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1 Introduction

Historical linguistics studies the relationships between languages as they change
over time. Occasionally, speakers of a language will split into separate groups for
any number of reasons and become isolated from each other. When this happens,
the language they shared begins to diverge. These divergences are typically
phonological, syntactic, and semantic in nature. These changes in each child
language occur in di�erent but systematic ways. Studying this phenomenon is
at the heart of diachronic linguistics.

In this paper, we will examine the role of two main applications of com-
putational methods to historical linguistics. The �rst is the identi�cation of
cognates. Identifying cognates is the �rst step in the comparative method, the
primary technique used by historical linguists to determine the relatedness of
languages. The second area is phylogenetic inference, a method of automati-
cally reconstructing the genetic relationships between languages and language
families. We will examine computational and statistical approaches to these
topics that have been taken in the literature to present a picture of the state of
the art, concluding each section with a discussion of the future work to be done
in these areas.

In Section 2, we provide background information on historical linguistics
that will inform the rest of this paper. Cognate identi�cation and phonetic
similarity measures are discussed in Section 3. Cognate identi�cation forms the
basis for reconstructing the evolutionary history of languages. We will brie�y
discuss some early work on this problem in Section 4 and then go on to discuss
more recent methods of phylogenetic inference in Section 5. Finally, we present
our conclusions about the application of computational methods to historical
linguistics in Section 6.
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2 Historical Linguistics

The �eld of historical linguistics (also called diachronic linguistics) is concerned
primarily with the changes languages undergo over time and determining the
relatedness of languages. These changes usually take the form of phonological,
syntactic and semantic changes.

One might imagine the scenario of two groups of people speaking the same
langauge separating. Phonological innovations and transformations occur, caus-
ing the emergence of dialects and regional accents. An important observation
in historical linguistics is that phonological changes that occur in this manner
are almost always regular. The same sound in the same context will change
the same across the entire language. Given enough time, dialects diverge and
ultimately lead to two di�erent languages, where the speakers are no longer able
to understand each other.

Words in daughter languages sharing a common ancestor are known as cog-
nates. In the context of historical linguistics, this does not include words bor-
rowed from other languages. Borrowed words are words introduced directly
from one language to another. Borrowed words do not undergo the sort of
phonological changes that occur over time and so di�er from cognates. Cog-
nates contain helpful information for historical linguistics because they contain
the regular sound changes that led to the formation of the divergent languages.
For example, the English word beaver and the German word Biber are cog-
nates, both descending from Proto-Germanic *bebru and Proto-Indo-European
*bher (Köbler, 1980). A systematic phonological change in the history of En-
glish caused the second /b/ to become realized as /v/ (denoted by the letter f
in this context) in Old English beofor. Because cognates are so useful in helping
isolate diachronic sound changes (phonological changes that occur over time),
the task of cognate identi�cation is a central element in the study of diachronic
linguistics (Kondrak, 2003b). Automatic methods for handling cognate identi-
�cation are described in more detail in Section 3.

The primary method historical linguists use to determine whether two lan-
guages are related is known as the comparative method (Hoenigswald, 1960).
This method begins by compiling a list of probable cognates. Once a set of
cognates has been identi�ed, historical linguists use the comparative method to
infer the series of phonological changes that led to the divergence in the two
daughter languages under comparison. These phonological changes are realized
in cognate lists as sound correspondences. A sound correspondence is a map-
ping of a phoneme or series of phonemes in one language to a phoneme or set
of phonemes in another related language. In German-English example above,
the modern English sound /v/ corresponds to the modern German sound /b/
in this context. Once sound correspondences have been identi�ed, the next step
in the comparative method is to infer the phonological changes that led to the
correspondences and use these to reconstruct the word forms in proto-language.

Many of the languages seen in the world today have evolved through the
process described above, like Latin evolved into modern romance languages like
Spanish, French and Italian. This suggests that languages can be grouped into
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families, sub families and so on based on common ancestory. Indo-European is a
example of one such family. Phylogenetic inference (Section 5) is concerned with
identifying these groupings based on the features observed in these languages.

Greenburg proposed a method called mass lexical comparison or multilateral
comparison for �nding genetic relationships that cannot be captured by the
comparative method. Instead of looking for recurrent sound correspondances,
Greenburg looked at the surface similarity of the words in various languages
and used them to propose long distance genetic relationships. This methods
has been sharply criticized by many linguists for its lack of rigour and is not in
wide spread use. However as we shall see in Section 5.6, it looks attractive from
a computational perspective.

Let us start by looking at the computational techniques for cognate identi-
�cation in the next section.

3 Cognate Identi�cation

Identifying sound correspondences and cognates can be a time-consuming and
laborious process, requiring the expert knowledge of a linguist. There are still
many languages that have received little attention due to the amount of e�ort
involved. Finding automatic methods for performing or bootstrapping these
processes would be a great bene�t to historical linguists and has been a major
motivation for research on cognate identi�cation. Achieving good performance
on automatic cognate identi�cation can also bene�t machine translation when
dealing with two languages that share a certain quantity of cognates, as cognates
are usually translations and serve as anchors when aligning bitexts.

The datasets used in the cognate identi�cation literature are as varied as
the approaches. There is no single dataset that dominates the �eld. Most pa-
pers use datasets that are relatively small and are typically dictionaries. A
few examples of datasets include a dictionary of Algonquian languages pro-
duced by Hewson (Hewson, 1993; Kondrak, 2001, 2002b, 2003b, 2004), a set of
82 cognate pairs derived from Swadesh lists (Covington, 1996; Kondrak, 2000,
2003a), a small German-English dictionary1 (Mulloni and Pekar, 2006), and the
Wordgumbo online English-Polish and English-Russian dictionaries2 (Ellison,
2007). Swadesh lists were created by Morris Swadesh for comparing languages.
A Swadesh list is a set of 100 or 200 words for a particular language family that
represent the most common and most useful words (Swadesh, 1955a). These
lists often serve as datasets for cognate identi�cation. The Comparative Indo-
European Data Corpus (Dyen et al., 1992a), used by (Mackay and Kondrak,
2005) and (Kondrak and Sherif, 2006) consists of Swadesh-style lists of 200
words for 95 languages of the Indo-European language family.

Evaluation of cognate identi�cation methods typically uses measures of pre-
cision, recall, and accuracy. Less often are F1 scores reported as well, but
precision and accuracy are the predominant measures. Precision (equation 1)

1Available http://www.june29.com/IDP.
2Available http://www.wordgumbo.com.
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and recall (equation 2) are calculated as they are for information retrieval:

P =
|correct cognates identi�ed|

|cognates identi�ed|
(1)

and

R =
|correct cognates identi�ed|

|cognates in test set|
. (2)

Accuracy is the ratio of correct cognates to the total number of cognates accord-
ing to a gold standard list. The F1 measure, when reported, is the harmonic
mean of precision and recall:

F1 =
2PR

P + R
(3)

Identifying correspondences and cognates is a di�cult task because several
sound changes may have occurred between two languages, obscuring their re-
latedness. The inherent di�culty in identifying correspondences and cognates
has motivated the development of several computational tools and methods for
facilitating the process. Another factor driving the automatic identi�cation
of cognates is machine translation, speci�cally learning translation correspon-
dences. In the case of historical linguistics, most approaches deal with phonetic
similarity and sound correspondences. Phonetic similarity attempts to measure
how similar phonemes in two languages are. Measures of dialect and language
distance rely heavily on phonetic similarity. These disparate needs have mo-
tivated two main ways of handling cognate identi�cation: orthographic and
phonetic. Orthographic methods focus on the characters used in the writ-
ing system and make the assumption that characters correspond to consistent
sounds in their respective languages. Phonetic methods rely on phonetic tran-
scriptions of the languages and look at phonetic similarity amongst other things.

Approaches to cognate identi�cation use both manually constructed schema
and empirical methods (not necessarily together). Orthographic methods tend
to rely more on empirical methods, whereas several of the earlier phonetic meth-
ods rely more on manually constructed schema. The most recent approaches
lean more strongly towards empirical methods. A recent evaluation by Kondrak
and Sherif (Kondrak and Sherif, 2006) hints that empirical methods may be
performing best, but it is still an open question as to which will prevail.

In computational approaches, the strict de�nition of cognate from histor-
ical linguistics is usually abandoned. In historical linguistics, a cognate is a
word in two related languages that has a single parent in an ancestor language.
Computational approaches typically discard the constraint that the two words
descend from the parent. Borrowed words are words that enter a language di-
rectly from another language. Borrowings can take on many forms, sometimes
appearing in the target language untranslated from the original. English exam-
ples include bagel and avatar from Yiddish and Sanskrit, respectively. Other
times they are borrowed in translated form, such as worldview from the Ger-
man Weltanschauung. In the case of the former, most cognate identi�cation
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algorithms do not distinguish between such borrowings and cognates. In the
case of the latter, most algorithms would fail to recognize the two as cognates.
Hereafter, the term cognate will refer to the looser computational de�nition and
strict cognate to the de�nition from historical linguistics (the looser de�nition
is sometimes referred to as an orthographic cognate).

The remainder of this section is organized by �rst looking at orthographic
approaches in Section 3.1. Often these approaches are coupled with a particular
application, such as bitext alignment. The method and the application will be
discussed in tandem. In Section 3.2 we will discuss issues of determining pho-
netic similarity. There is no agreement of the exact determination of phonetic
similarity between phonemes in di�erent languages so a variety of approaches
will be discussed. Phonetic similarity plays a key role in phonetic cognate iden-
ti�cation methods, which will be discussed in Section 3.3. In cases where the
techniques are blended, we will include them with the phonetic approaches.
Throughout these sections we will look at the algorithms and formalisms used,
the various datasets examined, and the evaluation techniques in an attempt to
compare the various approaches. We conclude the section in Section 3.4 with a
discussion of future work and the approaches covered.

3.1 Orthographic Methods

The simplest orthographic approach is full string matching. If two words are
identical across languages they are hypothesized to be cognates. This approach
is naïve as it may �nd false friends (faux amis). False friends are words
in two languages that have the same orthographic or phonological realization
(depending on the data being used) but have very di�erent meanings or origins.
For example, Billion in German means trillion instead of the English billion that
it resembles. Even if the technique does not care about �nding strict cognates,
this still poses problems for most applications. In machine translation, it is
necessary to align parallel corpora at the sentence and word level. A number
of approaches have incorporated cognate identi�cation into this task (Simard
et al., 1993; Church, 1993; Melamed, 1999). If false friends are always aligned
the proposed translations could su�er.

3.1.1 String Matching

One of the earliest approaches to orthographic cognate identi�cation was string
matching (Simard et al., 1993). In this paper, Simard et al. approached the task
of aligning sentences in bilingual corpora by looking at a measure of cognate-
ness in each possible sentence. The measure of cognateness (or cognacy) is an
attempt to quantify the extent to which two words are cognates. Potential cog-
nates are found by looking at the �rst four characters in a word. If they match,
they are hypothesized to be cognates. The cognateness γ of two candidates for
alignment (one from each language) is computed as

γ =
c

(n + m)/2
, (4)
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Figure 1: Dot-plot of three years of Hansards (37 million words) (Church, 1993).

where there are c pairs of cognates in the bilingual segments of length n and
m. This model relies on the assumption that a translation correlates with cog-
nateness, so that there will be more cognates in a translation pair than in a
randomly selected pair. Simard et al. hand-aligned a portion of the Hansard
corpus and found that the average cognateness of translations were indeed sig-
ni�cantly higher than the average cognateness of random pairs.

Kenneth Church took a similar approach to Simard et al. with the Char_align
system (Church, 1993). Like Simard et al., he used the �rst four characters of
potential word pairs to determine cognates. His approach di�ered in that it no
longer used a measure of cognateness but a sort of histogram he calls a dot-plot
(see Figure 1). At each possible alignment in the texts, if the two words are cog-
nates a dot is placed on the graph. Additional signal processing techniques are
used to remove noise and the result is a line that represents the best alignment.
Church employed a sub-optimal heuristic search with forward pruning to �nd
paths. Each path was scored by the sum of its weights and the one with the
highest score was chosen. Church admits the procedure is ad hoc, but the work
is important because it demonstrates that statistical techniques can be used to
�nd cognates reliable enough to align a bitext.
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3.1.2 Dice's Coe�cient

Several approaches use Dice's coe�cient as a comparison between two strings
to determine if they are cognates. Dice's coe�cient is typically calculated on
two sets of items to determine similarity between the two sets. Let fx and fy

be the occurrences of items in a collection of aligned units and fx,y the co-
occurrences of items in the aligned set (Tiedemann, 1999). Dice's coe�cient is
then calculated as

Dice(x, y) =
2fx,y

fx + fy
. (5)

In Section 3.1.4, we further describe Tiedemann's approach, which makes heavy
use of the Dice coe�cient in conjunction with dynamic programming.

Brew and McKelvie use one such approach for the task of bilingual lexicon
building as a tool for lexicographers (Brew and McKelvie, 1996). They use a
variant of Dice's coe�cient originally used by McEnery and Oakes for the task of
sentence and word alignment (McEnery and Oakes, 1996). Brew and McKelvie
looked at character bigrams for hypothesis word pairs. Dice's coe�cient was
then calculated in �ve di�erent ways. Besides looking at the standard Dice for-
mulation as in equation 5, they changed how bigrams were found and weighted.
Extended bigrams were found by taking sequences of three letters and removing
the middle letter. The weighted Dice measure added weights to the counts in
the Dice equation in inverse proportion to their frequency. The weight of a
bigram was calculated as

weight(bigrami) =
Ntokens + Ntypes

freq(bigrami) + 1
, (6)

where Ntokens is the number of tokens seen in both of the bilingual corpora and
Ntypes is the number of distinct word types in those corpora. Another variant
combined extended bigrams with the weighted Dice formula. Another variant
penalized matches from di�erent parts of the words. Lastly, they used longest
common subsequence (see Section 3.1.3).

Their methods were tested on the French and English sections of the MLCC
Multilingual Corpus3, a collection of parliamentary questions taken from 1992-
1994. Brew and McKelvie were trying to create a tool for lexicographers that
returned possible translation pairs, potential cognates, as well as false friends.
One goal of the tool was to return results with variable precision and recall. High
precision items were cognates while high recall items were intended to consist of
many false friends. The variant of the Dice's coe�cient that penalized matches
from di�erent parts of the word returned the best precision. However, none of
the measures used were able to reliably detect false friends. High recall items
included many false translations and artifacts that would have been rejected by
humans.

3Available http://www.elda.org/catalogue/en/text/W0023.html.
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3.1.3 Longest Common Subsequence Ratio

The Longest Common Subsequence Ratio (LCSR), as the name suggests, is an
attempt to measure partial matches between two words by looking at the length
of matching substrings. The LCSR is calculated as

LCSR(x, y) =
‖LCS(x, y)‖

max(‖x‖, ‖y‖)
, (7)

where the LCS(x, y) is the longest common subsequence of segments x and y.
One application of LCSR to the task of aligning bitexts builds on the work

by Simard et al was done by Melamed (1999). Melamed recognized the two
problems in that approach of �nding cognates as being false positives and false
negatives. In Simard et al. (1993), a cognate was determined only by matching
the �rst four characters. True cognates that di�ered in that substring were dis-
carded, resulting in false negatives. Likewise, false positives occurred whenever
common pre�xes led to matches. For example, English and French both share
the pre�x con. This leads to false positives such as conseil and conservative.
His solution was to use LCSR with a threshold that was dependent on the two
languages under consideration. This threshold was related to the level of re-
latedness between the two languages. Melamed acknowledged this approach to
�nding cognates could be extended to the phonetic level, given phonetic tran-
scriptions of the source texts.

With the set of cognates identi�ed, his algorithm uses those as points of
reference for determining alignments. While he does not evaluate the accuracy
of cognate identi�cation directly, his results show improvements in accuracy for
the task of bitext mapping over previous work on the Hansard corpus. Melamed
reports improvement using LCSR over the naïve string matching of Simard et
al. Later work by Kondrak looks more closely at LCSR and compares it to
phonetic methods (see Section 3.3.1).

3.1.4 Weighted String Similarity Measures

Jörg Tiedemann developed three weighted string similarity measures that can
be used for cognate identi�cation (Tiedemann, 1999). His approach is at the
furthest end of the orthographic spectrum, drawing in information about vowels
and consonant sequences. His approaches seek to �nd a matching function m
based on di�erent factors. He evaluated each approach using the PLUG Corpus
of aligned Swedish-English technical texts.

The �rst approach is called VCchar and scores pairs of vowels and con-
sonants higher that co-occur in the reference lexicon more often. Vowels and
consonants at similar positions in the word pairs are counted and the Dice co-
e�cient scores them. The resulting list is sorted in order of the Dice coe�cient
and the best scores are examined. Swedish and English return mostly identical
pairs of characters for the top scores. A threshold value is then optimized on
the development data to achieve greater precision.
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The second approach Tiedemann uses is VCseq, which looks at matching
sequences of vowels and consonants (rather than single characters as in VCchar).
The method of computing the m-function is similar to the �rst approach, but
words are segmented di�erently. Word pairs are split into sequences of vowels
followed by sequences of consonants and vice versa. Characters that interrupt
sequences appear in neither. Sequences at identical estimated positions are
scored as matches and the ones with the highest Dice values are examined.
Again a threshold value was applied to achieve higher precision. This method
�nds longer sequences of potential matches.

The third approach is called NMmap. LCS is used in conjunction with dy-
namic programming to �nd non-matching parts of the two strings. Each pair
of non-matching strings [x, y] are given a weight as the ratio of the frequency
of [x, y] and the frequency of x. This approach attempts to �nd systematic
di�erences in orthographic systems. The highest scoring example is the cor-
respondence between Swedish ska and English c. This di�erence manifests in
word pairs such as asymmetriska and asymmetric. Of the three methods, Tiede-
mann found that the NMmap was the best if languages with a fairly common
character set were used.

Weighted string similarity measures have also been used in the discovery
of bitext (Smith, 2001). Bitext discovery is the task of automatically �nding
document pairs that are mutual translations. Cognates were found to be helpful
for detecting translation equivalence since it was not necessary that they had
been seen in the data previously. Smith modi�ed Tiedemann's approach, which
trained on a list of known cognate pairs, by instead training using a statistical
translation model. Translation models require aligned bitext for training and
provide probabilities of translational equivalence for bilingual word pairs. These
probabilities were incorporated into the matching function (for details, please
see (Smith, 2001)). Smith presented results showing that this approach could
reliably classify whether two texts were bitexts.

3.1.5 Multigram Alignment

A common approach in phonetic methods is to align pairs of words based so
that corresponding phonemes are matched (see Section 3.2). This has the ad-
vantage of removing the orthography from the equation by looking at the actual
phonemes involved, which are closer to the ground truth of spoken language.
However, the phonetic approach has the disadvantage of scarcity of data or
reliance on automatic methods (noisy) for producing phonetic transcriptions.
Some recent work has been done on producing alignments using orthography
alone, which has the advantage of large amounts of data (Cysouw and Jung,
2007). The assumption underlying this approach is that sound correspondences
will still emerge from the data and allow reliable alignments to be formed, even
with non-identical orthographies.

Cysouw and Jung describe an iterative process by which they match multi-
grams (sequences of characters of varying length) using a variant of Levenshtein
distance. Levenshtein distance is one way of measuring edit distance that works
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on strings of di�ering lengths and counts the number of insertions, deletions, and
substitutions necessary to transform one string into another. Cysouw and Jung
extend this by allowing for mappings of variable length (whereas Levenshtein
compares only one character at a time) and by assigning a cost between 0 and
1 to each operation. The cost for each multigram is found �rst by counting the
co-occurrences of the multi-grams in language word lists for each language. The
Dice coe�cient is calculated for each possible subsequence as a cost function.
To cut down on computation time, they limit the size of multi-grams to four
characters. Multi-gram costs were length-normalized so that all values fell in
the 0 to 1 range.

Cysouw and Jung evaluate their system using data from the Intercontinen-
tal Dictionary Series (IDS) database.4 They extracted about 900 word pairs
from English-French, English-Hunzib (a Caucasian language), and Spanish-
Portuguese. They found that reliable alignments were still possible even without
phonetic transcriptions and these could be used to �nd cognates.

3.2 Phonetic Similarity

The quanti�cation of phonetic similarity is an important component in di-
achronic and synchronic phonology (Kondrak, 2003a). However, computing
phonetic similarity is not always straightforward. If we used edit distance to
measure similarity, relatively similar phonemes /d/ and /t/ would be given the
same weight as /d/ and /a/, which are quite di�erent from the standpoint of
human intuition. Care must be taken to produce phonetic similarity measures
that match human intuition and linguistic realization more closely.

One early application of evaluating phonetic similarity was for the task of
aligning suspected cognates for historical comparison (Covington, 1996). Such
word alignments serve as the �rst step in applying the comparative method,
which seeks to establish historical relationships between languages. Alignments
are found by comparing surface forms of phonemes in a method that is meant
to mirror a linguist's �rst look at unfamiliar data. Except in the trivial case of
exact matches, all alignments are attempts at inexact string matching. To pro-
duce alignments, the aligner moves through the two strings performing either a
skip or a match. A cost is assigned to each. For each possible alignment, the
alignment is scored and an n-best list returned. Computation time is decreased
by computing the score as alignments are searched, giving up on a possible
alignment as soon as it exceeds the best value thus far. In this way, the aligner
maximizes the phonetic similarity scores of characters in a word-pair (by mini-
mizing the cost).

In Covington's �rst formulation, the actual phonemes do not play a large
role. He argues that alignment looks more at the placement of a sound in a
word rather than the paradigm for the sound in the language. He goes on
to make the point that by adding feature-based phonology, the system could
improve. Phonemes that are produced at closer positions in the mouth should

4Available http://www.eva.mpg.de/lingua/�les/ids.html.
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be considered more similar. Taking this into account would have corrected some
of the errors his system made. He evaluated his system on 82 pairs of cognates
from several di�erent languages drawn from the Swadesh lists of Ringe (Ringe,
1992). No automatically derived evaluation score was given but he reproduces
lists of output for various language pairs from manual inspection. Results were
better for languages that are more closely related and worse for those which
were not.

3.2.1 ALINE

Kondrak has contributed a large body of work to the tasks of computing pho-
netic similarity and identifying cognates (Kondrak, 2000, 2001, 2002a,b, 2003a,b;
Kondrak et al., 2003; Kondrak, 2004; Inkpen et al., 2005; Kondrak, 2005; Mackay
and Kondrak, 2005; Kondrak and Dorr, 2006; Kondrak and Sherif, 2006). He
extended the work done by Covington to include multivalued phonetic features
in his ALINE system (Kondrak, 2000). The task of phonetic alignment is di�-
cult to evaluate as it requires expert knowledge of linguistics and the history of
the languages in question. However, it can be evaluated indirectly by applying
it to the task of cognate identi�cation.

In the ALINE system, Kondrak used a series of multivalued phonological fea-
tures that looked at the position in the mouth where the sounds were formed.
Place of articulation can be easily converted into a multivalued scale that in-
tuitively models similarity. Bilabial consonants are closer to labiodental conso-
nants than they are palatal, for example. The same is true of vowels, which are
measured in terms of height in the mouth and position from back to front. This
similarity breaks down slightly when it comes to manner of articulation. He
uses similarities for stops, a�ricates, fricatives and approximants in a way that
is relatively intuitive for consonants, but also throws in values for vowels into
the same feature. In addition to features, he uses salience based on a number
of factors to weight the features. The salience values he uses are based on his
intuitions and acknowledges that a principled manner for deriving them was an
open question.

As in Covington's algorithm, Kondrak's produces many hypothesis align-
ments and must score each one. Whereas Covington opted for a more brute
force approach, Kondrak relies on dynamic programming. He points out that
while Covington saw the performance gain as negligible since most sequences
were short, for a system to be applicable on a large scale it must be e�cient.
Kondrak evaluates his system on Covington's dataset of 82 cognate pairs in
various languages. Comparing against the values Covington reported, Kondrak
shows that his system is able to correct many of the mistakes and is clearly the
better aligner. The extension of this work to cognate identi�cation is given in
Section 3.3.1. It is worth noting that this method is not empirical, but is driven
by linguistic knowledge.
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P (w) Probability of English words
P (e|w) Probability of pronunciations for English words
P (j|e) Probability of Japanese sound for English sounds
P (k|j) Probability of katakana character for Japanese sounds
P (o|k) Probability of OCR errors for katakana characters

Figure 2: Probabilistic models for machine transliterating English and Japanese
katakana (Knight and Graehl, 1998).

3.2.2 Machine Transliteration

Closely related to the issue of phonetic similarity is transliteration. Translit-
eration is the task of converting a word from the alphabet of one language to
another with phonetic equivalents. Rather than being strict cognates, the words
in the target language are borrowings (or proper nouns that do not make sense
to translate, such as person names). Important work in this area was done by
Knight and Graehl who developed a weighted �nite state transducer (WFST)
to convert Japanese katakana into English words (Knight and Graehl, 1998).
Finite State Transducers have a long track record of successful application to
tasks in computational morphology (Beesley and Karttunen, 2003). Also the
task of transliteration as Knight and Graehl formulate it decomposes naturally
into a cascade of �nite state transducers, which have the handy property of
being easily composable.

Knight and Graehl describe several challenges in producing their system.
Transliterating into Japanese is relatively easy, but back-transliterating is more
di�cult. There is a one-to-many relationship between English words and katakana
representations in Japanese. The problem is not as simple as just converting
katakana characters to their Roman alphabet equivalents as there is a one-to-
many mapping in that direction. To solve the problem they proposed a list of
�nite state transducers for each of the probabilistic models in Figure 2. The
�nal model is speci�c to the task of scanned data, taking into account errors in
optical character recognition (OCR). The �rst probabilistic model can be repre-
sented as a weighted �nite state automaton since no transduction is necessary.
The rest of the models were de�ned to be weighted �nite state transducers.
Here, the order is important. Each step in the �gure must be fed downward as
the transducer is composed.

Knight and Graehl used a corpus of short news articles from which they
extracted 1449 unique katakana phrases, 222 of which were missing from an
online bilingual dictionary. They back-transliterated these 222 phrases and
found that most were either perfect or good enough. Another experiment looked
at the names of 100 U.S. politicians in katakana that did not come from OCR.
They tested the system using human subjects who were native English speakers
and news aware. After being given brief instructions, they were set the task
of back-transliterating these names. Their system got 76% correct or mostly
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correct while the human subjects got only 34%.
Their system was not only successful, but it also has a useful implication

for phonetic similarity. The probabilistic model P (j|e) is essentially a measure
of phonetic similarity. The probabilities issued by the WFST can be used as
measures of phonetic similarity. The composability of the WFST also allows
for methods that can work without having phonetic transcriptions available
beforehand. Given su�ciently good transcription models, phonetic similarity
(and therefore cognate identi�cation) can potentially be calculated on much
larger datasets.

3.3 Phonetic Methods

Phonetic methods to cognate identi�cation seem to be well motivated by his-
torical linguistic theory. The actual process of language change takes place
in spoken form, which can be represented phonologically (though imperfectly).
The earliest such work was done by Jacques Guy (Guy, 1984, 1994). In (Guy,
1984), Guy looked at semantically aligned bilingual word lists to �nd sound
correspondences. To do this, he constructed a matrix of observed character fre-
quencies for characters in the source and target languages across all word pairs.
To produce a matrix of expected values for each correspondence, he considered
the case where all correspondences are random. He then produced the matrix
of expected values as follows:

Ei,j =

T∑
i=1

Arowi

S∑
j=1

Acolumnj

T∑
i=1

S∑
j=1

Ai,j

, (8)

where A is the matrix of observed frequencies, and T and S are the number
of unique characters for each of the input languages. The character correspon-
dences with the greatest di�erences in observed and expected frequencies are
deemed correspondences. He deals with null correspondences by constructing
matrices of weights and potentials for each word pair. Null correspondences
occur when the length of words di�er and thus the matrix is no longer square.
Weights are the di�erence between observed and expected frequencies. Poten-
tials are the sum of the weights and the maximum of all possible potentials to
the right in the matrix. By ranking the characters in order of potential, null cor-
respondences are values in the longer string that map to nothing in the shorter
string.

Guy uses the notion of potentials as a measure of cognateness. The cognate-
ness measure is the maximum potential of a character-to-character mapping in
a word pair divided by the total number of correspondences (including null). He
evaluates his technique using 300 words in 75 languages and dialects of Vanuatu.
Languages that share more than 40% cognates and those with simple correspon-
dences yield excellent results. Complex correspondences or low levels of cognate
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sharing cause the results to deteriorate rapidly. Guy extends this work in (Guy,
1994) and attempts to construct a uni�ed model of machine translation and
diachronic phonology. This amounts to constructing a bilingual word list using
cognates. The actual claim of creating a uni�ed model is underdeveloped in the
paper and is left as future work. Another criticism of this work is its heavy
reliance on ad hoc parameters and thresholds. Guy's approach is probabilistic
in that it uses co-occurrence statistics of actual data to determine correspon-
dences. He then incorporates heuristics to �ne-tune how these statistics are
interpreted to produce assessments of cognateness.

3.3.1 Adding Semantic Similarity

The �rst attempt to derive cognates directly from unaligned vocabulary lists
was done by (Kondrak, 2001). In this work, Kondrak combines phonetic sim-
ilarity developed using the ALINE system (see Section 3.2.1) with a measure
of semantic similarity. He describes the task as operating on two levels: word
and language. On the word level he is computing a likelihood that a given word
pair consists of cognates. On the language level he is computing which words
are cognates given two phonetically transcribed vocabularies. The vocabularies
must contain glosses to a metalanguage, such as English, in order to be able to
compute semantic similarity. To do so, he uses WordNet to �nd all the syn-
onyms, hyponyms, and meronyms for each gloss of a word. Hyponyms are
words that are subclasses of larger classes. For example, trout is a hyponym of
�sh. Meronyms are words that are parts of something else. For example, palm
is a meronym of hand. Regular string matching is done on the sets of possible
cognate pairs to determine similarity, which is weighted based on the type of
match. The phonetic similarity score generated by ALINE is interpolated with
the semantic similarity score to produce the �nal likelihood score.

Kondrak evaluates his results on a dictionary of four Algonquian languages
produced by Hewson (Hewson, 1993). The output of his system is a sorted list
of suspected cognate pairs, where true cognates are more frequent near the top
of the list. Determining where to threshold the list is application dependent, so
Kondrak decided to calculate the average precision using three di�erent thresh-
old values (20%, 50%, and 80%). He calculates 3-point average precision for sev-
eral di�erent combinations of his methods as well as the simple string matching
by Simard et al. (Simard et al., 1993), Dice's coe�cient (Brew and McKelvie,
1996) and LCSR (Melamed, 1999). Kondrak found that his method with Word-
Net relations performed the best and signi�cantly outperformed LCSR and the
other orthographic methods. This result was very important as it showed that
phonetic methods for cognate identi�cation which incorporated linguistic knowl-
edge could outperform string matching approaches.

3.3.2 Learning Approaches

A variety of machine learning approaches have recently been applied to the
task of phonetic similarity and cognate identi�cation. This section highlights
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two approaches: Pair HMMs and Dynamic Bayesian Networks, both graphical
models. Additional machine learning and statistical approaches include using
support vector machines to predict orthography (Mulloni, 2007), applying Bayes
theorem to cognate identi�cation (Ellison, 2007), and semi-supervised learning
of partial cognates (Frunza and Inkpen, 2006).

Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBNs) are graphical models which include Hidden
Markov Models (HMMs). Filali and Bilmes describe a method using DBNs that
both models context and learns edit distance to classify pronunciations (Filali
and Bilmes, 2005). Their method develops a stochastic model of edit distance.
Edit distance operations deal with the number of insertions, deletions and sub-
stitutions necessary to transform a source word into a target word. By assigning
costs to each such operation, edit distance can be turned into a stochastic model
with the probabilities learned from data. DBNs can then be used to represent
this stochastic model and established learning techniques can be applied. Fi-
lali and Bilmes add memory to the model by changing the links in the DBN
to condition the probability of the current operation on what the previous op-
eration was. Additionally, they incorporate context-dependence by adjusting
probabilities depending on what letters occur in the source or target words.
They evaluated their system on its ability to learn edit distances and produce
hypotheses for English pronunciations on the Switchboard corpus.

Pair HMMs

Pair Hidden Markov Models were introduced by MacKay and Kondrak to iden-
tifying cognates (Mackay and Kondrak, 2005). Previously they had been used
in computational biology to align sequences of DNA (Durbin et al., 1998). The
technique used by MacKay and Kondrak is to learn edit distance costs from
data. The Pair HMM consists of a state for each edit operation. In a Pair
HMM, there are two output streams. In the case of phonetic alignment, there is
an output stream for each word that is being aligned. Their method manages to
identify cognates with high precision and separates words that are similar due
to chance. An advantage of this approach is that it is not domain-dependent
and so may be applied to any situation requiring computation of word similar-
ity. Wieling et al. applied this approach to Dutch dialect comparison (Wieling
et al., 2007). Their results con�rm MacKay and Kondrak's results and show
that Pair HMMs align linguistic material well and produce reliable word dis-
tance measures. Fundamentally, this approach is equivalent to Filali and Bilmes
(2005). The di�erence lies in the choice of representation (Pair HMMs versus the
more general Dynamic Bayesian Networks) and the application of the method
speci�cally to cognate identi�cation.
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Evaluation

Work by Kondrak and Sherif evaluate various techniques as a measure pho-
netic similarity applied to cognate identi�cation (Kondrak and Sherif, 2006).
They found that DBNs (Filali and Bilmes, 2005) outperformed all other ap-
proaches tested on average, which included Pair HMMs (Mackay and Kondrak,
2005), CORDI (Kondrak, 2002b), Levenshtein with learned weights (Mann and
Yarowsky, 2001), ALINE (Kondrak, 2000), and several others. The dataset used
was the Comparative Indo-European Data Corpus (Dyen et al., 1992a). The
data consists of word lists of 200 meanings representing basic meanings of 95
languages and dialects belonging to the Indo-European language family. Kon-
drak and Sherif report extracting 180,000 cognate pairs from this corpus. Each
system was evaluated based on cognate identi�cation precision and averaged for
the 11 pairs of the test set. The result of the evaluation was that graphical
models (Pair HMMs and Dynamic Bayesian Networks) outperform manually
designed systems when enough training data exists.

3.4 Future Work

Cognate identi�cation is a central task in historical linguistics. It also has ap-
plications to dialectology and machine translation. It draws on measures of
word similarity, techniques from computational phonology, and machine learn-
ing. We have described the two main methods used to identify cognates, each
driven by di�erent concerns. Orthographic methods were driven largely by the
need to align bitexts for machine translation. Phonetic methods were originally
driven by the need for cognate lists in historical linguistics. As time progressed
and the application to machine translation became more obvious, the various
techniques underpinning cognate identi�cation have been driven by a greater
variety of concerns. In recent years, application of machine learning approaches
to cognate identi�cation have become more popular.

Future work in cognate identi�cation will most likely rely more heavily on
statistical and machine learning approaches. Whereas in machine translation,
the statistical MT paradigm has dominated the �eld, cognate identi�cation has
not yet reached this state. New models are being proposed and new methods for
�nding phonetic similarity, learning from real orthographies rather than pho-
netic transcriptions, and incorporating linguistic information are all open areas.
One thing that has not yet been tried is an ensemble method that combines
several di�erent approaches to merge strengths of di�erent approaches. Also,
we expect cognate identi�cation will be recognized as a useful tool in other areas
of language technologies. One such area where it has been used and will prob-
ably see further exploration is in spelling correction. Kondrak and Dorr report
favorable results applying ALINE and a combination of orthographic similar-
ity measures to the problem of confusable drug names � instances where drug
names look or sound alike and cause dangerous prescription errors (Kondrak
and Dorr, 2006).
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One major obstacle in the way of future progress is data sparsity. Human
phonetic transcriptions are expensive to obtain and require considerable e�ort.
Machine generated transcriptions are imperfect and contain noise that can inter-
fere with the process of �nding reliable sound correspondences. A leap forward
in the accuracy of automatic phonetic transcriptions for a wide variety of or-
thographies would open the �eld of cognate identi�cation to a large amount of
data that it has previously been denied.

At �rst blush, the topic of cognate identi�cation may seem mundane. Every
learner of a second language is taught to look out for cognates at an early stage
in their instruction. Strict cognates in the historical linguistic sense are much
more than similar-looking or -sounding words. The task is one that requires
information from a large variety of sources and has application to many di�erent
�elds. As such, it will probably continue to grow as a �eld of active research for
years to come.

4 Reconstructing the Evolutionary History

One of the primary aims of historical linguistics is to identify and establish
historical relationships between languages. Cognate words between languages,
recurrent sound changes that occured in a language's history and the similarities
in the grammatical features provide evidence for these relationships (see Section
5.1.2). Traditionally a linguist looks at the evidence and tries to come up with
a evolutionary tree that can explain as much of it as possible. All the major
linguistic families have been established in this manner.

However the task of infering the underlying evolutionary structure becomes
di�cult as the number of languages under consideration increases since the
linguist must keep track of more and more data. Often di�erent linguists come
up with similar but di�rent underlying structures and there is no objective way
to evaluate them.

In this section and the next, we cover some of the work that seeks to formal-
ize this process and develop methods for infering the underlying evolutionary
structure based on the observed evidence.

4.1 Lexicostatistics

Lexicostatistics was introduced by Morris Swadesh in Swadesh (1950). Start-
ing with a list of cognate words in the languages being analyzed, it builds a
evolutionary tree for them. There are 3 main steps in applying Lexicostatistics.

Meaning List We start by choosing a universal and relatively culture-free core
vocabulary list which we hope to be resistant to replacement or borrow-
ing. Swadesh proposed a list of 200 such concepts including body parts,
numerals, elements of nature, etc. � things which should be present in
any language used for human communication. Once such a list has been
chosen, it is �lled with the most common words used for these concepts
from all the languages that we want to analyze.
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Finding Cognates Among the words corresponding to the same meaning slot,
we identify cognate words by applying the comparative method.

Clustering the languages Lexicostatistics uses a distance based clustering
method called UPGMA (Unweighted Pair Group Method with Arithmetic
Mean). The distance between a pair of languages is measured by the
percentage of shared cognates between them. The clustering algorithm
proceeds like this:

1. Find the two closest languages (L1, L2) based on percentage of shared
cognates.

2. Make L1,L2 siblings.

3. Remove one of them, say L1 from the set.

4. Recursively construct the tree on the remaining languages.

5. Make L1 the sibling of L2 in the �nal tree.

4.2 Glottochronology

Glottochronology is an application of Lexicostatistics which tries to estimate
the time of divergence of siblings in the evolutionary tree. Glottochronology
works under the assumption of the lexical clock.

Lexical Clock At all times the rate of lexical replacement is constant for all
languages.

This constant is known as the glottochronological constant. Lee computed this
constant to be .806 +/-0.0176 at 90% con�dence level (Lees, 1953) based on 13
language pairs which are known to be related and for which times of divergence
are known from historical records. This means that after 1000 years of diver-
gence, two sibling languages will share approximately 81% of basic vocabulary.

Following Swadesh (1950), if t is the time in millennia, c is the percentage of
cognates shared and r is the glottochronological constant, the time of divergence
for any two languages can be computed using

t =
log c

2 log r

.

4.3 Discussion

Lexicostatistics and Glottochronology have been criticized for their underlying
assumptions of the lexical clock and for the di�culty of selecting a core vocab-
ulary list.

Finding a list of 200 core concepts that would generalize across languages
is a very hard task. Even the basic vocabulary of a language is a�ected by the
culture. Some languages may fail to have any word for a particular meaning,
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some may have multiple words for the same concept (synonyms, for example
"small" and "little" in English) or the same word for more than one concept in
the list (Ecuadorian Quechua has the same roots for "mouth" and "tongue")
(McMahon and McMahon, 2006). Also, while resistant to borrowing, loan words
can appear in the list. They must be detected and removed. Additionally,
some kind of words are likely to be similar across languages irrespective of
the evolutionary relationship (nursery words like mama, papa, imitations of
sounds like bang, thud) (Kessler, 2001) and so must be removed. Taking these
issues into consideration, Swadesh later proposed a 100 word list to be used for
Lexicostatistics purposes (Swadesh, 1955b).

Other researchers have adapted the basic Swadesh list for di�erent geograph-
ical regions like Southeast Asia (Matiso�, 2000), Australia (Alpher and Nash,
1999) leaving aside the lofty goal of building one list for all the languages of the
world. These lists are more useful for the languages residing in one geographical
area.

For Glottochronology, the main point of criticism has been the lexical clock
assumption. It is well known that rates of lexical replacement are vastly di�er-
ent across languages (Old Armenian and Modern Armenian share 97% cognates
(Bergsland and Vogt, 1962) while East Greenlandic Eskimo languages have sys-
tem of taboo words which hastens the process of vocabulary loss (McMahon and
McMahon, 2006)) and also for di�erent words. Some work at adressing these
issues is reported in Sanko� (1973); Brainerd (1970) and Embleton (1986).

The primary contribution of these techniques has been the idea of Swadesh
lists. They provide a good baseline for compiling a list of words that can be
reliably used for evolutionary analysis owing to their resistance to borrowing
and their presence in most of the languages.

In last 5-10 years, however, many researchers have started looking at the
phylogenetic methods developed in the evolutionary biology community and
have applied that to language data. There has been work both in the lexico-
statistics tradition where we only want to �nd the evolutionary tree and in the
Gllottochronological tradition where we are interested in �nding the dates of
divergence events in tree. We survey these works in the next section.

5 Phylogenetic Inference

In biology, phylogenetics (Greek: phyle = tribe, race and genetikos
= relative to birth, from genesis = birth) is the study of evolution-
ary relatedness among various groups of organisms (e.g., species,
populations). � Wikipedia : Phylogenetics

Evolutionary biology and historical linguistics address very similar problems.
Inferring an evolutionary tree of the species/languages seen today and those
that are extinct now, remains a key activity for both. In his book The Descent
of Man , Darwin notes,
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�The formation of di�erent languages and of distinct species, and the
proofs that both have been developed through a gradual process, are
curiously parallel... We �nd in distinct languages striking homologies
due to community of descent, and analogies due to a similar process
of formation.�(pp. 89-90)

The processes of language evolution and species evolution are very similar.
One ancestral language diverges to form two separate languages due to reasons
like geographical distance, migration, mutation (linguistic innovations like sound
change) and others. Ancestral languages become extinct with time and we come
to know about them through any written record that they leave behind. Sanskrit
and Latin are two such examples. The task in phylogenetic reconstruction is to
look at the characteristics of present day and extinct languages and infer the
underlying evolutionary tree.

The problem of phylogenetic reconstruction is well studied in evolutionary
biology community. After the structure of DNA was identi�ed in 1950s, the
amount of data available to biologists became enormous. Over the last 40 years,
many algorithmic and numerical methods have been developed that can handle
such large amounts of data. Felsenstein (2003) provides a good starting point
for an in-depth introduction to the general topic of phylogenetic inference and
its usages.

In the following sections, we would describe some basic concepts and tech-
niques for phylogenetic reconstruction and the attempts to apply them to lan-
guage data.

5.1 Basic Concepts

Like any long standing scienti�c �eld of study, Phylogenetics has its own set
of vocabulary. Following Ringe et al. (2002) and Warnow et al. (1996), we
de�ne the basic terminology in this section. Please note that phylogenetic infer-
ence and phylogenetic reconstruction refer to the same thing and may be used
interchangeably in most cases.

5.1.1 Phylogenetic Trees and Networks

A phylogenetic tree represents a hypothesis about the possible evolution pattern
of a set of languages. All the observed languages sit at the leaves of the tree.
The internal nodes of the tree represent the ancestral languages that are not
observed. The length of a tree branch may represent the time since the diver-
gence. In the tree, the languages are assumed to evolve independently after the
event of divergence.

These trees can be rooted or unrooted. An unrooted tree represents the re-
lationships between the languages but does not identify the ancestry. A rooted
tree also identi�es the common ancestors of the related languages. Determina-
tion of the root of an unrooted tree often needs some extra information which
may or may not be available.
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languages English German French Italian Spanish Russian

words hand Hand main mano mano ruká
states 1 1 2 2 2 3

Table 1: Lexical character corresponding to Hand (Based on data from Ringe
et al. (2002))

Phylogenetic networks are a generalization of trees that allow for contact
between languages after they have diverged, represented by horizontal edges
between branches. This allows for explicit representation of language contact
and borrowings.

5.1.2 Characters

Evolution of a language can be seen as a change in some of its features. These
features may be a lexical item, a grammatical feature or a change in some sound.
A character encodes the similarity between di�erent languages on the basis of
these features and de�nes a equivalence relation on the set of languages L.

Character A character is a function c : L → Z where Z is the set of integers
and L is the set of languages. (Warnow et al., 1996)

These characters can take one or more values which are called the states of the
character. Every language can be represented as a vector of character states.
The actual values of the charcater states are not important. (Ringe et al., 2002)

Three main types of characters are used in linguistics.

Lexical A Lexical character corresponds to a meaning slot. Cognate classes
of the words associated with the meaning slot in various languages form
the states of the character. So two languages have the same state for the
character if their words for this meaning slot are cognates. A example
taken from Ringe et al. (2002) is shown in Table 1. Here the character
encodes the lexical character for hand. English and German words for hand
are cognates as are the words in French, Italian and Spanish. Russian word
is not cognate to any of them.

Morphological Morphological characters are similar to lexical characters but
instead of words, they represent in�ectional markers and are coded by
cognation. For example, English and German will have di�erent states for
the character future tense since they use di�erent auxilary verbs in that
construction but Spanish, Italian and French have the same construction
coming down from the Latin and so they all have the same state.

Phonological Phonological characters represent sound changes. Since the pos-
sibility of a sound change reversing over the course of linguistic evolution is
small, they are coded only by recording if the sound change has happened
for the language or not. So they can only have two states. An example
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is Grimm's Law which describes a series of sound changes in Germanic
languages. So a voiced stop (bh) changed to voiceless stop (b) in English
(brother), Dutch (broeder) but not in Sanskrit (bhrata). So English and
Dutch will show the same state for this character and Sanskrit, the other.

Choosing a set of characters and properly coding them is an important step but
unfortunately it still remains a black art. Researchers di�er on how a particular
character should be encoded (see Gray and Atkinson (2003); Evans et al. (2004))
and �nal trees obtained from various methods have been shown to be sensitive
to the choice of characters Nakhleh et al. (2005b).

5.1.3 Homoplasy

Two languages can exhibit the same state for a character for reasons other than
an evolutionary relationship. The same state may occur due to independent
parallel development or due to back mutation. These cases are called homoplasy.

Parallel Development Two languages can independently evolve in the same
manner. For example, the sound changes that simplify the consonant
clusters are likely to happen in many languages on their own even when
the languages are not related. If such characters are not detected, they
may suggest a connection when there is none.

Back Mutation This refers to the phenomenon when a character evolves to
a state which was already seen before in the tree i.e a old state of the
character reappears. This is quite rare for linguistic characters described
above.

In the absence of homoplasy, every character provides unambiguous infor-
mation about the splitting order of languages and hence building the underlying
tree is relatively easier. Most of the early work on linguistic phylogenetic infer-
ence assumes a homoplasy free evolution (Warnow et al., 1996; Ringe et al.,
2002; McMahon and McMahon, 2006). It should be noted that borrowing be-
tween languages is not considered homoplasy and is another source of ambiguity.
However, loan words can be accurately identi�ed by the comparative method.
Most studies throw away the characters that are suspect of borrowing (Ringe
et al., 2002; Gray and Atkinson, 2003). Warnow et al. (2004b); Nakhleh et al.
(2005a) have proposed models that take into account homoplasy and borrowing
explicitly.

5.1.4 Perfect Phylogenies

When a character evolves down the tree without homoplasy (i.e. without parallel
development and back mutation), it is said to be compatible on the tree. This
implies that every time the state of a character changes, it enters a new state
previously unseen on the tree up to that point in time. As a result, all the
languages exhibiting the same state for a character form a connected subtree.
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A tree on which all the characters under consideration are compatible is called
a perfect phylogeny. A survey of the perfect phylogeny problem and approaches
towards it is presented in Fernï¾ 1

2dez-Baca (2001). Also see Warnow et al.
(2004a).

5.1.5 Models of Evolution

A model of evolution describes the process under which characters evolve on
the tree. Not all methods of phylogenetic reconstruction need a explicit model
of evolution. However parametric statistical methods like Maximum Likelihood
and Bayesian Methods need them. In historical linguistics, both the varieties
have been used. While Warnow et al. (1996); Gray and Jordan. (2000); Dunn
et al. (2005) have used the earlier variety of models, Gray and Atkinson (2003);
Pagel and Meade (2006) used a restriction site model of evolution that explicitly
models rate of change of characters within a Bayesian framework.

Warnow et al. (2004a,b) discuss what kinds of models of evolution are ap-
propriate for use with linguistic data and what kind of inference they allow. In
particular, it is relatively easy to reconstruct unrooted tree under most models
of evolution but only highly restrictive models allow for the estimation of di-
vergence times and dates on tree nodes. Evans et al. (2004) also discusses the
problem of inference of divergence times.

5.2 Methods for Phylogenetic Reconstruction

Once a set of characters has been chosen and a model of evolution decided upon,
there are many di�erent methods that can be used for reconstructing phyloge-
nies. For a given set of languages and characters, all the possible evolutionary
trees form a �tree space� and a phylogenetic inference method can be seen as
searching for the optimum tree according to its optimization criteria.

These methods fall into two broad categories, distance based methods and
character based methods.

5.2.1 Distance Based Methods

Distance based methods work by measuring some kind of distance between
languages as described by the character states and putting the languages close
to each other in the same subtree.

UPGMA The simplest distance based method is UPGMA (Unweighted Pair
Group Method with Arithmetic mean). It recovers the correct tree if the
input data satis�es the lexical clock hypothesis (see Section 4.2). The
method was described in Section 4.1.

Neighbor-Joining NJ (Saitou and Nei, 1987) is a greedy algorithm like UP-
GMA but it doesn't need the lexical clock assumption to retrieve the
correct tree. A distance matrix between all pairs of languages is given as
input to the algorithm. The method starts out with a star-like topology
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and at every step tries to minimize an estimate of total length of the tree
by combining together the languages that provide the most reduction. It
has been shown that the method is statistically consistent (i.e. if there is
a tree on which the input distances �t perfectly, it will recover that tree).
The exact criterian that NJ tries to optimize has also been established.
See Gascuel et al. (2006) for further details.

5.2.2 Character Based Methods

Character based methods work with states of characters rather than just looking
at the total number of changes of character states between languages.

Maximum Parsimony Maximum Parsimony (MP) is based on the principle
of minimum evolution. It seeks to �nd trees on which minimum number
of character state changes occur. There are many di�erent measures of
parsimony with Fitch parsimony (Fitch, 1971) and Wagner parsimony
(Farris, 1970) being two frequently used examples. Finding a MP tree is
NP-Hard and so heuristic searches are used. MP usually returns more
than one tree � none of which, however is guaranteed to be optimal.

MP is a non parametric statistical method since it does not induce a
model of character evolution along the branches. However it is not sta-
tistically consistent (Felsenstein, 1978). It su�ers from what is known
as long branch attraction. This means that if the rates of evolution are
very di�erent on di�erent branches of the true tree then MP is likely to
reconstruct the wrong tree.

For use of MP in constructing language phylogenies, see Gray and Jordan.
(2000); Dunn et al. (2005); Ryder (2006).

Maximum Compatibility Maximum Compatibility (MC) seeks to �nd the
tree on which most number of characters are compatible (5.1.4). If we
assume that evolution is homoplasy free, then all the characters in the
input data should be compatible on the true tree. Hence the problem
reduces to �nding a perfect phylogeny which is known to be NP-Hard
(Bodlaender et al., 2000). However if the maximum number of states per
character is bounded then it is possible to �nd the best tree in polynomial
time (Kannan and Warnow, 1997).

In practice however it is not always possible to �nd a perfect phylogeny
on the given character data. In that case, MC returns the tree(s) that has
maximum number of characters compatible on it. Like MP, MC also does
not induce a model of character evolution along edges.

Ringe et al. (2002) use MC to construct the phylogenetic tree for IE data
set.

Maximum Likelihood The Maximum likelihood (ML) method seeks to �nd
the tree that maximizes the likelihood of the observed data under an
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assumed parametric model of character evolution. ML is statistically con-
sistent and is resistant to noise in the data and di�ering rates of evolution
along di�erent branches. However it is only as good as the underlying
model of evolution. Moreover, since it involves search over two spaces, the
parameter space of the model of character evolution and the space of tree
topologies, it is very expensive in practice.

J. (1981) describes a dynamic programming algorithm for compuitng
P (D|θ, T ) i.e. the probability of observed data given parameters of the
model and the tree topology. A variation of the structural EM algorithm
for estimating θ and T simultaneously is described in Friedman et al.
(2002).

Bayesian Inference This is a more recent addition to the stable of phyloge-
netic reconstruction methods. The aim here is to estimate the posterior
probability distribution of trees given a prior and the observed charac-
ter data. Like ML, this needs a model of character evolution. Since it
is hard to compute the posterior distribution explicitly, Markov Chain
Monte Carlo (MCMC) is used to approximate the posterior distribution
of trees. For more details, see Huelsenbeck et al. (2002).

The most attractive part of the Bayesian framework from the linguistic
point of view is the possibility of including a prior. Linguistic data is of-
ten very small in amount and so parameter estimation for richer models
of evolution using ML is hard. In such cases, BI is more suitable. More-
over, priors allow us to bring the evidence available from other �elds like
genetics, history, sociolinguistics into the picture that provide important
information about the evolution process.

BI has been used by Gray and Atkinson (2003); Pagel et al. (2007);
Atkinson et al. (2005) to construct a evolutionary tree for IE data set.

5.2.3 Comparison of various methods

Given all the methods described in the last section, the obvious question is which
method works best for language data or more speci�cally, which method works
best under what conditions? The �rst question can be answered by testing the
methods on some data set for which we know the true evolutionary tree with
some certainity. To answer the second question, we need controlled experiemnts
where e�ect of one factor could be teased apart from the other. Nakhleh et al.
(2005b) and Barbancon et al. (2007) present results of comparing many of
the methods described above. While Nakhleh et al. (2005b) compare them
on Indo-European data set which is a well studied language family and the
true evolutionary tree is known to a large extent, Barbancon et al. (2007) did
experiemnts with syntheic data. In these experiemnts they could control for
various factors like contact between languages, degree of homoplasy, di�erence
in rate of change of characters, choice of characters and see their e�ect on
di�erent methods.
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UPGMA BI WMC MC MP NJ

Full(336) 115 51 53 48 52 53
Lex(297) 98 43 44 44 45 44

Full-screened(294) 75 15 15 14 14 17
Lex-screned(259) 61 12 9 9 9 10

Table 2: No of characters incompatible on trees returned by di�erent methods
on IE data set (Data taken from Nakhleh et al. (2005b))

Nakhleh et al. (2005b) They used the data collected by Ringe et al. (2002).
It consisted of 336 characters for 24 IE languages. They did experiemnts
under 4 data conditions namely all (all the characters), lex( only lexical
characters), all-screened , lex-screened (characters exhibiting parallel de-
velopment are removed). They evaluated the reults based on how many
characters were incompatible (see Section 5.1.4 ) on the �nal tree returned
by the method. Results are shown in Table 2. In general, all the methods
perform better when data is screened and UPGMA does the worst. For a
further discussion of the results, see Nakhleh et al. (2005b).

Barbancon et al. (2007) They �rst generated a random binary tree under a
generative model. Then using the evolution model described in Warnow
et al. (2004b), characters were evolved along the tree branches. Homoplasy
and deviation from lexical clock were explicitly controlled. The error rate
was measured by false negatives which is the count of bi-partitions of
leaves that exist in the original tree but not in the tree proposed by the
method and false positives which is the count of bi-partitions that occur
in the tree proposed by the method but not in the true tree. They tested
the same set of methods as Nakhleh et al. (2005b) under various settings
of parameters. Their main conclusion was that some methods like MP
and MC are able to take advantage of data that is free from homoplasy
while others like BI perform more or less the same. for further results,
please see Barbancon et al. (2007).

5.3 Modeling Homoplasy and Borrowing

As mentioned in Section 5.1.1, phylogenetic networks are a generalization of tree
typology that allow for explicit modelling of language contact and borrowing
events. It is possible to adapt the methods described in the last section for
network reconstruction (see Jin et al. (2006b,a); Nakhleh et al. (2005a); Bryant
and Moulton (2002); Bandelt et al. (1999)).

Extending the work of Ringe et al. (2002), Nakhleh et al. (2005a) presented
perfect phylogeny networks as a generalization of perfect phylogeny problem on
trees. We said in section 5.2.2 that it is not possible to always �nd a perfect
phylogeny on a tree. The idea here is to add the minimum number of horizontal
contact edges to the tree obtained by applying MC that will make all of the

26



characters compatible on the tree. The key assumption in their model is that
when a word is borrowed into a language, it replaces the original word completely
(i.e. borrowing across contact edges does not lead to polymorphic characters)
5. Working with the same data used by Ringe et al. (2002), they were able to
obtain a perfect phylogeny network by adding 3 additional contact edges to the
tree obtained by Ringe et al. (2002). These contact edges were consistent with
geographical and chronological constraints on possible contacts.

There has also been work on developing models of character evolution that
explicitly account for homoplasy. Such models have been porposed by Warnow
et al. (2004b); Atkinson et al. (2005).

5.4 Dating of nodes in Phylogenetic Trees

As we have mentioned above, inferring tree topology is possible under most
models of evolution. However to estimate the times associated with internal
nodes, we need additional assumptions on rates of evolution of characters.

Extending the work in Gray and Atkinson (2003) , Atkinson et al. (2005)
present results on estimating the dates of divergence on both real IE data and
on synthetic data.

Their basic model is a two state time-reversible model of lexical evolution.
Now there is variation in the rates of evolution across di�erent lexical items. This
is modelled with a gamma distribution over the rates of evolution. The rates
can also vary through time. To handle this, they use the penalized-likelihood
rate smoothing that penalizes any abrupt changes in the evolution rates on
adjacent branches. Using BI, they generated a sample distribution of trees from
the posterior probability distribution under this model.

To estimate the absolute time of divergence, they constrained the range
of dates on 14 of the nodes in the tree based on available historical evidence.
The estimate of dates that they obtained supports Anatolian theory of Indo-
European origin (Atkinson and Gray, 2006). These estimates were found to
be robust towards choice of character data and priors. The authors used BI
to also estimate dates on the same data set but under a very di�erent model
of evolution. The date estimates obtained were consistent with those obtained
earlier.

However other authors have consistently argued against inference of dates
on phylogenetic trees. In particular Evans et al. (2004) have proposed a no
common mechanism model in which all the rates of evolution are assumed to be
independent and no inference of times of divergence is possible. They consider
the attempts to infer the divergence dates as premature and advise against it.

5.5 Looking for deeper relationships

Methods of phylogenetic reconstruction that use lexical characters require that
the cognate words be identi�ed between the languages being analyzed. However

5a character for which some language exhibits more than one state
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the method of cognate identi�cation gives reliable results only upto a time depth
of 8, 000 ± 2, 000 years (Nichols, 1992). After that point in time, it becomes
hard to distinguish chance resemblance from resemblance due to shared lineage.
However, some recent work has shown that it may be possible to construct
phylogenies beyond a time depth of 10,000 years.

Some researchers ( Dunn et al. (2005); Ryder (2006)) have experimented with
structural (grammatical) features of languages as the the basis for phylogenetic
reconstruction. These features are encoded as binary characters based on the
presence and absence of the feature in a language.

Dunn et al. (2005) used structural features to try and reconstruct a phy-
logeny of Papuan languages of Island Melanesia. These languages exist in close
contact with around 100 languages belonging to Austronesian family. Dunn et.
al. found that these languages share almost no lexical cognates other than the
borrowings from the neighboring Austronesian languages. Based on the rate
of lexical replacement seen in other languages, this suggested that either these
languages were completely unrelated or they diverged a long time ago. However
they did share many structural properties. So the authors collected data about
125 structural features from 15 Papuan and 16 Austronesian languages, taking
care to avoid features that are known to occur together in languages with high
correlation.

To con�rm their hypothesis,they �rst applied the Maximum Parsimony method
to Austronesian languages and obtained a tree congruent to the one prepared
by the comparative method. This showed that grammatical characters can also
reliably extract phylogenetic relations. Then they applied the same technique
to the Papuan languages. As expected, the strength of phylogenetic signal was
relatively weak in this case but it produced a geographically consistent tree
showing broad genological groupings of the languages.

In Ryder (2006), the author has used the data available from the World
Atlas of Languages (). He found that Bayesian Inference performed better
than Maximum Parsimony for structural features.

Another e�ort at pushing back the time depth accessible to phylogenetic
reconstruction methods is in Pagel et al. (2007) where they identify a consis-
tent connection between frequency of word usage and rate of word evolution.
Using the bayesian framework of Gray and Atkinson (2003), they inferred a
phylogenetic tree of 87 Indo-European languages. Similar to Pagel and Meade
(2006), they estimated lexical evolution rates for a list of 200 basic meanings as
the mean of the Bayesian posterior probability distribution of evolution rates.
These rates were analyzed against the frequency of use of these words. These
two quantities showed a negative correlation across 4 languages they tested on.
This was consistent across part of speech and accounted for almost 50% vari-
ation in the rates of evolution. This shows that the words that are used most
are least susceptible to change.

In the light of these developments, Russell (Gray, 2005) suggests that it
may be possible to detect a phylogenetic signal even for time depths greater
than 10,000 years. This opens up doors for possible testing of long distance
language relationships proposed in linguistics literature.
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5.6 Working with raw language data

Most of the work on phylogenetic inference in linguistics has been done based
on lexical characters that are extracted by human linguists by applying the
camparative method. Indo-European datasets prepared by Dyen et al. (1992b)
and Ringe et al. (2002) have been used in many of these studies. However
obtaining such data for new language families remains a time consuming and
hard task. This limits the utility of computational phylogenetic methods since
they can only be used on well analyzed sets of languages.

Multilateral comparison (see section 2) on the other hand works directly with
word lists in various languages. That makes it interesting from a computational
point of view since the more data we give as input, the more likely a consistent
statistical method would be to reconstruct the correct tree.

Kessler (2001) suggests that the primary di�erence between the comparative
method and multilateral comparison is of statistical signi�cance. When do we
have enough evidence to proclaim relatedness? Untill now it has been a matter
of the gut feeling of the linguists but using strict statistical methodology can
bring in objectivity.

In section 3, we discussed many ways of automaticaly identifying the cog-
nates however they have never been used in a phylogenetic reconstruction study
untill now. Recently, Bouchard et al. (2007) have used the automatically ex-
tracted cognates to learn the sound changes that may have happened during the
evolution from the ancestral language. In their model, words undergo stochastic
edits along the branches of the underlying tree. These edits are context sen-
sitive. They �x the topology of the underlying phylogenetic tree and use EM
to estimate the parameters of the stochastic process (see the paper for more
details). They use this setup for a number of tasks like identifying phonological
changes and reconstructing word forms at the internal nodes of the underlying
tree.

This looks like a promising direction since it uses large corpora but is not
limited to surface matching. By learning the regular sound correspondences,
it incorporates the strong point of comparative method in the computational
framework. It can also act as a cognate identi�cation algorithm similar in spirit
to methods that look at the phonetic similarity between words to identify cog-
nates (see section 3.2)

5.7 Future Directions

Quantitative methods for constructing linguistic phylogeny have just arrived on
the scene. Their success untill now has mostly been limited to reproducing the
already known phylogenies. Before they can be trusted with identifying true
phylogeines, they need to be better understood in terms of their applicability
under various scenarios of language change. Recent studies comparing vari-
ous methods under di�erent conditions provide a good starting point in that
direction.

Pagel et al. (2007) has given an important insight into the mechanism of
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lexical evolution which can be used to improve the models of evolutions used
in Maximum Likelihood and Bayesian Inference. Understanding the evolution-
ary process of other types of language characteristics like syntax, word order,
phonology, etc. remains an open area of exploration.

Another promising direction seems to be a computational framework for
replacing the human involvement in cognateness judgments and working with
larger corpora directly. A joint inference of cognateness and the sound changes
under the framework of Bouchard et al. (2007) is a possibility, something that
authors already seem to be looking at. As they have noted, their edit model is
quite basic and does not capture many interesting phenomenan that happen in
the real world. Developing richer models would be a natural next step.

6 Conclusion

We have presented a picture of two major areas where computational methods
have been applied to historical linguistics. We began with cognate identi�cation,
a central task in historical linguistics with applications in machine translation
and dialectology. Cognate identi�cation uses techniques involving word similar-
ity, computational phonology, and machine learning. The two main branches
of cognate identi�cation research were driven by their separate origins. Or-
thographic methods largely emerged from applications dealing with aligning
bitexts. Phonetic methods originated mainly from a focus on historical linguis-
tics. Recently these two approaches have begun to merge and machine learning
techniques are playing a larger role. The end result is that cognate identi�cation
is a richer topic for research with many possible extensions and much work still
to be done.

The other area seeing more and more computational techniques being used
is inferring phylogenies of languages. This is a task that has a lot of similarities
to the task of biological phylogenetic inference and faces much of the same
problems. Recent years have seen more adaptions of phylogenetic inference
techniques to linguistic data with varying degrees of success. However, most of
the work has been a rea�rmation of what linguists have worked out through
the comparative method. Also, we have yet to see techniques and evolutionary
models that are speci�cally suited to linguistic data. Recent research uncovering
relationships between word usage frequency and lexical evolution rates look like
steps in the right direction. An interesting development has been e�orts to
work with raw language data instead of hand collected cognateness judgments.
We feel that this line of investigation holds much promise for practitioners of
computational techniques and will see more work in the future.
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