACE - use texture color to replace object color

 Example:

— glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,
GL_REPLACE):

Computer Graphics 15-462

What happens if texture coordinates
outside [0,1] ?

* Two choices:

— Repeat pattern (GL_REPEAT)
— Clamp to maximum/minimum value (GL_CLAMP)

 Example:

— glTexParameteri(ftGL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_CLAMP)

Computer Graphics 15-462

Texture mapping in OpenGL

* Ininit():
— Specify texture

» Read image from file into an array in memory or genherate the
ilmage using the program

— Specify texture mapping parameters
» Wrapping, filtering, etc.
— Define (activate) the texture

* In display():
— Enable GL texture mapping

— Draw objects: Assign texture coordinates to vertices
— Disable GL texture mapping

Computer Graphics 15-462

Specifying texture
mapping parameters

* Use glTexParameteri

 Example:

gll'_l'exParameteri(GL_TE}(TUH E 2D, GL TEXTURE WRAP S,

REPEAT);

ngexParameteri(GL_TE)(TUFI E 2D, GL TEXTURE WRAP T,
L REPEAT);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MAG FILTER,
GL_NEAREST);

gITexParameteri(GL_TE}(TUFl E 2D, GL TEXTURE_MIN_FILTER,
L_NEAREST);

Computer Graphics 15-462

Defining (activating) texture

Do once in init() to set up initial pattern

To use another texture, make further calls in display()
to glTexImage2D, specifying another image
— But this is slow: use Texture Objects itself

The dimensions of texture images must be powers of 2
— if not, rescale image or pad with zeros

glTexlmage2D(Glenum target, Glint level,
Glint internalFormat, int width, int hmght Glint border,
Glenum format, Glenum type, Glvoid* img)

Example:

— glTeximage2D(GL TEXTURE 2D, 0,
GL RGBA, 256, 256, 0,
GL_FIGBA GL_UNSIGNED_BYTE, pointerTolmage)

Computer Graphics 15-462

Enable/disable texture mode

Can do in init() or successively in display()
glEnable(GL_TEXTURE_2D)
glDisable(GL_TEXTURE_2D)

Successively enable/disable texture mode to switch
between drawing textured/non-textured polygons

Changing textures:
— Only one texture active at any given time
— make another call to glTexImage2D to make another pattern active

Computer Graphics 15-462

The drawing itself

* Use GLTexCoord2f(s,t) to specify texture coordinates

* State machine: Texture coordinates remain valid until
you change them or exit texture mode via glDisable
(GL_TEXTURE_2D)

* Example:

glEnable(GL_TEXTURE_2D)
glBegin(GL_QUADS);

glTexCoord2f(0.0,0.0); glVertex3f(-2.0,-1.0,0.0);
glTexCoord2f(0.0,1.0); glVertex3f(-2.0,1.0,0.0);
glTexCoord2f(1.0,0.0); glVertex3f(0.0,1.0,0.0);
glTexCoord2f(1.0,1.0); glVertex3f(0.0,-1.0,0.0);

glEnd();
glDisable(GL_TEXTURE_2D)

Computer Graphics 15-462

Everything together

void init(void):
{

put image into 2D memory array;

glGenTextures(1, &texName);
giBindTexture(GL TEXTURE_2D.texName);

glTexParameteri(GL_TEXTURE_2D, GL TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

glTexParameteri(GL_TEXTURE_2D, GL_ TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glTeximage2D{GL_TEXTURE_2D, 0, GL_RGBA, 256, 256, 0,
GL_RGBA, GL_UNSIGNED BYTE, pointerTolmage)

Computer Graphics 15-462

Everything together (contd.)

void display(void):
{

glTexEnvi(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE, GL_REPLACE);
glEnable(GL_TEXTURE_2D);

glBegin(GL_QUADS);

giTexCoord21(0.0,0.0); glVertex3f(-2.0,-1.0,0.0);
glTexCoord21(0.0,1.0); glVertex3K-2.0,1.0,0.0);
giTexCoord21(1.0,0.0); glVertex31(0.0,1.0,0.0);
glTexCoord2f(1.0,1.0); glVertex310.0,-1.0,0.0);

glENC);

giDisable(GL_TEXTURE_2D);

}
Computer Graphics 15-462

