
15-745 Project Report dhenriqu,jmartins 1

Phase Order Search with Feature Selection
João Martins & David Henriques

Group Info

João Martins - jmartins@cs.cmu.edu
David Henriques - dhenriqu@cs.cmu.edu

Project Web Page

http://www.cs.cmu.edu/~jmartins/15745/

Abstract

In this work we study the phase-order search problem with a ma-
chine learning perspective. Using the LLVM testing suite we 1) gather
relevant code statistics from a large number a benchmarks, 2) collapse
the phase-order state space in a meaningful way, 3) perform an exhaus-
tive search on the reduced state space and 4) use several well-known
ML algorithms to learn phase-orderings that better optimise code with
given features. Our results are promising, and show that even in the
collapsed state space it is possible to learn orderings that out-perform
default compiler optimisations.

1 Introduction

Modern compilers optimise code by running several optimisation passes.
Each pass changes the code, producing a semantically equivalent program
that (hopefully) performs better in respect to some metric, like time. These
changes are not independent from each other. Optimisations require certain
conditions to be fulfilled and one optimisation may generate or remove opor-
tunities for others to be run. For example, constant propagation replaces
some operands by constants, making some variables become unused. A dead
code elimination pass may then remove these variables, but only if applied
after the constant propagation pass. Finding better orderings for running
these passes can have a significant impact in the final performance. This
problem is known as the Phase Order Search problem.

1

http://www.cs.cmu.edu/~jmartins/15745/

15-745 Project Report dhenriqu,jmartins 2

One significant problem for the Phase Order Search is the fact that there
is an exponential number of orderings of possible passes, which makes an
exhaustive search of the orderings unfeasible. Another complication is that
there seems to be no one ordering that is best for all programs; specific
characteristics make some programs more amenable to some orderings that
may not work so well for others. Machine learning techniques have sucess-
fully been applied to classification problems in large search spaces and, as
such, seem likely to be able to help in the phase order search problem. We
investigate such approaches in this project.

The goal is to identify characteristics (features) of the code that can then
be used to predict good orderings for optimising code with those character-
istics in respect to execution time. For this purpose, we use 76 benchmarks
from LLVM’s benchmark suite. We identify a significant number of such fea-
tures and find out which among them are most likely be more discriminative
through a dimensionality reduction technique known as PCA. After aggre-
gating these features, we train several classifiers to learn a mapping from
features to optimal orderings. We used several different learning methods
for training classifiers and compare their effectiveness.

[1, 2] address the problem of finding an optimal ordering of optimisation
passes, but do not discuss learning techniques. [3] gives an overview of
feature selection techniques in general settings. [4] tackles the long runtimes
of iterative compilation by using limited heuristics and static performance
impact analysis. [5] addresses a similar problem for finding which passes to
run to reduce compile time.

2 Machine Learning Algorithms

The task we are trying to perform requires the use of classification algo-
rithms, i.e., algorithms which, given training data that associates features
with category labels, identify to which category a new observation belongs.

Dimensionality Reduction

Often, the number of features we have to deal with is overwhelming. This
not only slows down classification algorithms due to the large number of
computations, but it also reduces the intuitive understanding of the algo-
rithm, as it is hard for a human to parse too many features. Principal
Components Analysis is a well known feature selection technique used to

2

15-745 Project Report dhenriqu,jmartins 3

reduce the dimensionality of Machine learning problems. It identifies the
directions in the feature space which show the greatest variability and are
therefore the most likely to impact the performance of the program. This
is done by computing the eigenvectors associated with the largest eigenval-
ues of the covariance matrix of the features. Working only in this reduces
feature space often produces more informative results than otherwise. For
more details, we refer to [6].

Neural Networks

Neural Networks are a popular classification/regression technique. A neu-
ral network consists of a number of input nodes, hidden layers and output
nodes. Input nodes are connected to the first level of hidden layers who
in turn are connected to the second layer and so on until the last layer
is connected to the outputs. Each node receives a set of inputs from the
preceding layer and then carries that signal through a tranfer function to
the next layer. Information is then aggregated at output nodes and, if it
compares unfavourably with the desired output, the error is backpropagated
through the network. This way, neural networks of sufficient complexity can
learn arbitrary functions. We use MATLAB’s nn-toolbox for training neural
networks. We kept most settings on default: 10 hidden layers and 15% of
the data reserved for validation. For more information on Neural Networks
we refer to [7].

SVM

The Support Vector Machine (SVM) is a technique designed to compute
the hyperplane which best separates two classes of data in the sense that it
maximises distance to any point in either class. In principle, the data must
be linearly separable, although this can be circumvented through the use of
kernel methods which apply an (invertible) transformation on the data to a
space where it can be linearly separated. The method can also be generalised
to an arbitrary number of classes by comparing each individual class with
all others, either aggregated (one-against-all) or isolated (one-against-one).
We use SVMmulticlass, an implementation of support vector machines that
performs one-against-all classification and uses Gaussian kernels. For more
information on SVM we refer to [8].

3

15-745 Project Report dhenriqu,jmartins 4

K-NN

K-NN is perhaps the most widely used amongst classification algorithms,
probably due to its simplicity. Each test point is classified according to
the K training points with features most similar to the test point (for some
metric, usually Euclidean distance) under a majority voting scheme. We
implement K-NN and, due to the simplicity of this method, we ran our
experiments for K=1 and for K=5. For more information on K-NN, we
refer to [9].

Decision Trees

A decision tree is a predictive model that, for each feature, branches into two
subtrees on the remaining features. For classification the features of the test
point are used to make decisions sequentially along the decision tree, from
root to one leaf, which yields the classification for that test point. Thus,
feature ordering is crucial for performance and chosen according to the fea-
tures that give the most information (reduce enthropy the most) at each
decision point. This model greatly benefits from PCA, since information is
condensed in less features than it would be without using the dimension-
ality reduction technique, which makes the tree significantly shorter. We
use MATLAB’s function classregtree to create these trees with dynamic
pruning. For more information on Decision Trees, we refer to [10].

3 Experimental Setup

3.1 Overview

We used the LLVM testing suite and infrastructure for this project. From
within the SingleSource subset we took 76 benchmarks that worked with
our process. These SingleSource benchmarks have a single source file, which
makes compiling and feature gathering a lot easier. Furthermore, the testing
infrastructure, once we understood how to use it, made automation more ac-
cessible, which was almost a necessary pre-requisite for our large benchmark
suite.

We first developed several tests (in the LLVM testing infrastructure sense)
for gathering statistics about programs. We used a combination of opt

passes and our own developed passes for this. The next batch of tests ran

4

15-745 Project Report dhenriqu,jmartins 5

our benchmark set with different pass orderings of our choosing, then with
-O3 and with -O0. Program features and their runtimes were used as the
core of our dataset.

This dataset was imported into MATLAB, and we applied the algorithms
mentioned above: Decision Tree, Neural Networks, Five-Nearest Neigh-
bours, One-Nearest Neighbours. Outside of MATLAB we used a Support
Vector Machine implementation.

To automate the entire process, we wrote over two dozen shell scripts, python
scripts and LLVM tests.

3.2 Benchmarks

We managed to work with 76 benchmarks with a single source file, found
within the test-suite/Singlesource/Benchmarks/ folder. There are more
tests within these specifications, but they either failed to compile for some
orderings, or failed to run altogether. In fact, four of the benchmarks we
used failed to compile/run with the -O3 and -O0 flags.

The complete list is the following:

Adobe-C++/loop unroll, Shootout/ackermann, Shootout/ary3,
Shootout/fib2, Shootout/hash, Shootout/heapsort,
Shootout/hello, Shootout/lists, Shootout/matrix, Shootout/methcall,
Shootout/objinst, Shootout/random, Shootout/sieve, Shootout/strcat,
McGill/misr, Stanford/Bubblesort, Stanford/FloatMM, Stanford/IntMM,
Stanford/Oscar, Stanford/Perm, Stanford/Quicksort, Stanford/RealMM,
Stanford/Towers, Stanford/Treesort, Misc-C++/Large/ray,
Misc-C++/Large/sphereflake, BenchmarkGame/fannkuch,
BenchmarkGame/n-body, BenchmarkGame/nsieve-bits,
BenchmarkGame/partialsums, BenchmarkGame/puzzle,
BenchmarkGame/recursive, BenchmarkGame/spectral-norm,
Dhrystone/dry, Dhrystone/fldry, Misc/dt, Misc/fbench, Misc/ffbench,
Misc/flops-1, Misc/flops-2, Misc/flops-3, Misc/flops-4,
Misc/flops-5, Misc/flops-6, Misc/flops-7, Misc/flops-8,
Misc/fp-convert, Misc/himenobmtxpa, Misc/lowercase, Misc/mandel,
Misc/oourafft, Misc/perlin, Misc/pi, Misc/ReedSolomon, Misc/salsa20,
Shootout-C++/ary, Shootout-C++/ary2, Shootout-C++/ary3,
Shootout-C++/fibo, Shootout-C++/hash, Shootout-C++/heapsort,
Shootout-C++/hello, Shootout-C++/matrix, Shootout-C++/methcall,
Shootout-C++/objinst, Shootout-C++/random,

5

15-745 Project Report dhenriqu,jmartins 6

Shootout-C++/reversefile, Shootout-C++/sieve,
Shootout-C++/spellcheck, Shootout-C++/strcat, Shootout-C++/sumcol,
Shootout-C++/wc, Misc-C++/bigfib, Misc-C++/mandel-text

3.3 Feature Extraction

To extract relevant features from code, we used the outputs from the -aa-eval,
-instcount, -lda and -regions passes, as well as of two passes we made
that count number of loops, average number of instructions per loop, max-
imum loop depth and number of basic blocks.

• -aa-eval obtains a series of statistics about aliasing in the code.

• -instcount gives us the number of instructions of all types appearing
in the code. We convert these to percentages to make it easier to
classify large and small code-bases together.

• -lda looks at memory access dependencies between loops.

• -regions gives us information about code regions, which are zones of
code whose CFG only have one entry and one exit. This is a good
measure of how isolated code is.

All these statistics are obtained using LLVM tests and using regular expres-
sions to extract the relevant numbers. They are then compiled into .csv

files to be imported and used in MATLAB and Excel.

3.4 Orderings

The phase-order space is far too large to explore completely. For example,
opt itself provides well over one hundred different analysis and optimisation
passes. To reduce this, we decided to classify the optimisation passes ac-
cording to the type of actions they execute on the code. By reading through
the LLVM documentation, we identified four main classes.

• Code modification: passes in this class alter existing code in varying
ways, but do not move or remove it. The ordering for this class is:
-argpromotion, -constmerge, -constprop, -globalopt, -ipsccp,
-correlated-propagation, -ipconstprop, -lower-expect,
-loweratomic, -lowerinvoke, -lowerswitch, -mem2reg, -prune-eh,

6

15-745 Project Report dhenriqu,jmartins 7

-mergereturn, -reassociate, -reg2mem, -scalarrepl, -sccp,
-scalarrepl-ssa, -simplify-libcalls, -tailcallelim

• Code motion: these passes effect modifications by moving instructions
from one place to another. The ordering for this class is:
-block-placement, -always-inline, -inline, -jump-threading,
-partial-inliner, -sink

• Code elimination: elimination passes are self-descriptive! The ordering
for this class is: -adce, -dce, -deadargelim, -die, -dse, -early-cse,
-globaldce, -gvn, -instcombine, -instsimplify, -memcpyopt,
-mergefunc, -simplifycfg

• Loop-related optimisations: some passes reason only about loops. Since
loops are extremely important and are executed very often by their
very nature, we felt these optimisations deserved a class of their own.
The ordering for this class is: -indvars, -lcssa, -licm, -loop-idiom,
-loop-deletion, -loop-extract, -loop-extract-single,
-loop-instsimplify, -loop-reduce, -loop-rotate, -loop-unroll,
-loop-simplify, -loop-unswitch

With only four classes to consider, it is now computationally feasible to ex-
tensively test and run with all twenty-four possible class orderings. However,
the individual pass ordering within these classes is still fixed.

3.5 Compilation

We configured the test infrastructure to use clang as the default compiler,
along with the LLVM toolset (e.g. llvm-ld, llvm-as, ...), and set the default
optimisation flag to -O0. The test infrastructure, in practise, compiles each
benchmark in the following manner:

1. clang $(CFLAGS) -O0 -S $< -o $@ -emit-llvm. This compiles to
.ll files from .c or .cpp (by using the clang++ compiler and the
additional $(CPPFLAGS) option) files.

2. llvm-as $< -o $@. This assembles .ll files into .bc files.

After this, our tests optimise the byte-code in the following way:

7

15-745 Project Report dhenriqu,jmartins 8

3. opt $(PASSES) $< -o $(TEST NAME).opt.o. This optimises the code
with the pass ordering given by $(PASSES), which is obtained from a
text file. This test is called by a script that iterates all orderings and
changes the pass text file.

4. llvm-ld -disable-opt $(TEST NAME).opt.o -o=$@. This instruc-
tion links the byte-code into the final executable. The -disable-opt

flag is used to disable link-time optimisations and make sure our or-
derings have maximum impact.

The exact same procedure is applied to the -O3 and -O0 optimisation passes.
We are not compiling directly with clang -O3, but are going through an
unoptimised compilation, then running opt -O3.

Finally, the tests are run and timed, and the results put into .csv files to
be used in MATLAB and Excel.

4 Experimental Results

In this section, we present the experimental results of the procedures de-
scribed in the previous sections. For each Machine Learning method, for
each of the 76 benchmarks, we trained the classifier in the other 75 exam-
ples and then evaluated it in the remaining benchmark, as in leave-one-out
cross validation. This makes our results a lot more robust than by simply
dividing them once into training and testing datasets.

Dimensionality Reduction

PCA reduced the dimensionality of the feature space to essentially 4 fea-
ture vectors since eigenvalues smaller than the largest 4 had much smaller
magnitude than the 4 largest eigenvalues. Analysing the eigenvectors we
see that the features with the most influence were % Call Instructions,
% Load Instructions, # Basic Blocks, # Regions, # Simple Regions,
Loops.

This is a diverse set of features that we think covers the broad spectrum
of program characteristics that are known to be runtime bottlenecks such
as excessive memory access (load instructions), unoptimised code in loops
(number of loops), function call overhead (call instructions), and how com-
partmentalised the code is (number of regions and basic blocks).

8

15-745 Project Report dhenriqu,jmartins 9

Comparison Against Best Ordering in Domain

The learning algorithms, despite having very high (> 95%) error rates in
identifying the best possible ordering (out of the total 24), chose orderings
that were significantly close to the best in terms of runtime. On average, the
ML methods learned orderings that achieved execution times between 84%
(SVM) and 90% (Neural Network) of the best possible ordering. We present
7 indicative cases chosen semi-randomly (we wanted to have some cases
where we fared well and some where we fared poorly, but chose randomly
within those classes) in Figure 1.

It is also worth noting that some benchmarks had extremely small runtimes
(< 50ms), making even tiny variations have a much bigger impact on the
average.

0

0.2

0.4

0.6

0.8

1

1.2

BubbleSort QuickSort Puzzle Flops-8 Matrix Random BigFib

Optimal Dec Tree NeuralNetworks Five-NN One-NN SVM

Figure 1: Comparison against best possible ordering. Showing (optimal time
/ learned ordering time). Higher is better.

9

15-745 Project Report dhenriqu,jmartins 10

Comparison Against Unoptimised Code

When comparing against unoptimised code, the learning algorithms, un-
surprisingly, fare significantly better. On average, methods run more than
twice as fast as the unoptimised code. It is interesting to notice the high
variability of the results (Figure 2), indicating that some programs are very
hard to optimise while some others are very amenable to optimisation.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

BubbleSort QuickSort Puzzle Flops-8 Matrix Random BigFib

-O0 Dec Tree NeuralNetworks Five-NN One-NN SVM

Figure 2: Comparison against non optimised code. Showing (non-optimised
time / learned ordering time). Higher is better.

Comparison Against -O3 optimised Code

When comparing against -O3 optimised code, it is worth noticing that, while
on average the learned orderings are not as good as -O3 (ranging from one-
NN at 85% to Neural Network at 91%), there are instances where the or-
derings found by learning algorithms fare better than -O3, which at least
suggests that -O3 ordering can be improved for certain code features. Some
cases can be seen in Figure 3.

10

15-745 Project Report dhenriqu,jmartins 11

0

0.2

0.4

0.6

0.8

1

1.2

1.4

BubbleSort QuickSort Puzzle Flops-8 Matrix Random BigFib

-O3 Dec Tree NeuralNetworks Five-NN One-NN SVM

Figure 3: Comparison against -O3 optimised code. Showing (-O3-optimised
time / learned ordering time). Higher is better.

Best and Worst Cases

In order to illustrate the high variability of the learning techniques, we
analyse the best and worst case benchmarks. In Figure 4 we can see that
almost all of the methods do significantly better than even -O3 (the axis scale
is logarithmic). On the other hand, in Figure 5, we see that the machine
learning algorithm’s performance is ghastly in this case (once again, the
scale is logarithmic). These are limit cases, but it’s still interesting to notice
their existence.

5 Conclusions

In this work we handled the phase-order search problem. We considered a
manageable version of the state space by grouping together passes whose
effect on the code is similar. In this reduced search space, using features
extracted from the code, we were able to train five different classifiers that
were, in some cases, able to outperform the -O3 default optimisations. This

11

15-745 Project Report dhenriqu,jmartins 12

1

2

4

8

16

32

64

128

Figure 4: Best case benchmark: loop unrolling benchmark. Shown is total
time taken (s). Lower is better.

is impressive given that no within-class optimisations have been attempted.

Other interesting conclusions from this work were that the best classifiers
assigned very uniform labels, but that there were crucial differences on some
benchmarks that deserved specific labels, and that the vast majority of test-
cases can be classified by looking at an extremely reduced number of features.

References

[1] Agakov, F. and Bonilla, E. and Cavazos, J. and Franke, B. and Fursin,
G. and O’Boyle, M. F. P. and Thomson, J. and Toussaint, M. and
Williams, C. K. I. Using Machine Learning to Focus Iterative optimi-
sation. In Proceedings of the International Symposium on Code Gener-
ation and optimisation (CGO, pages 295-305), 2006.

[2] Prasad A. Kulkarni and David B. Whalley and Gary S. Tyson. Evaluat-
ing heuristic optimisation phase order search algorithms. In Proceedings
of the International Symposium on Code Generation and optimisation
(CGO, pages 157-169), 2007.

12

15-745 Project Report dhenriqu,jmartins 13

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

Figure 5: Worst case benchmark: objinst benchmark. Shown is total time
taken (s). Lower is better.

[3] Andrew Y. Ng. On Feature selection: Learning with Exponentially
many Irrelevant Features as Training Examples. In Proceedings of the
Fifteenth International Conference on Machine Learning (pages 402-
414). 1998.

[4] Triantafyllis, Spyridon and Vachharajani, Manish and Vachharajani,
Neil and August, David I. Compiler optimisation-space exploration. In
Proceedings of the international symposium on Code generation and
optimisation: feedback-directed and runtime optimisation (CGO, pages
204-215). 2005.

[5] Gennady Pekhimenko. Machine learning algorithms for choosing com-
piler heuristics, 2008.

[6] Jolliffe, I. T. (1986). Principal Component Analysis. Springer-Verlag.
pp. 487. doi:10.1007/b98835. ISBN 978-0-387-95442-4.

[7] Christopher Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, USA, 1st edition, January 1996.

13

15-745 Project Report dhenriqu,jmartins 14

[8] Nello Cristianini and John Shawe-Taylor, An introduction to sup- port
vector machines and other kernel-based learning methods, Cambridge
University Press, 2000.

[9] Belur V. Dasarathy, ed. (1991). Nearest Neighbor (NN) Norms: NN
Pattern Classification Techniques. ISBN 0-8186-8930-7.

[10] J. R. Quinlan, Induction of decision trees, Mach. Learn. 1 (1986), 81-
106.

14

	Introduction
	Machine Learning Algorithms
	Experimental Setup
	Overview
	Benchmarks
	Feature Extraction
	Orderings
	Compilation

	Experimental Results
	Conclusions

