
The special unitary group of order 2, SU2, is the group of 2 × 2 

unitary matrices with determinant 1,

SU2 acts naturally on the vector space V = ℂ2 by matrix 

multiplication. If g ∈ SU2 and v ∈ V, then gv is the product of the 

2 × 2 matrix g and the 2 × 1 column vector v.

Let v0 =      and v1 =       form the standard basis for V. For k > 0, we 

define V⊗k to be the 2k-dimensional complex vector space with 

basis vectors

We extend the action of SU2 on V to an action on V⊗k by

We now define the tantalizer algebra Ck
G (tensor power 

centralizer) to be the set of all endomorphisms that commute 

with G on V⊗k.
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1. Background
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For each finite subgroup G of the special unitary group SU2 and 

each k ∈ ℕ, we construct an algebra Ck
G, the centralizer of G on 

the tensor space V⊗k. We find that these algebras have beautiful 

combinatorics vis-à-vis walks on their Dynkin diagrams.

Summary
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2. Finite subgroups of SU2
There are infinitely many finite subgroups of SU2, but they can be 

classified into five types:

• The cyclic groups
There are infinitely many of these. A cyclic group can be generated by a single element g. 

Taking a high enough power of g gets us back to the identity—hence the term cyclic.

• The dicyclic groups
There are infinitely many of these: one with 4 elements, one with 8, one with 12, and so 

on. The name comes from the fact that the binary dihedral group of 4m elements double-

covers (whence binary) the symmetry group of a regular n-gon (whence dihedral).

• The binary tetrahedral group

• The binary octahedral group

• The binary icosahedral group
We call these three lonely groups the “exceptional cases” because they are so few. The 

binary tetrahedral group is so named because it double-covers the group of rotational 

symmetries of a regular tetrahedron, and likewise for the binary octahedral and binary 

icosahedral groups.

This poster is available in electronic form at http://macalester.edu/~jbarnes/nola.pdf

The McKay correspondence is a celebrated proposition 

about the finite subgroups of SU2. It associates to each 

subgroup G ⊆ SU2 a unique affine, simply laced Dynkin 

graph.

…

…

Under the correspondence, vertices in the Dynkin graph 

correspond to irreducible representations of G, and an edge 

between vertices Va and Vb indicates that Va appears in V ⊗ Vb.
We observed that the dimension of the tantalizer algebra Ck

G

equals the number of paths of lengths 2k on the Dynkin graph 

of G that begin and end at the vertex corresponding to the 

trivial representation. It thus seems natural to seek a bijection

closed walks of length 2k at a vertex of the Dynkin graph of G

↔ elements of a basis of the tantalizer algebra of G

for each group G.

5. The cyclic groups
The cyclic group of order m, Cm, is the subgroup of SU2

generated by the single element

where ωm = e2πi/m. The elements are

Note that               Via the McKay correspondence, we associate 

to Cm the Dynkin graph

with m vertices.

We can completely describe the tantalizer algebra for all cyclic

groups and for all values of k. We do so by exhibiting a 

bijection

closed walks of length 2k at a vertex of the Dynkin graph of Cm
↔ elements of a basis of the tantalizer algebra of Cm

Here, we illustrate it by an example.
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…

Start with a walk of length 2k that starts and 
ends at a particular vertex of the Dynkin graph.
Here k = 4. This is the Dynkin graph of the cyclic group of order 9.

Write it down as a sequence of lefts and rights.

Cut the walk in half and flip the first half.
Change lefts to rights and rights to lefts.

RLLL / LRLL

LRRRLRLL

Now you can read the answer off as an 
endomorphism on V⊗k.
Change lefts to v0 and rights to v1.

v1⊗v0⊗v0⊗v0 ↦ v0⊗v1⊗v0⊗v0

everything else ↦ 0

Example: Mapping a walk on a Dynkin graph to an 
endomorphism on V⊗k that commutes with Cm.

6. The dicyclic groups
The dicyclic group of order 4m, Dm, is the subgroup of SU2

generated by the elements

Via the McKay correspondence, we associate to Dm the Dynkin 

graph

with m + 3 vertices.

We can completely describe the tantalizer algebra for all 

dicyclic groups and for all values of k. This time, we do so by 

exhibiting a bijection

walks of length 2k at a vertex of the cyclic graph of 2m nodes

in which the first step is counterclockwise

↔ elements of a basis of the tantalizer algebra of Dm
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Example: Mapping a walk on a Dynkin graph to an 
endomorphism on V⊗k that commutes with Dm.

…

Start with a walk of length 2k between two 
adjacent vertices in the appropriate cyclic graph.
Here k = 4 and G is the binary dihedral group of 12 elements.

LRRRLRLL Write it down as a sequence of lefts and rights.

Now cut the walk in half and flip each half 
individually;
i.e., we will get two pairs of half walks, one with the first half 
flipped and one with the second flipped.

RLLL / LRLL
LRRR / RLRR

Then you can read the answer off as an 
endomorphism on V⊗k.

v1⊗v0⊗v0⊗v0 ↦ v0⊗v1⊗v0⊗v0

v0⊗v1⊗v1⊗v1 ↦ v1⊗v0⊗v1⊗v1

everything else ↦ 0

We also have a bijection

walks of length 2k at a vertex of the cyclic graph of 2m nodes

in which the first step is counterclockwise

↔ closed walks of length 2k at the trivial vertex of the Dynkin graph of Dm

This bijection is described graphically below. Here κ0, κ1, …, 

κ2m – 1 are the vertices of the cyclic graph.

…

“Main pathway”
Motion left and right along this segment maps directly to 

motion counterclockwise and clockwise on the cyclic graph.

First branch
Walking onto and off of this branch in the 

Dynkin graph corresponds to walking 
from κ0 to κ1 to κ2 on the cyclic graph.

Second branch
Walking onto and off of this branch in the 

Dynkin graph corresponds to walking between 
κm and κm + 2 (via κm + 1) on the cyclic graph.

Walking onto either branch also reverses the orientation of the main pathway. 
If left meant counterclockwise before, it now means clockwise, etc.

Combining these results yields a bijection

closed walks of length 2k at a vertex of the Dynkin graph of Dm

↔ elements of a basis of the tantalizer algebra of Dm

7. The binary polyhedral groups
There are three groups that do not fit into the cyclic or dicyclic 

categories:

• T, the binary tetrahedral group (order 24);

• O, the binary octahedral group (order 48); and

• I, the binary icosahedral group (order 120).
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We cannot yet describe the tantalizer algebras of these 

exceptional groups in great detail. However, we do know the 

dimensions of the algebras for certain, and we have conjectures 

about their structure.

The tools we use to prove the dimensions of the algebras are 

Bratteli diagrams, which are used to study chains of 

semisimple algebras.

Figure: The Bratteli diagrams of T, O, and I. Bratteli diagrams 
are trees of infinite depth; only the first few levels are shown.

In a Bratteli diagram for a chain of algebras A0 ⊆ A1 ⊆ …, the 

vertices at depth k are identified with the irreducible 

representations of Ak. The number of edges between a vertex v

at depth k and a vertex w at depth k + 1 is the number of times 

the representation v occurs in the restriction of the 

representation w to Ak.

Here, the algebra chain is C0
G ⊆ C1

G ⊆ C2
G ⊆ ….

This diagram is useful because it is known that if we label the 

root as 1 and all the other vertices with the sums of the labels of 

their parents (like Pascal’s triangle), then dim Ak is the sum of 

the squares of the labels in row k. Using this theorem and some 

algebra, we proved that
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where Lk is the kth Lucas number.

In addition, we conjecture that for G = T, O, I, Ck
G is generated 

by the permutation Sk along with a single other element bG. 

This element bG only appears for sufficiently large k (k ≥ s, 
where s is the position from the right where the Dynkin 

diagram branches).

Similarly, we conjecture that (for k > s) Ck + 1
G is generated by 

Ck
G along with sk, the transposition that switches k and k + 1.

4. The McKay correspondence

3. Research questions
Each tantalizer algebra Ck

G is a finite-dimensional vector space. 

Here are some questions we were interested in:
1. What is its dimension?

2. What is a basis for it?

3. If we look at the tantalizer algebras for different values of k, what patterns emerge?

4. If we look at the tantalizers for different groups of the same kind (e.g., different 

binary dihedral groups), what patterns emerge?

5. What patterns hold for all finite subgroups of SU2 and for all values of k?

6. Is there a simple, unifying description of the tantalizer that will work for all finite 

subgroups of SU2 and for all values of k?

How did we do?

We can answer question 1 for all the tantalizer algebras.

We can answer questions 1–4 for all but the exceptional cases.

Questions 5–6 are very hard and suggest directions for future research.
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