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Abstract

For a finite subgroup G of the special unitary group SUs, we study the centralizer algebra
Z1.(G) = Endg(V®*) of G acting on the k-fold tensor product of its defining representation
V = C2. These subgroups are in bijection with the simply-laced affine Dynkin diagrams.
The McKay correspondence relates the representation theory of these groups to the associ-
ated Dynkin diagram, and we use this connection to show that the structure and representation
theory of Z;(G) as a semisimple algebra is controlled by the combinatorics of the corresponding
Dynkin diagram.

Introduction

In 1980, John McKay [Mc] made the remarkable discovery that there is a natural one-to-one
correspondence between the finite subgroups of the special unitary group SUs and the simply-
laced affine Dynkin diagrams, which can be described as follows. Let V = C? be the defining
representation of SUs and let G be a finite subgroup of SUs with irreducible modules G*, A € A(G).
The representation graph Ry(G) (also known as the McKay graph or McKay quiver) has vertices
indexed by the A € A(G) and a, ,, edges from A to p if G* occurs in G* ® V with multiplicity ay .
Almost a century earlier, Felix Klein had determined that a finite subgroup of SUs must be one of
the following: (a) a cyclic group C,, of order n, (b) a binary dihedral group D,, of order 4n, or (c)
one of the 3 exceptional groups: the binary tetrahedral group T of order 24, the binary octahedral
group O of order 48, or the binary icosahedral group I of order 120. McKay’s observation was
that the representation graph of C,, D,,, T, O, I corresponds exactly to the Dynkin diagram An_l,
Dny2, Es, E7, Eg, respectively (see Sectionbelow).

In this paper, we examine the McKay correspondence from the point of view of Schur-Weyl
duality. Since the McKay graph provides a way to encode the rules for tensoring by V, it is
natural to consider the k-fold tensor product module V®* and to study the centralizer algebra
Z1.(G) = Endg(V®*) of endomorphisms that commute with the action of G on V®*. The algebra
Z1.(G) provides essential information about the structure of V®* as a G-module, as the projection
maps from V& onto its irreducible G-summands are idempotents in Zj(G), and the multiplicity of
G* in V®* is the dimension of the Zj(G)-irreducible module corresponding to A. The problem of
studying centralizer algebras of tensor powers of the natural G-module V = C? for G C SU; via
the McKay correspondence is discussed in [GHJ) 4.7.d] in the general framework of derived towers,
subfactors, and von Neumann algebras, an approach not adopted here. Our aim is to develop the
structure and representation theory of the algebras Z;(G) and to show how they are controlled by



the combinatorics of the representation graph Ry(G) (the Dynkin diagram) via double-centralizer
theory (Schur-Weyl duality). In particular,

the irreducible Z;(G)-modules are indexed by the vertices of Ry/(G) which correspond to the
irreducible modules G* that occur in V®;

the dimensions of these modules enumerate walks on Ry(G) of k steps;

the dimension of Z;(G) equals the number of walks of 2k steps on Ry(G) starting and ending
at the node 0, which corresponds to the trivial G-module and is the affine node of the Dynkin
diagram;

the Bratteli diagram of Z;(G) (see Section is constructed recursively from Ry(G); and

when £ is less than or equal to the diameter of the graph Ry (G), the algebra Z;(G) has
generators labeled by nodes of Ry(G), and the relations they satisfy are determined by the
edge structure of Ry(G).

Since G C SUq, the centralizer algebras satisfy the reverse inclusion Z;(SUs) C Zx(G). It is well
known that Z;(SUsz) is isomorphic to the Temperley-Lieb algebra TLg(2). Thus, the centralizer
algebras constructed here all contain a Temperley-Lieb subalgebra. The dimension of TLg(2) is
the Catalan number €, = (Qkk), which counts walks of 2k steps that begin and end at 0 on the

k+1

representation graph of SUs, i.e. the Dynkin diagram A, (see ([1.3)).

Our paper is organized as follows:

(1)

(2)

In Section 1, we derive general properties of the centralizer algebras Z;(G). Many of these
results hold for subgroups G of SU; that are not necessarily finite. We study the tower
Zo(G) C Z1(G) C Z3(G) C --- and show that Zx(G) can be constructed from Zj_1(G) by
adjoining generators that are (essential) idempotents; usually there is just one except when
we encounter a branch node in the graph. By using the Jones basic construction, we develop
a procedure for constructing idempotent generators of Zy(G) inspired by the Jones-Wenzl
idempotent construction.

Section 2 examines the special case that G is the cyclic subgroup C,,. In Theorems and
we present dimension formulas for Z;(C,,) and for its irreducible modules and explicitly
exhibit a basis of matrix units for Z;(C,,). These matrix units can be viewed using diagrams
that correspond to subsets of {1,2, ..., 2k} that satisfy a special modn condition (see Remark
2.13)). We also consider the case that G is the infinite cyclic group Ces, which has as its
representation graph the Dynkin diagram A,,. Our results on C, which are summarized
in Theorem show that Z;(Cs) can be regarded, in some sense, as the limiting case of
Z(C,,) as n grows large. The algebra Z;(Cy) is isomorphic to the planar rook algebra PRy

(see Remark [2.22)).

Section 3 is devoted to the case that G is the binary dihedral group D,. We compute
dimZ,(D,,) and the dimensions of the irreducible Zy(D,,)-modules and construct a basis of
matrix units for Z;(D,,) (see Theorems and [3.29). These matrix units can be described
diagrammatically using diagrams that correspond to set partitions of {1,2,...,2k} into at
most 2 parts that satisfy a certain modn condition. Theorem treats the centralizer
algebra Z; (Do) of the infinite dihedral group D, which has as its representation graph the
Dynkin diagram D, and can be viewed as the limiting case of the groups D,,.



(4) In Section 4, we illustrate how the results of Section 2 can be used to compute dim Z(G) for
G =T, 0,I and the dimensions of the irreducible modules of these algebras. The case of I is
noteworthy, as the expressions involve the Lucas numbers.

The names for the exceptional subgroups T, O, I derive from the fact that they are 2-fold covers
of classical polyhedral groups. Modulo the center Z(G) = {1, —1}, these groups have the following
quotients: T/{1,—1} = A4, the alternating group on 4 letters, which is the rotation group of the
tetrahedron; O/{1,—1} =S4, the symmetric group on 4 letters, which is the rotation group of
the cube; and I/{1,—1} = As, the alternating group on 5 letters, which is the rotation group of
the icosahedron. An exposition of this result based on an argument of Weyl can be found in [Si|
Sec. 1.4]. Our sequel [BH]| studies the exceptional centralizer algebras Z;(G) for G = T, O, 1, giving
a basis for them and exhibiting remarkable connections between them, the Jones-Martin partition
algebras, and partitions.
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1 McKay Centralizer Algebras

1.1 SUs;-modules

Consider the special unitary group SUsg of 2 x 2 complex matrices defined by

e (CR)

where & denotes the complex conjugate of . For each r > 0, SUy has an irreducible module
V(r) of dimension 7 + 1. The module V = V(1) = C? corresponds to the natural two-dimensional

representation on which SUy acts by matrix multiplication. Let v_1 = (1,0)*,v; = (0,1)* (here
a B
_B &

a,ﬁec,aawﬁzl}, (1.1)

t denotes transpose) be the standard basis for this action so that if g = ) then gv_1 =

av_1 — Bvi and gvi = Bv_1 + avy.
Finite-dimensional modules for SU, are completely reducible and satisfy the Clebsch-Gordan
formula,

V(ir)y@aV=V(r—-1)eV(r+1), (1.2)
where V(—1) = 0. The representation graph Ry (SU2) is the infinite graph with vertices labeled by
r=20,1,2,--- and an edge connecting vertex r to vertex r + 1 for each r (which can be thought

of as the Dynkin diagram A, ). Vertex r corresponds to V(r), and the edges correspond to the



tensor product rule ([1.2). Above vertex r we place dim V(r) = r+1, as displayed below. The trivial
module is indicated in blue and the defining module V in red.

1 2 3 4 5 6
v @—@—O—O—@—@— 4 O

1.2 Subgroups of SU, and their representation graphs

Let G be a subgroup of SUs. Then G acts on the natural two-dimensional representation V = C? as
2 x 2 matrices with respect to the basis {v_1,v;}. We assume that the tensor powers V&¥ of V are
completely reducible G-modules (which is always the case when G is finite), and let { G* | A € A(G) }
denote a complete set of pairwise non-isomorphic irreducible finite-dimensional G-modules occurring
in some V®* for k = 0,1,.... We adopt the convention that V®° = G the trivial G-module.
The representation graph Ry (G) (also called the McKay graph or McKay quiver) is the graph with
vertices labeled by elements of A(G) with ay , edges directed from A to u if the decomposition of
G* ® V into irreducible G-modules is given by

GeV= @ ar.6" (1.4)
peA(G)

The following properties of Ry(G) hold for all finite subgroups G C SUsz (see [St]), and we will
assume that they hold for the groups considered here:

L. ax, = ay, for all pairs A, € A(G).
2. ax\ = 0 for all A € A(G), A 75 0.
3. If G # {1}, {1, -1}, where 1 is the 2 x 2 identity matrix, then ay , € {0,1} for all A\, u € A(G).

Thus, Ry(G) is an undirected, simple graph. Since V is faithful (being the defining module for
G), all irreducible G-modules occur in some V®* when G is finite, and thus Ry(G) is connected.
Moreover, if ¢y ;, = 20 ,, —axp, for A, p € A(G), where ) , is the Kronecker delta, then McKay [Mc]
observed that C(G) = [c) ] is the Cartan matrix corresponding to the simply-laced affine Dynkin
diagram of type An_b I:A)n+27 E6 E7, Eg when G is one of the finite groups C,,D,, T, O, and I,
respectively. The trivial module G(9) corresponds to the affine node in those cases.

1.3 Tensor powers and Bratteli diagrams
For k > 1, the k-fold tensor power V®* is 2*-dimensional and has a basis of simple tensors
VO = spanc { v, @V, @ - @y, | 7 € {11} }.
Ifr=(ry,...,m) € {—1,1}*, we adopt the notation
Ve = V(ry ) = Ve @ Vey @ @ vy (1.5)
as a shorthand. Group elements g € G act on simple tensors by the diagonal action

g<VT1 @ Vpy @ -+ ®Vm) =GVry @ GVpy @ -+ @ gV (1'6)



Let

Ak(G) = { A € A(G) | G* appears as a summand in the decomposition of V&#} (1.7)

index the irreducible G-modules occurring in V®¥. Then, since Ry(G) encodes the tensor product
rule (1.4), Ax(G) is the set of vertices in Ry(G) that can be reached by paths of length k starting

from 0. Furthermore,
Ak(G) C Ap12(G), for all k > 0, (1.8)

since if a node can be reached in k steps, then it can also be reached in k + 2 steps.

The Bratteli diagram By (G) is the infinite graph with vertices labeled by Ax(G) on level k and
by, edges from vertex A € Ag(G) to vertex u € Apy1(G). The Bratteli diagram for SUs is shown
in Figure 1) and the Bratteli diagrams corresponding to C,,D,, T, O, I, as well as to the infinite
subgroups Co,, Do, are displayed in Section 4.2.

k=1 1
k=2 2
k=3 5
k=4 14
k=5 42
k=6 132

Figure 1: First 6 levels of the Bratteli Diagram for SU,.

A walk of length k& on the representation graph Ry(G) from 0 to A € A(G), is a sequence
(O, AL N = )\) starting at A° = 0, such that M € A(G) for each 1 < j < k, and M~! is
connected to A/ by an edge in Ry(G). Such a walk is equivalent to a unique path of length k& on
the Bratteli diagram By (G) from 0 € Ag(G) to A € Ak(G). Let W)(G) denote the set of walks on
Rv(G) of length k from 0 € A(G) to A € Ag(G), and let P)(G) denote the set of paths on By(G)
of length k from 0 € Ag(G) to A € Ak(G). Thus, |P}(G)| = |[WX(G)|.

A pair of walks of length k& from 0 to A corresponds uniquely (by reversing the second walk) to
a walk of length 2k beginning and ending at 0. Hence,

WG = > WGP = Y [PaG)] =|Py(G)|. (1.9)
AEAL(G) AEAL(G)

Let mg denote the multiplicity of G* in V®*. Then, by induction on (T.4)) and the observations
in the previous paragraph, we see that this multiplicity is enumerated as

my = |W(G)| = #(walks on Ry(G) of length k from at 0 to \) (1.10)
= |PMG)| = #(pathsin By(G) of length k from 0 € Ag(G) to A € A(G)). '

5



The first six rows of the Bratteli diagram By (SU3) for SUy are displayed in Figure [1} and the
labels below vertex r on level k give the number of paths from the top of the diagram to r, which
is also multiplicity of V(r) in V®¥. These numbers also give the number of walks to 7 on the
representation graph Ry (SUsz) of length k& from 0 to . The column to the right contains the sum
of the squares of the multiplicities.

1.4 Schur-Weyl duality

The centralizer of G on V& is the algebra

Z,(G) = Endg(V®*) = { a € End(V®F) | a(gw) = ga(w) for all g € G, w € V&* } . (1.11)

If the group G is apparent from the context, we will simply write Zj, for Zj(G). Since V&0 = G0,
we have Zy(G) = C1. There is a natural embedding ¢ : Z;(G) — Zj41(G) given by

L Zk(G) — Zk+1(G)

a S oam1 (1.12)

where a ® 1 acts as a on the first £ tensor factors and 1 acts as the identity in the (k + 1)st tensor
position. Iterating this embedding gives an infinite tower of algebras
Zp(G) CZ1(G) CZy(G) C ---. (1.13)

By classical double-centralizer theory (see for example [CR] Secs. 3B and 68]), we know the
following:

e Z4(G) is a semisimple associative C-algebra whose irreducible modules {Z3 ’ A € Ax(G)} are
labeled by Ag(G).

o dimZ} =m} = W(G)| = [PA(G)].

e The edges from level k to level k — 1 in By(G) represent the restriction and induction rules
for Zkfl(G) - Zk(G)

e If d* = dim G*, then the tensor space V®* has the following decomposition

Vek @ mp G as a G-module,
AEAL(G)
= @ d* 7 as a Zy(G)-module, (1.14)
AEAL(G)
= @ (G)‘ ® Zﬁ) as a (G, Zx(G))-bimodule.
AEAL(G)

As an immediate consequence of these isomorphisms, we have from counting dimensions that

2k = N dmy. (1.15)
)\GAk(G)

e By general Wedderburn theory, the dimension of Z;(G) is the sum of the squares of the
dimensions of its irreducible modules,

dmZi(G) = Y (mp)’= > WiGP= Y PG> (1.16)

AEAL(G) AEAL(G) AEAL(G)

6



Therefore, it follows from (|1.9) that
dimZy(G) = > (m})? =mdy = |[W3(G)| = dimZ})), (1.17)
AEAL(G)
the number of walks on Ry/(G) (which is the associated Dynkin diagram when G is a finite
subgroup) of length 2k that begin and end at 0.
1.5 The Temperley-Lieb algebras

Let S, denote the symmetric group of permutations on {1,2,...,k}, and let o € Sy act on a simple
tensor by place permutation as follows:

0 (Vry @ Vpy @ -+ @ vy ) = Vo(r1) © Vo(ry) @ @ Vo(ry)-

It is well known, and easy to verify, that under this action S, commutes with SUs on V&®*. Thus,
there is a representation @y : CS;, — Endsy, (V®*); however, this map is injective only for k < 2.

For1 <i<k-—1,let s; =(ii+1) €Sy be the simple transposition that exchanges i and i + 1,
and set

e; =1—s;. (1.18)
Then e; acts on tensor space as
=1 -1l ®e® l1® ---®1, (1.19)
— —
i — 1 factors k — i — 1 factors

where 1 is the 2 x 2 identity matrix, which we identify with the identity map idy of V, and
e:V®V — V®YV acts in tensor positions ¢ and ¢ + 1 by

e(v; ®Vvj) =V @V —Vj @ vy, i,j € {-1,1}. (1.20)
For any G C SU,, the vector space V¥? = V ® V decomposes into G-modules as
VE2 = A(VE?) & S(VE2),

where A(V®?) = spanc{v_1®vi —vi®v_1} are the antisymmetric tensors and S(V®2) = spanc{v_1®
V_1,V_1 ® V] + Vi ®V_1,v] ®vi} are the symmetric tensors. The operator e : V¥2 — V®2 projects
onto the G-submodule A(V®?) and %e is the corresponding idempotent.

The image im(®;) of the representation ®; : CSy — Endsy,(V®¥) can be identified with the
Temperley-Lieb algebra TLg(2). Recall that the Temperley-Lieb algebra TLy(2) is the unital asso-

ciative algebra with generators ej,...,e;_1 and relations
(TL1) el = 2e;, 1<i<k-—1,
(TLQ) €;€;+1€; — €, 1 < ) < k— 1, (121)
(TL3) €;e; = €;¢;, ‘Z —j‘ > 1,

(see [TL] and [GHJ]). Since the generator e; in TL(2) is identified with the map in (1.19)), we are
using the same notation for them. If ¥y : SUy — End(V®k) is the tensor-product representation,
then SUp and TLy(2) generate full centralizers of each other in End(V®¥), so that

TL(2) & im(®;) = Endsy, (VE")  and  im(¥) = Endyy, (2 (VE). (1.22)



Since TLy(2) = Zx(SUz) = Endsy, (VEF), the set

{0,2,...,k}, if kis even,

Ag(SUy) =
H5U2) {{1,3,...,k}, if k is odd

also indexes the irreducible TL(2)-modules. The number of walks of length k from 0 to k — 2¢ €
A;(SU2) on Ry(SUs) is equal to the number of walks from 0 to & — 2¢ on the natural numbers N
and is known to be (see [Wh], p. 545], [Jo, Sec. 5])

= () (5

For each k — 2¢ € Ap(SUsz), where ¢ = 0,1,...,|k/2], let TL,(Ck_%) = Z,(gk_%) be the irreducible
TLx(2) module labeled by k& — 2¢. Then TL,gk_2Z) has dimension {lg}, and these modules are

constructed explicitly in [Wh]. Moreover,

k
V& o @ {g } V(k —20), as an SUz-module,
k—20e Ak (SU2)
~ P (k-2+)TLE, as a TLy(2)-module, (1.23)
k—20€ A, (SU2)
~ P (V(k 2@ TL](f_%)) . as an (SUs, TLy(2))-bimodule.
k—2¢e Ak (SU2)
The dimension of TLg(2) is given by the Catalan number C; = k—il@k), as can be seen in the

right-hand column of the Bratteli diagram for SUs in Figure [T}

1.6 The Jones Basic Construction

Let G be a subgroup of SUy such that G # {1},{—1,1}. Any transformation that commutes
with SUs on V®* also commutes with G. Thus, we have the reverse inclusion of centralizers
TLx(2) = Endsy, (V®*) C Endg(V®¥) = Z1(G) and identify the subalgebra of Endg(V®¥) generated
by the e; in with TLy(2). In this section, we use the Jones basic construction to find additional
generators for the centralizer algebra Zj = Z;(G) = Endg(V®*) for each k. The construction uses
the natural embedding of Z; into Zx 1 given by a — a ® 1, which holds for any k£ > 1.

In what follows, if q = (g1,...,qx) € {~1,1}¥ and r = (ry,...,7¢) € {—1,1}¢ for some k,£ > 1,
then [q,r] = (q1,- -+, &, 71, . .-, 7¢) € {—1, 1} is the concatenation of the two tuples. In particular,
ift e {_17 1}’ then [qat] = (qla s ,(]k;,t)-

Now if a € End(V®F), say a = > se{—1,1}* asErs, where Ers is the standard matrix unit, then
under the embedding a — a ® 1,

glrreetl (a® 1)[rﬂ“k+1] —5

[s,5k41] [s,5k41] Pt 155k s1 08 (1.24)
where 7511, sg+1 € {—1,1}.
Note in this section we are writing ag rather than ars to simplify the notation.

Define a map e : End(VE®) — End(VEE=D) g4 (a) = D pac{—1,1}k1 er(a)§Epq, called the
conditional expectation, such that

[pzfl} [pvl}
(a[q,_” 4 a[qﬂ) (1.25)

for all p,q € {—1,1}*~! and all a € End(V®¥).



Proposition 1.26. Assume k > 1.
(a) If a € End(V®F) C End(VEFHD) | then epaey, = 2ex(a) @ e = 21 (a)er
(b) If a € Zy, then ei(a) € Z—1, so that ey, : Zj, — Zg—1.

(¢) e :Zy = Zy_1 is a (Zi—1, Zk—1)-bimodule map; that is, ex(a1baz) = arer(b)as for all ay,as €
Zy1 C Zg, b€ Zg. In particular, ex(a) = a for all a € Zj_1.

(d) Lettry denote the usual (nondegenerate) trace on End(V®¥). Then for alla € Zj, and b € Zj,_1,
we have tri(ab) = tri(ex(a)b).

Proof. (a) It suffices to show that these expressions have the same action on a simple tensor v,

where r = (r1,...,7%,"hy1) € {—1, 1} If 74 = 7441, then both egae;, and 2¢1(a) ® e act as 0 on
Vr. So we suppose that (rg,rg+1) = (—1,1), and let p = (r1,...,7—1). Now
(exaer)vy = era(vp@V_1 @V —Vp VI ®V_1)
= e Z a?pﬁl}vq RV — eg Z a‘[qu]vq ®V_1
qe{-1,1}* qe{-1,1}*
- Z {g %(vn®v,1®v1—vn®v1®v,1)
ne{—1,1}k-1
_ Z a%g’ﬂ(vn@wl@v 1—Va ®V_1®Vy).
ne{—1,1}k-1

Thus, the coefficient of v, ® v_1 ® vq is QE7:H + a{;’ﬂ, and the coefficient of v, ® vi ® v_q is the

negative of that expression. These are exactly the coefficients that we get when 24 (a) ® e acts on
vr. The proof when (rg,7,4+1) = (1, —1) is completely analogous.

(b) When a € Z; C Zi,1, then egaey, € Zj11, so from part (a) it follows that ex(a) @ e € Zj;.
Therefore, if g € G, then e,(a) ®e € Zj41 commutes with g®*+1) = ¢®k-1) @ @2 o V(k—1) g &2,
Since these actions occur independently on the first £ — 1 and last 2 tensor slots, e;(a) commutes
with g®# =1 for all g € G. Hence e;(a) € Zp_1.

(c) Let a1,a2 € Zi—1 and b € Zj. Then using and we have for p,q € {—1,1}F71,

> @befi=5 Y Y @)y

te{-1,1} te{ 1,1} m,ne{-1,1}+-1

1 n,t
=5 > > (a)Rbpiy(ey

te{-1,1} mne{-1,1}k-1

= > (ap Z oty | ()

m,ne{—l,l}’“—1 te{ 1,1}
= (alak(b)ag)g.

ak(albag)g =

N



(d) Let a € Zy, and b € Zy,_y C Zj. Then applying ([1.24]) gives

trp(ab) = Y > al= > > Loy, o b
re{—1,1}k se{-1,1}* r=[r'rp]€{—1,1}F s=[¢/ s ]e{—1,1}F
_ [r',—1] [F,1] 2¢’
= > > (“[sf,—u*“[s',u) v
re{-1,1}k-1g/e{-1,1}k-1

- 3 S 2e(a)ib

rre{—1,1}k-1s'e{-1,1}F-1

- Z Z Ory 51, Ek (a)sb;
r=[r",rp]€{—1,1}F s=[¢',s]€{—1,1}F

= trg(ex(a)b).

O]

Relative to the inner product (,) : Z; x Zy — C defined by (a,b) = tri(ab), for all a,b € Z, the
conditional expectation ej is the orthogonal projection ey : Zy, — Zi_1 with respect to (,) since
(a—eg(a),b) = tri(ab) —tri(ex(a)b) = 0 by Proposition [1.26] (d). Its values are uniquely determined
by the nondegeneracy of the trace.

Proposition (a) tells us that ZyerZy, is a subalgebra of Zi 1. Indeed, for ay, as,d}, a) in Zy,
we have

(a1eras)(a)erab) = arer(aza))epal, = 2a1er(azal))eral, € ZerZy.

Part (b) of the next result says that in fact ZyepZy, is an ideal of Zj ;.

Proposition 1.27. For all k > 0,

(a) For a € End(VEFHD) there is a unique b € End(V®¥) so ae, = (b ® 1)ey, and for all

r,S € {_17 1}k;
1 [r,—sk] [r,—sk]
r_ ’ k ) k
bs - 5 (a[s,fsk] - a[S/,*Skysk}) 3 (128)
where ' = (r1,...,15-1), r = [F.1r], & = (s1,...,55_1), and s = [¢,s]. If a € Zys1, then
beZ.

(b) Zkeka = Zk+1eka+1 s an ideal Of Zk+1.
(¢c) The map Zy — Zrer C Zk41 given by a — aey is injective.
Proof. (a) First note that for all p,q € {—1, 1}F+1

1 k—1

(er)g = ; ( 11 5pj,qj> (Pe+1 — Pr) (@1 — Gi)- (1.29)

Jj=1

Now assume a € End(VEF+D) b € End(V®*) and n,q € {—1,1}**!, and let q” = (q1,. .., qr_1)-
Then
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(aer)q = > ap(en)y

pe{_171}k+1

> =

k-1
Z ap H Opsa; | (Pe1 — Pi) (@1 — an),
j=1

pe{—l,l}k+1

1
I Z an”1kapk+1](pk+1 — Pi)(Qk+1 — Q)
Pk Pr+1€{—1,1}
1 .
— §(Qk+1 - Qk) (ar[‘lq/,7_171] — an//J?_l]) y Whlle

((b@ 1)eg)q

Y. (be1)(e]

pG{—l,l}k+1
1 k—1
=1 S ey | T 04 | rer = po) (@1 — ax)
pe{—1,1}k+1 j=1
1 /
= Z(q]ﬁ_l — qk) Z (b & 1)r[1q”,pk}(nk+1 — pk) where n, = (nl, ey nk)
pkE{—l,l}
1 » y
= §(Qk+1 - qr) (b[qu,_l} (ng41+1) + b[q//,l] (k41 — 1)) )
Therefore aer, = (b ® 1)ey if and only if bgi = % (a{::};Zﬂqk] - aE:,”qf]qk’ko for all n,q € {—1,1}*.

Setting r = n’ and s = (s1,...,5s;) = q’ gives the expression in (1.28). Now assume a € Zj11 and b
is the unique element in End(V®¥) so that ae, = (b®1)ey. Then aey, € Zj41 so that ae, = gaepg™!
for all g € G. It follows that (b® 1)ex = g(b® 1)exg ' = g(b ® 1)g tex = (gbg~! ® 1)e. The
uniqueness of b forces ghg~! = b to hold for all g € G, so that b € Z;, as claimed in (a).

(b) Part (a) implies that Zy e = Zper (where Zj is identified with Z; ® 1). A symmetric
argument gives exZp+1 = epZg, and it follows that ZyerZy, = Zgr1exZgy1 is an ideal of Zp4q. Part
(c) is a consequence of the uniqueness of b in the above proof. O

The Jones basic construction for Z; C Zi1 is based on the ideal ZperZy of Z;1 and the fact
that Ax_1(G) C Ax+1(G), and it involves the following two key ideas.

(1) When decomposing VEF+D Jet

k+1
Vel = @ miy, 6 (1.30)
AeAL_1(G)
vEEFD) a mp.q G*. (1.31)
AEAL11(G)\Ak—1(G)
Thus, VO*E+) = V?l((ikﬂ) @ VO, Using the fact that %ek corresponds to the projection

onto the trivial G-module in the last two tensor slots of VO +1) 'Wenzl ([W3, Prop. 4.10],[W4,
Prop. 2.2]) proves that Ze,Zy = EndG(VgékH)). Applying the decomposition Endg(V®*+1)) =
Endg(Vg((ij)) ® Endg(V;?e(V]iH)) then gives

Zis1 =2 ZyepZy, @ Endg (VEEHY). (1.32)

new
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(2) There is an algebra isomorphism Zj_1 = e;yZe; via the map that sends a € Z_1 to egaer, =
2aer, = 2ea. Viewing Zier as a module for ZpepZy and for Zp_1 = epZrer by multiplication
on the left and right, respectively, we have that these actions commute and centralize one
another:

Zkeka = Endzkfl(Zkek) and Zk,1 = Endzkekzk (Zkek)

Double-centralizer theory (e.g., [CR] Secs. 3B and 68]) then implies that the simple summands
of the semisimple algebras ZyexZy, and Zx_1 (hence their irreducible modules) can be indexed
by the same set Ax_1(G).

As before, let Zg, A € Ai(G), denote the irreducible Zg-modules. By restriction, Z,’} is a Zj_1-
module and

Ress* (Z3)= € Ox.Z) 1,
HEAE—1
where O, ,, is the multiplicity of Z{ | in Z}. The |Aj| x |Aj_1| matrix © whose (A, u)-entry is
O, is the inclusion matriz for Z_1 C Z,. For all of the groups G in this paper, the restriction is
“multiplicity free” meaning that each ©, , is either 0 or 1.
General facts from double-centralizer theory imply that the inclusion matrix for Z;_1 C Zj, is
the transpose of the inclusion matrix for Endz, (Zre) C Endz, ,(Zyej), which implies the following:

In the Bratteli diagram for the tower of algebras Zy., the edges between levels k and k+1
corresponding to ZyepZy C Zy11 are the reflection over level k of the edges between k —1
and k corresponding to Zp_1 C Zj.

In Section [£:2] we have highlighted the edges of the Bratteli diagrams that are not reflections over
level k and left unhighlighted the edges corresponding to the Jones basic construction.

The highlighted edges give a copy of the representation graph Ry(G) (i.e. the Dynkin
diagram) embedded in the Bratteli diagram.

This will be discussed further in Examples

1.7 Projection mappings

The Jones-Wenzl idempotents (see [W1], [Jo, Sec. 3], [FK]) in TLg(2) are defined recursively by
setting f; = 1 and letting

n—1

fn, =1 — fr1en_1fn_1, 1<n<k. (133)

These idempotents satisfy the following properties (see [W1], [FK], [CJ] for proofs),

(JW1) f2 =1, 1<n<k-—1,

(JWQ) eifn = fnei = 0, 1<i<n< k‘,

(JW3) e;f, = fhe;, 1<n<i<k-1,

(JW4) enfnen = L, je,, 1<n<k-1, (1.34)

(JW5) 1-1f, € <e1,...,en_1),

(JW6) fnfn = fnfim 1<m,n <k,
where (eq,...,e,_1) stands for the subalgebra of TLj(2) generated by ej,...,e,—1. An expression
for f,, in the TLg(2) basis of words in the generators ey, ..., ex_1 can be found in [FK| Mo].
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The simple SUs-module V(k) appears in V®* with multiplicity 1, and it is does not appear as
a simple summand of V¥ for any £ < k. To locate V(k) inside V¥, let r = (r1,...,r) € {—1,1}F
for some k > 1, and set
Irl={ri|m=-1}. (1.35)
Then the totally symmetric tensors S(V®*) form the (k + 1)-dimensional subspace of V&¥ spanned
by the vectors wqg,wq, ..., wg, where

wi=>Y v, 0<t<k (1.36)
[r|=t

It is well known (see for example [FH, Sec. 11.1]) that S(V®*) 22 V(k) as an SU-module, and that
fr,(VEF) = S(V®F) ([FK] Prop. 1.3, Cor. 1.4]). In particular,

S(V®2) = spanc{wp =vi ® Vi, W] =V_1 ®V] +VI ®@V_1,wa =V_1 ®v_1} ZV(2).

Observe that fo =1 — %el and fo(wy) = wy for t =0,1,2.

1.8 Projections related to branch nodes

A branch node in the representation graph Ry (G) is any vertex of degree greater than 2. Let
br(G) denote the branch node in Ry(G), and in the case of D, (n > 2), which has 2 branch nodes,
set br(D,,) = 1. In the special case of Ry(C,,) for n < oo, we consider the affine node itself to be
the branch node, so that br(C,,) = 0. When G = D,,, T, 0,1, C, or Do, we say that the diameter
of Ry (G), denoted by di(G), is the maximum distance between any vertex A € A(G) and 0 € A(G).
In particular, di(G) = oo for G = Cs or Dog. For G = C,,, we let di(G) = i, where 7 is as in (1.37).

o ‘ Uy Cn D, T O 1 C Do n/2, if n is even
di(G) | oo n n 4 6 7 o 00 where @ = o '
br(G) 0 0 1 2 3 5 0 1 n, if n is odd.

(1.37)

In this section, we develop a recursive procedure for constructing the idempotents f, that
project onto the irreducible G-summands G” of V& = Assume k < /¢, where £ = br(G). Then

new *
V&t — G(F) = V(k). In this case, the projection of V®* onto G is given by fky := fx, where fj,
is the Jones-Wenzl idempotent. The irreducible SUs-module V(¢ + 1) is reducible as a G-module.
Suppose deg(?) is the degree of the branch node indexed by ¢ in the representation graph of G,

so that deg(¢) = 3, except when G = Dy where deg({) = 4. We assume the decomposition
into irreducible G-modules is given by V,?;(Vtﬁl) =V{+1) = ®?e:g1(€)—1 GP%. For example, when
G = O, then £ = 3 and V&, = V(1) = G*) & G®); and when G = Dy, then ¢/ = 1 and

new

VE2 — V( ) =G 3 G® @ G2, where the labels of the irreducible G-modules are as in Section

new

41l

Let
deg(4)—

frp1 = Z fg] (1.38)

be the decomposition of the Jones-Wenzl idempotent fe4+1 into minimal orthogonal idempotents that

commute with G and project Vne(WH) onto the irreducible G-summands G?%. For finite subgroups

G, these idempotents can be constructed using the corresponding irreducible characters xg, as

_di G’
j _ |mG J ZX/BJ f—i—l) (139)
Gl =<

13



where g®(*1) is the matrix of g on V¥ and “_” denotes complex conjugate. (See for example,
[FH, (2.32)].) We will not need these explicit expressions in this paper.

Lemma 1.40. Let Z;, = Zi(G) for all k. Let A € Ay(G), and assume f\ € Zy, projects VEF onto
the irreducible G-module G in VEE . Let d = dim G*, and suppose G* @ V = P, G*i. Let f,, be

new *
the orthogonal idempotents in Zyq that project VEEY) onto the irreducible G-modules G, and
assume d* = dim G, Then the following hold for all i such that G*i is a summand of V,?fev’fﬂ),

i.e., for all p; € Agy1(G) \ Ag—1(G):
(1) faf i g — fuif)\;
(ii) fu, commutes with e; for j > k+1;
(ifi) epr1(fu,) = Lxfr; and
(iv) ersrfperst = 2epr1(fu)enss = Grfaepir.

Proof. (i) Now f,,fy (VE*+H1)) =, (G} ® V) = GH = f,,, (VO*+1)) 5o f,,.f\ = f,,. For the product
in the other order, we have fyf,, (V®(k+1)) = f,(GH). Since G* is contained in G* ® V and fy acts
as the identity on that space, fy(G*) = GHi = f,,,(V2(*+1)) which implies the result.

(ii) This is clear, because f,, € Zj41, and Zk+1 commutes with e; for j > k + 1.

(iii) From (i) and part (c) of Proposition 1.26, we have for each ¢,

faera1(fu;) = enr1(fafu,) = enq1(fyy) = enr1(fufa) = enpa (fu)fa (1.41)

Suppose W = V®*_and let W = Wy @ W, be the eigenspace decomposition of fy on W so that
faw = jw for w € Wy, j = 0,1. Since fy and ex41(fy,) commute by (L.41), 441 (fy,) maps W; into
itself for j = 0,1. Now if w € Wy, then ep41(fy,)w = epq1(fu,)faw = 0, so that e441(fy,) is 0 on
Wy. Since ep41(fu;) € Zi, we have e,41(f,,) € Endg(W;) = Cidw, = Cfy by Schur’s lemma, as
W; = G*, an irreducible G-module. Therefore, there exists & € C such that g1 ( fu) = &fyon Wy,
But since these transformations agree on Wy (as both equal 0 on Wy), we have ej41(f,,) = &fy on
V& Taking traces and using (d) of Proposition 1.26 gives

A" =ty (Fh,) =t (Erg1 (Fa) = Eitrega () = 26t (F)) = 2&d*

Therefore & = ggi so that ep41(fy,) = ;%f)\, as asserted in (iii). Part (iv) follows immediately
from (iii) and Proposition 1.26 (a). O

Proposition 1.42. Assume the notation of Lemma[1.40, and let p = p; € Ag11(G) \ Ag—1(G) for
some i. Suppose G* @ V = G* @& G¥, where G” is an irreducible G-module of dimension d” and
v E Neio(G) \ Ag(G). Set

d/\

fo=fu o

fuer1fy.

Then the following hold:

(i) f, is an idempotent in Zyio;
(ii) fuf, =f, =ff,;
(ili) f, commutes with e; for j >k +2;
(iv) exiof epio = du fueki2, so that epio(f,) = %fﬂ
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(v) f, projects VEF+2) onto GV,
Proof. (i) We have

) d)\ 2 d)\ (d)\)Z
fy = <f# — quek+1fu> = f# d#f ek+1f + (d‘“) fuekﬂfuek“fu
d)\ d)\ 2 A )
= f,— dﬂf ept1fu + 755 (a2 d/\f freptifu by (iv) of Lemma
> >
= f,—- 2d7fuek+1fu + @fuekﬂfu by (i) of Lemma m
A
= f,— d#f er+1f, =fu.

By construction, f, € Zyo.

Part (ii) follows easily from the definition of f, and the fact that f, is an idempotent.

(ili) Since f, € Zj+1 commutes with e; for j > k41, and e;;; commutes with e; for j > k + 2,
f, commutes with e; for j > k + 2.

For (iv) we compute

A
ek+2f,,ek+2 = ek+2 (f# — Wfﬂek+1fﬂ> ek+2
d)\
2 e
= ejyofu— ﬁfuekz+2€k+1ek+2f;¢ using (ii) of Lemma [1.40]
A

= 2epqof, —djfuekmfﬂ

> 24+ — d* d
= <2 - d) fuepta = Tfpek+2 = djfuekz—m-

This equation along with Proposition 1.26 (a) implies that e;12(f,) = %fu € Zpi1.

(v) From ([1.32)) with k& + 2 instead of k + 1, we have Zyyo = Zpi1ek11Zk11 © EndG(V,?;%H)).

Now
A

d
fl“ ® 1 — qu — d7
and the idempotent f, ® 1 projects V¥ +2) onto G*®V = G* ®G”. Observe that p := g—ifuekﬂfu €
Zpi1ek1Zky1, and

fyek+1fu + fu S Zk+27 (143)

d)\ 2 A2 d)\ 2 A d)\
ID2 = (duf#ek+1f#> = Wf#ek+lfuek+lfu Edﬂ; d>\f frepy1fy, = d,ufuekJrlfu =p

using Lemma m (iv), so we can conclude that p is an idempotent once we know it is nonzero.
But if p = 0, then

s (d" Py
0 = 2epr1fueriifuerts = (errifuerin)” = <d>\f>\€k+1> = (d/\) s faekt

by Lemma M(lv) Since f) and ey 1 act on different tensor slots and both are nonzero, we have
reached a contradiction. Thus, p is an idempotent. Moreover, f,p = (f, — p)p = 0. Therefore,
(1.43) gives the decomposition of f, ® 1 into orthogonal idempotents, with the first idempotent

p= g%fuek+1fu in Zk+1ek+1zk+1 = EndG(ijékJrQ)), Then G @V = P (V®(k+2)) @ fu (V®(k+2)) is a
decomposition of G* ® V = G* @ G” into G-submodules such that p (V®(k+2)) € V?I(gk“). Hence,
p (\/®(k+2)) — G* and f, (V®(k+2)) — G, 0]
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This procedure can be applied recursively to produce the projection idempotents for all & < di(G)
that do not come from ([1.39)), as illustrated in the next series of examples. Our labeling of the
irreducible G-modules is as in Section [4.1]

Examples 1.44. e The G = T,0,I cases: Let £ = br(G) (so £ = 2,3,5, respectively) and
set f) = fp for 0 < k < £, where f is given by (1.33). Let f((e+1)+) and fpq1)-) be the
projections onto G and G((H+D7) | respectively, which can be constructed using .
When G = T, applying Proposition with A = (2), p = (3%), and v = (4%) produces
the idempotents f4+) = f(3+) — %f(gi)egf(gi) that project V&4 onto G4, When G = O, first
taking A = (3), u = (4%), v = (5) and then taking A = (47), u = (5), v = (6) in Proposition
will construct the two remaining idempotents f5) and fg). Similarly, for G = I, applying
the procedure to A = (5), u = (67), and v = (7), will produce the last idempotent fer)-

o The G = Cp, n < oo case: Let f1) and f_;) project V onto the one-dimensional modules
GM and G-V, respectively. Applying Proposition 1.42) with A = (0) (i.e. with fo) = 1),
p = (£1), and v = (+2) begins the recursive process and constructs f(4z). (We are adopting

the conventions that (+j) stands for (j) and GU) 22 G() whenever n < oo and j = i modn.)
Then assuming we have constructed f(1j for all 1 < j <k, we obtain from the proposition

that fLy1)) = f(£r) — fxr ekf(@r) Projects Vﬁ%Jﬂ) onto GEF+1) In the case that G = Cy,

iterations of this process produce the idempotent projections onto Vﬁ(\,:vt(kﬂ)) for all £ > 1.

When n < oo, the diameter is 7, and we proceed as above to construct the idempotents f4 )
for k < f. Now V&2 = G(™ @ G when n is even, as —72 = 7 mod n; and V&2 = G(0) @ GO
when n is odd, as n = n. The idempotent f17) projects onto the space Cviy, where 1 is the
n tuple of all 1s, and v4; has 7 tensor factors equal to vii. In the centralizer algebra Zz
there is a corresponding 2 x 2 matrix block. The idempotents f;), f_z) act as the diagonal
matrix units Ey 1, E_; _1, respectively. The remaining basis elements of the matrix block are
the matrix units Ey 1, E_11.

e The G = D,,, 2 < n < 0o case: Suppose first that n > 3. The symmetric tensors in V&2
are reducible in the D,-case and decompose into a direct sum of the one-dimensional G-
module G(®) and the two-dimensional irreducible G-module G2, Let foy and f(g) denote
the corresponding projections. Note that fo) + o) = fa =1 — %el. Starting with A = (1)
(so f;y = 1), p = (2) and v = (3), and applying the recursive procedure, we obtain the
idempotents fg) = fg_1) — fe_1)ex—1fr_1) for all & = 3,4,... in the Dq-case, and for
3 <k <n-—1in the Dy-case. Now G" D gV = G"2 ¢ G ¢ G") where GM™ and
G are one-dimensional G-modules. Denoting the projections onto them by fn) and fi,n
(they can be constructed using ), we have f,_9) + fi,) + fy = fn—1) ® 1. Thus,
Zn = <Zn_1,en,f(n)>.

Now when G = Dy, then br(G) = 1, and the branch node br(G) has degree 4 in the
corresponding Dynkin diagram. In this case

1
1-— §e1 =fy = f(ol) + f(2/) + f(g),

where the 3 summands on the right are mutually orthogonal idempotents giving the projec-

tions onto the one-dimensional irreducible G-modules G©), G2, and G2, respectively. Thus
Zo=Cl®Ce1 @ Cf(ol) D (Cf(Q/)
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Note that when 2 < n < oo, and p = (n) or (n’) (or (0') when n = 2), then by Lemma

[L.40}

1

1
en(fu) = Zf("_l)’ enfuen = 2e,(fy)e, = §f(n_1)en,

(where f,,_1) = f(;) = f1 =1 when n = 2).
Theorem 1.45. Let G, br(G), and di(G) be as in (1.37), and let Z, = Z(G). Then Z; = C1 = Z,.

Moreover,
(a) if 1 <k < di(G), and k # 7 — 1 in the case G = Cy,, then Zj41 = ZrerZy ® Endg(VEE),

where Endg(VEE)) is a commutative subalgebra of dimension equal to the number of nodes in

Rv(G) a distance k from the trivial node;

(b) if k > di(G), then Zy11 = ZperZy;

—
o
~

if 1 <k <di(G), k # br(G), and k #n — 1 in the case G = Dy, then Zy+1 = (Zk, ex);

2

if k = br(G) and G # Dy, then Zy1 = (Zi, ek, fu), where p is either of the two elements in
Ak+1(G) \ Ay—1(G), and f, is the projection of Vbt ) onto GH,

(e) if G=C, (n < 00), then Z = (Zi—1,ea—1,Epq,for p,q € {—1,1}), where E, 4 is the matriz
unit in Examples [1.44)

(f) f G=D, (2<n <o0) then Z,, = (Zpn_1,en—1,f,), where p € {(n), (n')}
(8) if G = Da, then Zy = (Z1, 1, fuy, f,) where pn, po € {(0), (2), (2)}, . # pa-

Proof. (a) Since k < di(G), VEETD ig a direct sum of irreducible G-modules each with multiplicity
1 (except for the case where G = C,, and k¥ = n — 1 which is handled in part (e)), and the
centralizer Endg(Vf?e(v’iH)) is commutative and spanned by central idempotents which project onto
the irreducible summands. Thus, the dimension equals the number of new modules that appear at
level k + 1.

(b) When k > di(G), VE¥™ = 0, and Zj41 = ZyenZy follows from (1.32).
() If @Q——@——@® represents the neighborhood of a node x in Ry (G) with x a distance

k from the trivial node and deg(u) = 2, then G®) has multiplicity 1 in V®#+1)_ By Proposition
the central projection from V®*+1) onto GV is given by f, = f, — g—ifﬂekf“, where f, € Zj,

projects VO to GH. Thus f, € (Z,e), and the set of f,, for v a distance k 4 1 from the trivial

node in Ry(G), generate Endg(V§8(£+1)). The result then follows from part (a).

(d) if k = br(G) and G # Dy, then Varr™) = V/(k 4 1) = GA @ G% where {81, B2} = Api1(G) \
Ag-1(G). The Jones-Wenzl idempotent decomposes as fyy1 = fs, + fs, as in (1.38) (where the fg,
can be constructed as in ) We know from that 1 —fx1 € (e1,...,ex) C ZpepZy, and
we have fg, +fs, =1 — (1 —fyy1). Thus, Zx 11 is generated by Zy, e, fg, for j =1 or j = 2.

(e)If G = C, and k = 1 — 1, then G(™ has multiplicity 2 in V", where G := G if n is odd.
In this case, Endg(VER ) is 4-dimensional with a basis of matrix units as in Examples m

(f) If G = D, with 2 < n < oo, then V&7 = G & G™), and we let f(,, and f(, project
Ve onto G and G, respectively. As in part (d), these minimal central idempotents can

be constructed using ((1.39); the only difference in this case is that f(,) + f(,;) does not equal the
Jones-Wenzl idempotent f,,; however, f,_1) = f(,_9) + f() + f(r) holds.
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(2) When G = Dy, V&2 = G(0) ¢ G® @ G?) and the corresponding central idempotents

fo); f(2); f(27) can be constructed as in (1.39). Furthermore f(g) +fg) +foy =fo =1 - %el, S0 Zo is
generated by e1, Z;, and any two of f(y), f(2), f(2)- O

Examples 1.46. For all G # C,, for 2 < n < oo, we have Z; = C1 = Z,.

e If G = O, then from Theorem [I.45] we deduce the following: Zy = Zie;Zy + Cfy = Cey +
(sz = TLQ(Q), where f2 =1- 261, Zg = 226222 + (Cfg = TL3(2) where f3 = fg — %fQEQfQ;
Zy = (Z3,e3,fu+)) = (Z3,e3,f4-)) where fiur) + fumy = fu = f3 — 3fzesfs; Zs = (Zy,eq);
Zg = (Zs5,e5); and Zpq = ZgerZy for all k > 7. When 2 < k£ < di(O) = 6, there is exactly
one new idempotent added each time, except for k = 4, where the two idempotents %63 and
f(4+) must be adjoined to Z3 to get Z,. Each added idempotent corresponds to a highlighted
edge in the Bratteli diagram of O (see Section . The highlighted edges together with the
nodes attached to them give the Dynkin diagram of Es. (In fact, for all groups G, the added
idempotents give the corresponding Dynkin diagram as a subgraph of the Bratteli diagram.)

o If G = Dn for n > 2. Then Zg = <Zl,e1,f(0/)> = (Zl,el,f(2)> where f(ol) + f(2) = f2 =1- %el;
Zk+1 = <Zk, ek> for 2 < k <n-— 1; Zn = (anl,enfl,f(n),f(n/)% Zk+1 = Zkeka for all k£ > n.
(In particular when n = 0o, Zy11 = (Zy, ei) for all k > 2.)

1.9 Relations

Recall that Z;(G) D TLk(2) for all £ > 0 and that TLg(2) has generators e; (1 < i < k), which
satisfy the following relations from ((1.21]):

(a) e? = 2e;, €;e;+1€; = €, and eje; = €;¢;, for ’Z — j’ > 1.

In the next two results, we identify additional generators needed to generate Z;(G) and the relations
they satisfy. In most instances, these are not minimal sets of generators (as is evident from Theorem
1.45)), but rather the generators are chosen because they satisfy some reasonably nice relations.

Proposition 1.47. Let Z;, = Zy(G) for all k > 0, £ = br(G), and di(G) = ¢ + m. Suppose
vo = (0),v1,...,vm is a sequence of distinct nodes from the branch node (¢) to the node vy, a
distance di(G) from 0. Set b; :=f,, (the projection of VELED onto G"7), and let dj = d¥i = dim G"J
for 5 =0,1,....,m. Then the following hold:

(i) If k <4, then Zy = TLx(2), and Zy has generators e; (1 < i < k) which satisfy (a).

(ii) If ¢ < k <L+ m = di(G), and k # di(G) for G = C,,D,, n < oo, then Zj has generators
e; (1 <i<k)andb; (1 <j<k—1{) which satisfy (a) and

(b) bibj =b; =bjb;, forall0<i<j<k—{;

(C) J_H:bj—T;bjeg_w‘bj,fO?"alljzl,...,k‘—E—l;

(d) eb~:O:b~ei, foralll1 <i< {437, and ebj =bje;, foralll+j <i<k;
(e) eryjbjery; = d bj 18045, forall j =1,... k—¢.

(iii) If & > di(G), and G # C,,D,, for n < oo, then Zj, has generators e; (1 < i < k) and b;
(1 < j <'m) which satisfy (a)-(e) and

(£) b = 2=2byeq i mbm.
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Proof. For (i) we have TLy(2) C Zj for all £ > 0, and thus the e; satisfy the relations in (a) by
(1.21). The equality TLg(2) = Zj is proved by comparing dimensions for k& < ¢. Part (ii) follows
from Theorem Lemma and Proposition m (Note that the projecting idempotents
for the other branch of the Dynkin diagram can be obtained from these generators using the
recursive process and the fact that the two idempotents needed for V?}%H) sum to the Jones-
Wenzl idempotent f, where 1 —f;, € (ey,...,e,—1).) For (iii), we have from Theorem that
2y = Zp_1ep_12p—1 = Endg(Vfﬁg) for all & > di(G) = ¢+ m. Thus, eq,...,ex_1, b1,...,by
generate Zj and satisfy (a)-(e). To show that (f) holds, consider G ® V = G"m-1. We know

d;l”l bmerimbm is an idempotent in Endg(G¥™ ® V) (compare the argument for p in Proposition

l and G"™ ® V = GYm-1 ig an irreducible G-module. By Schur’s lemma, dg—;bme@rmbm has to
be a multiple of the identity, which is b,, = b,, ® 1, but since both are idempotents, they must be
equal. ]

Remark 1.48. Relation (ii) (c) shows that only the e; and b; are needed to generate Zj, for k > ¢,
and the other generators b;, 2 < j < m, can be constructed recursively from them. However, then
relation (f) in (iii) needs to be replaced with a complicated expression in the e; and b;.

Proposition covers all cases except when k > di(G) for G = C,,, Dy, n < oo, which will be
considered next.

Proposition 1.49. Assume G = C,,,D,, for n < oo, and let Zy, = Zy(G) where k > di(G). Then
we have the following:

(Crn) Zi has generators e; (1 < i < k) and bj»[ (1 <j<n=di(G)) (where bj-[ is the projection

of V&4, onto GED), together with by =E_11. bT = E1_1, such that the relations in (a)-(e)
hold when b; = bj or when b; = bj_. In addition, the following relations hold:

(fc) (b3)>=b% and bfbT =0=bTb¥, forall 1<i,j < i; and
(sc) for bt =bi, and b~ =by,

n’

bSby) = 6,95 for 7,¢,m, 0 € {— +} and bibS =0=DbSby for (#y, 1<j<i.

(D) Zi has generators e; (1 <i<k), bj (1 <j<n=di(G)), and b’, where b; is the projection
of VOUTY) onto GUTY | and b is the projection of VE™ onto G . They satisfy the relations
in (a)-(f) of Proposition[1.47, and additionally
(gp) bjb'=b =b'b;, for1<j<mn, ()2=V,andb,_1b'=0="bb, ;;

(hp) e,be, = %bn_len, e =0=0>be; =0 for1 <i<mn, and e;b’ =b’e; for i > n;
(iD) bn—l = 2bn_1enbn_1 and b’ = 2b’enb’.

Proof. For G = C,,, the fact that e1,...,er_1, bf, ceey bf{, b, bt generate Z;, follows from Theorem
1.45 parts (a), (d), and (e). Relations (a)-(e) hold as in Proposition [1.47] Using (c) of Proposition
1.47/and induction, it is straightforward to prove that b% = E4141 € Zj, where 1 is the k-tuple of
all 1s. The relations in (fc) and (gc) then follow by multiplication of matrix units.

For G = D, the fact that ey,...,e;_1,b1,...,b,_1,b’ generate Z; follows from Theorem m
parts (a), (d), and (f). In Zy, the projection onto G is by = E1,1),a,1) +E(-1,-1),(-1,—1)- It follows
easily by induction that for 2 < j <n—1,b; =bj_1—b;_1e;bj_1 = E; 1+E_1 _; is projection of V&7
onto GU), where 1 is the j-tuple of all 1s. When j = n—1 we have b, _je,b, 1 = E;1+E_; 1 is the
projection onto G™ @ G(™), and this splits into projections b,_1 = 3(Ex1 +E_1_1—E1 1 —E_11)
and b’ = 2(Ey1+E_1_1+E1_1+E_11), which project onto G(™ and G| respectively. The other
relations follow by multiplication of matrix units. O
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Remark 1.50. The results of this section identify a set of generators for each centralizer algebra
and relations they satisfy, but it is not shown here that they give a presentation.

2 The Cyclic Subgroups

Let C,, denote the cyclic subgroup of SU, generated by

—1
g:<<0 2>esuz,

where ( = (,, a primitive nth root of unity. The irreducible modules for C,, are all one-dimensional
and are given by C,(f) = Cv; for ¢ =0,1,...,n — 1, where gvy = ¢%vy, and Cg) ® C%m) = C,(erm)
(superscripts interpreted modn). Thus, we can assume that the labels for the irreducible C,,-
modules are (¢), where £ € A(C,) = {0,1,...,n — 1}, with the understanding that (j) = (¢)
whenever an integer j such that j = £ modn occurs in some expression.

The natural C,-module V of 2 x 1 column vectors which C,, acts on by matrix multiplication
can be identified with the module C5 " & C. As before, we let v_; = (1,0)* and v; = (0,1)"

2.1 The Centralizer algebra Z,(C,)

Our aim in this section is to understand the centralizer algebra Z;(C,,) of the C,-action on
V&% and the representation theory of Z;(C,). As in (1.37)), let

B n if n is odd
T (2.1)
on if n is even.
Assume r = (rq,...,73) € {—1,1}*, and set
Il =[Krilri=—1}. (2.2)
Corresponding to r € {—1,1}* is the vector v, = v,, ® -+ ®@ v, € VE* and
gvr = ¢y, (2.3)

For two such k-tuples r and s,
k—2|rl=k—2|s| modn <= |r|=|s| modn.
Recall that Ag(C,,) is the subset of A(C,) = {0,1,...,n — 1} of labels for the irreducible
C,,-modules occurring in V®*. Now if £ € A(C,,), then
0 e Ay(Cy) <= k—2|r| =¢ modn for some re {—1,1}*.
Thus,
A(Cp) ={l e A(C,) | £ =k — 2ay modn for some ay € {0,1,...,k}}. (2.4)

We will always assume ag is the minimal value in {0,1,..., k} with that property.

In particular, £ — £ must be even when n is even. Hence there are at most 7 distinct values in
Ax(C,). When k > n — 1, then for every a € {0,1,...,7 — 1}, there exists an ¢ € A;(C,,) so that
k —2a = ¢ modn, and there are exactly 7 distinct values in Ag(C,,).

Lemma 2.5. Assume r and s are two k-tuples satisfying |r| = |s| modn. Let E, s be the transfor-
mation on V®* defined by
Er,th = 5s,tVr- (26)

Then E, s € Z;(Cy).
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Proof. Note that gE,svi = (5s,tCk_2|r|vr, while E, sgvy = Ck_2lt|(5s7tvr = Ck_2|5|6s7tvr. Consequently,
gErs = E;sg for all such tuples r,s, and E, s € Z;(C,,) by (2.4). O

Theorem 2.7. (a) The set
BM(C,) = {Ers | 1,5 € {—=1,1}*, |r| = |s| mod 71} (2.8)
is a basis for the centralizer algebra Z;,(Cyp) = Endg, (VZF).

(b) The set {z | £ € Ap(Cy)} is a basis for the center of Z(Cy,), where

=Y. E,  for £€M(Cy). (2.9)

re{-1,1}k
k—2|r|=¢ modn

(¢) If n =2n and n is odd, then Zy(C,) = Z;(Cy).

(d) The dimension of the centralizer algebra Zi,(C,,) is the coefficient of 2* in
(1+ Z)Zk‘zﬁzl; hence, it is given by

dimZ,(Cn) = > <:> <’;> (2.10)

0<a,b<k
a=b modn
Remark 2.11. The notation (1 + z)%‘zﬁ:l used in the statement of this result can be regarded

as saying consider (1 4 2)?* in the polynomial algebra C[z] modulo the ideal generated by 2" — 1
where 7 is as in (2.1)).

Proof. (a) For X € End(V®"), suppose that Xvs = > Xisve for scalars X, s € C, where r ranges
over all the k-tuples in {—1,1}*. Then X € Z,(C,,) if and only if g~'X ¢ = X if and only if

g_ngVS = Z C(k_QISD_(k_Q'r‘)Xr,SVr = ZXr,sVr-
r

r

Hence, for all r,s, with X, # 0, it must be that ¢2("=Is) = 1; that is, |r| = |s| mod 7 by ([2:4).
Thus, X = 3}/=(s| mod7 XrsErs, and the transformations Ers with |r[ = |s| mod 71 span Zj(Cy,). It
is easy to see that the E, s multiply like matrix units and are linearly independent, so they form a
basis of Z(C,).

(b) For each ¢ € Ay(Cy,), the basis elements E, s with |r| = |s| = 2(k — ) mod i form a matrix
algebra, whose center is Cz, where z; is as in . Since Z;(C,,) is the direct sum of these matrix
algebra ideals as ¢ ranges over Ag(C,,), the result follows.

When n = 2n and 7 is odd, the elements {E,s | [r| = |s| mod n} comprise a basis of both Z;(C,,)
and Z;(Cj) to give the assertion in (c).

(d) It follows from Lemma [2.5| that

mzcn= 2 ()6) = 2, ()65)

a=b modn a=b modn

Since a + k — b = k mod, this expression is the coefficient of z* in (1 + 2)F(1 + 2)¥| =

2n=1
(1+ 2)2 as claimed. O

=1’
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Example 2.12. Suppose n =8 (so 7 =4) and k = 6. Then

{(r.5) | ] = 5| = 0 mod 4} = (§)+ ®+2® () = =0
{(r.5) | 1| = s/ = 1 mod 4} = (f)+ (§>+2® (5) = 1as
2+ 2)

i

1699 1= b =2 moday| = (3) + ( 2+2<g><2>:256

6
[{(r,s) | |r| =|s| =3 mod4}| = (3> = 400.
Therefore dim Zg(Cg) = 1056. Now observe that when k£ = 6 and n = 8 that

A+2)%| ., = Q+2)".,
= 14122 + 6622 + 22023 + 495 + 7922 + 92422 + 79223
+495 + 220z + 6622 + 122% + 1.

Since k = 6 = 2 mod 4, by (c) of Theorem we have that dim Zg(Cs) is the coefficient of 2% in
this expression, so dim Zg(Cg) = 66 + 924 + 66 = 1056, in agreement with the above calculation.

Remark 2.13. The matrix units can be viewed diagrammatically. For example, if &k = 12, n = 6,
f=3and r=(-1,-1,1,—-1,-1,1,1,1,1,1,1,-1) € {=1,1}'2, then |r| = 5 = 2 mod 3, and if
s=(1,-1,-1,-1,-1,-1,1,-1,—-1,1,—1,1), then |s| = 8 = 2 = |r| mod 3. In this case, we identify
the matrix unit E, s with the diagram below

8 9 10 11 12

1 2 3 4 5

oo
w

v 2 3 4 5 6 7 & 9 10 11 12

Each such two-rowed k-diagram d corresponds to two subsets, t(d) C {1,2,...,k} and b(d) C
{1/,2',... K}, recording the positions of the —1s in the top and bottom rows of d, hence in r and
s respectively, and |t(d)| = |b(d)| mod . Under this correspondence, diagrams multiply as matrix
units. Thus, if d; and do are diagrams, then

didy = dy(dy ) t(do) 3
where d3 is the unique diagram given by ¢(d3) = t(dy) and b(d3) = b(dz). For example, if n = 3,

dy =

22



2.2 Irreducible Modules for Z;(C,)
For ¢ € A;(C,,), set

Z,(f) = spanc{v, € V¥ | k — 2|r| = £ mod n} = spanc{v, € V®* | |r| = a; mod 7}, (2.14)

where ay is as in (2.4). When we need to emphasize that we are working with the group C,, we

will write this as Z;,(C,)®. Now g acts as the scalar ¢! on Z,(f), and these scalars are distinct for
different values of £ € {0,1,...,n — 1}. Therefore,

V®k _ @ ng)

@GAk(Cn)

is a decomposition of V®* into C,,-modules.

(0) (m)
k

The mappings E,s with |r| = |s| = ay mod 7 act as matrix units on Z;’ and act trivially on Z;’

for m € Ak(C,), m # £. In addition,
span{Es | |r| = |s| = a; mod7i} = End(Z\") = Endc, (z\").

As a consequence, we have that the spaces Zl(f) are modules for Z;(C,,). Since they are also invariant

under the action of C,,, they are modules both for C,, and for Zx(C,). It is apparent that Z,(f) is
irreducible as a Zj(C,,)-module from the fact that the natural module for a matrix algebra is its

unique irreducible module.

Examples 2.15. For any m > 1, let (;;, be a primitive mth root of unity. Assume k = 5 and
n =12, so i = 6. Then Z5(C12) has 6 irreducible modules Z5(Cy2)® for £ = 1,3,5,7,9,11. On
them, the generator g of Cia acts by the scalars (12, (3, (D, (o, (s, (ia, respectively.

The algebra Z5(Cg) has 3 irreducible modules Z5(Cg)® for £ = 1,3, 5, on which the generator
g’ of Cg acts by the scalars §61, Cg, Cg, respectively.

The algebra Z5(C3) also has 3 irreducible modules Z5(C3)® for £ = 0,1,2, on which the
generator g” of Cs acts by the scalars 1, (3, (3, respectively .

The vectors {v, | r € {=1,1}°, k — 2|r| = £ mod 3} form a basis for Z5(Cs))) and Z5(C3)™"
when £ = 1 mod 3; for Z5(Cg)® and Z5(C3)(®) when ¢ = 0 mod 3; and for Z5(Cg)®) and Z5(C3)®
when ¢ = 2 mod 3.

The next result gives an expression for the dimension of the module Z,(f) = Zk(Cn)(Z).

Theorem 2.16. With i as in (2.1)), suppose ¢ € Ax(C,) and k —2a;, = ¢ modn as in (2.4). Then
Z,(f) = spanc{v, € V& | Ir| = ag mod @} is an irreducible Z;(Cy)-module and the following hold:

2n=1

k
(i) dim Z,(f) = Z <b>’ which is the coefficient of 2% in (1 + 2)*|

0<b<k
b=ay modn

(ii) As a bimodule for C,, x Zi(C,,)

vek e ( (C,QP@ZEP). (2.17)
0€AL(Cn)

(Here C,, acts only on the factors c' and Z;.(C,) on the factors Z,(f). Since Z,(f) is also both a

C, and a Z(C,,)-module and the actions commute, the decomposition VEF = @eeAk(Cn) Z,(f)
is also a C,, X Zk(Cy)-bimodule decomposition.)
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(iii) C,(f) occurs as a summand in the Cp-module VO* with multiplicity

m) = 3 <IZ>_dimz,§).

0<b<lk
b=ay mod 7

(iv) The number of walks on the affine Dynkin diagram of type An1 starting at node 0 and ending
at node ¢ and taking k steps is the coefficient of z* in (14 z)k‘zﬁzl, which is m,(f) = dim Z](f).

Proof. Part (i) follows readily from the fact that a basis for Z,(f) consists of the vectors v, labeled
by the tuples r € {—1,1}* with |r| = b = a, mod i (see (2.14))), and the number of k-tuples r with b
components equal to —1 is (lg) Each such vector v, satisfies gv, = Ckfz‘r'vr = Cevr; hence Cv, = C%)
as a C,-module. The other statements are apparent from these. O

Examples 2.18. Consider the following special cases for C,,, where 7 is as in (2.1)).

(i) Tf k < 7, then dim Zy(Cy) = zk: (S)Q - <2:>

a=0

(ii) If & = n, then for ¢ € {0,1,...,n — 1} such that Kk —2 -0 = ¢ modn, we have ding) =

<g> + <Z> — 2, and dim Z4(C,) = nzl (Z>2 L <2:> oy

a=1

Example 2.19. Suppose k = 6 and n = 8, so n = 4. The irreducible Cg-modules Cg) occurring

in V¥ have ¢ = 0,2,4,6, and ay = 3,2,1,0, respectively, where k — ¢ = 2a; mod8. We have the

. . {4 . 4
following expressions for the number mé of times Cé ) occurs as a summand.

] o] mg
o 3| m?= <§ =20 = dimz")
2 2| mP= <6> + (6> =16 = dimz{")
2) " \6
4] 1| mlP= <f) + (g) =12 =dimz{"
6| o md= <g) + (i) — 16 = dim 2"

In particular
2
dimZg(Cs) = Y (dim z((f)) = 202 + 162 + 12% + 162 = 1056,
LeN(n)

exactly as in Example
The number of walks on the Dynkin diagram of type A7 with 6 steps starting and ending at 0

is the coefficient of 23 in
14+2)°% , = 14624 1522 +202° 4+ 15+ 62 + 22,
z4=1

which is 20. The number of walks starting at 0 and ending at 4 is the coefficient of z in this
expression, which is 64+6 = 12.
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2.3 The cyclic subgroup C
Let Co, denote the cyclic subgroup of SUs generated by

—1

where ¢ = ¥ for any 6 € R such that ¢ is not a root of unity. Then Co has a natural action on
V@ and the irreducible Coo-modules occurring in the modules V®* are all one dimensional and
are given by Cg@ = Cv, for some ¢ € Z, where gv, = (‘v and Cg@ ® Cé@”) = Cgfm). In particular,
V= ngl) @Cgﬁ), and Cgﬂ) RV = Cgﬁ_l) @C&H) for all £. Thus, the representation graph Ry (Cx)

is the Dynkin diagram A...

1 1 1 1 1 1
Co! i (D (D (D (D ... (A
N N\ N N\ N N

(2.20)
Now gv, = ¢F=2Ily,, for all r € {—1,1}*, where |r| is as in (2.2). The arguments in the previous
section can be easily adapted to show the following.

Theorem 2.21. Let Z;, = Z;(Cy) = Endc_, (VEF).

(a) B¥(Cy) = {Ens |rse {11}k |r| = |s|} is a basis for Zy,, where Ey svy = 0s vy and E, B¢ =
SstEru for all r;s,t,u € {—1,1}F.

(b) The irreducible modules for Zy, are labeled by Ax(Coo) = {k —2a | a =0,1,...,k}. A basis
for the irreducible Z-module Z,gkih) is {vy | r € {=1,1}*, |r| = a}, and dim Z,(;%Qa) = (S)

The module Z,(Ck_Qa) is also a Coo-module, hence a (Coo X Zi)-bimodule.

ER\E (2
(c¢) dimZy = Z < > = (k:) = coefficient of 2* in (1 + 2)%*.
a

a=0

(d) Zy is isomorphic to the planar rook algebra Py.

Remark 2.22. A word of explanation about part (d) is in order. The planar rook algebra Py
was studied in [FHH], where it was shown (see [FHH, Prop. 3.3]) to have a basis of matrix units
{Xrs | R,S € {1,...,k}, |IR] = |S|} such that XgrsX1y = ds7Xru-. Identifying the subset R of
{1,...,k} with the k-tuple r = (r1,...,75) € {~1,1}* suchr; = —1if j e Rand r; = 1 if j € R,
it is easy to see that Z;(Cs) = Py, via the correspondence E,s — Xgs.
et 0

Remark 2.23. As a module for the circle subgroup (maximal torus) S* = { ( 0 et ) te R}
of SUg, V has the same decomposition V = Cv_; @ Cv; into submodules (common eigenspaces) as it

has for C. Thus, the centralizer algebra Z;(S') = Z;.(Cw), and its structure and representations
are also given by this theorem.
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3 The Binary Dihedral Subgroups

Let D, denote the binary dihedral subgroup of SU; of order 4n generated by the elements

g,h € SU,, where
_]_ 0 O .
g=<CO <>, h=<z. é) (3.1)

¢ = Con, & primitive (2n)th root of unity in C, and ¢ = /—1. The defining relations for D,, are

g2" =1, ¢"= h?, hilgh = gil. (3.2)

Each of the nodes ¢ =0,0',1,2,...,n — 1,n,n’ of the affine Dynkin diagram of type If)n+2 (see

Section corresponds to an irreducible D,-module. For £ = 1,...,n — 1, let Dg ) denote the
two-dimensional D,-module on which the generators g, h have the following matrix representations,

(¢t oo (0 i
g= < 0 C@ ) h = i@ 0 :
relative to the basis {v_g,vs}. For £ = 0,0',n,n/, let the one-dimensional D,,-module D,(f) be as
follows:

Dq(lo) = Cvy, gvo = Vo, hvy = vg

D%Ol) = Cvy, gV = Vo, hvgr = —vq

Dﬁl”) = Cv,, GVp, = —Vp, hv,, = i"v,, (3:3)
D%"/) = Cvyp, GVp = —Vy/, hvy = —i"vyy.

In each case, we refer to the given basis as the “standard basis” for Dg). The modules D,(f ) for

¢=0,0,1,2,...,n — 1,n,n give the complete list of irreducible D,-modules up to isomorphism.
Relative to the standard basis {v_j,v;} for the module V := DT(}), g and h have the matrix
realizations displayed in (3.1)), and V is the natural D,,-module of 2 X 1 column vectors.

Proposition 3.4. Tensor products of V with the irreducible modules D$f) are given as follows:

@) DL avaDlVaeD forl<t<n—1;
) DY ov=DY ¢ DY ¢ DP;

) DI Veov=D"?eD™aD;

@) DV ov=DdP =v, DYV gv=DV -v;
() DY ev=D{Y, D{Yev=Dy"".

This can be readily checked using the standard bases above. They are exactly the tensor product
rules given by the McKay correspondence.

Assume s = (sq,...,8;) € {—1,1}*, and let |s| = |{s; | s; = —1}| as in (2:2). On the vector
Vs = Vg ® - Qv € V@ the generators g, h have the following action:
gus = CF20sly, hvs = i*v_s. (3.5)

For two such k-tuples r and s,

kE—2|r| =k —2|s| mod2n <= |r| =|s| modn.
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Ay(Dy,) = {¢e{0,1,...,n} | {=k—2a; mod2n for some as € {0,1,...,k}} (3.6
Ax(Dn) = ADp)U{l' | €€ Ay(Dy)N{0,n}}. (3.7)

We will always assume ag is minimal with that property. The set Ax(D,,) indexes the irreducible
D,,-modules in V®*. In particular,

for DY to occur in V®* it is necessary that k — ¢ =0 mod 2, (3.8)

and when k — ¢ = 0 mod 2 holds, then i*¢ = =% = 1 or —1 depending on whether k — ¢ = 0 or
k— ¢ =2 mod4. Note also for £ = 0,n that Dgf ) occurs in V®F with the same multiplicity as Dg).

3.1 The centralizer algebra Z,(D,,)

In this section, we investigate the centralizer algebra Z;(D,) = Endp, (V&) for V = DY =
Cv_1 ® Cvy. The element g in generates a cyclic subgroup Co, of order 2n, which implies
that that Endp,(VE¥) = Zx(D,) C Zi(Cs,) = Endg,, (V®*). We will exploit that fact in our
considerations.

We impose the following order on k-tuples in {—1, 1}

Definition 3.9. Say r = s if |[r] <|s|, and if |r| = |s|, then r is greater than or equal to s in the
lexicographic order coming from the relation 1 > —1.

Example 3.10. (1,1,-1,—1,—1,1) = (1,-1,1,—-1,1,—1).

3.2 A basis for Z,(D,)

We determine the dimension of Z;(D,,) and a basis for it. It follows from Theorem [2.7](a) that
a basis for Z;(Cay,) is given by

B (Cay) = {E Irse {—1,1}% |r| = s modn}, (3.11)
where |r|,|s| € {0,1,...,k}. Now
Ir|=1|s| modn <= |—r|=k—|r|=k—|s|=]|—s| modn, (3.12)
so Eys € B¥(Cy,) if and only if E_, _s € B¥(Cay,).
Theorem 3.13. (a) Zy(D,) = {X € Zx(Ca,) | RX = Xh}.
(b) A basis for Z;,(Dy) = Endp, (VEF) is the set

BE(D,) = {E +E . s|nse{-1,1}% r=—r, |r| = |s| mod n}. (3.14)

(¢) The dimension of Z(D,,) is given by

dimZ,(D,) = édimZk(an):% > <Z> <]Z> (3.15)

0<a,b<k
a=b modn

<coefﬁcient of 2% in (14 2)% |Zn:]_> .

DO | =
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Proof. Since Zy(D,,) C Z(Csy), we may assume that X € Z;(D,,) can be written as

X = Z Xr,sEr,57

[r|=[s| modn

and that X commutes with the generator g of D,, in (3.1). In order for X to belong to Zx(D,,),
hX = Xh must hold, as asserted in (a). Applying both sides of hX = Xh to vs, we obtain

Z Z.anSVfr = Z ikXt’,Svt.

[r|=|s| modn [t|=]—s| modn

The coefficient ier,s of v_, on the left is nonzero if and only if the coefficient z'kX,r,,S of v_, on
the right is nonzero, and they are equal. Hence, Xh = hX if and only if X_, ¢ = X, for all
Ir| = |s| modn. Therefore, we have

X = Z Xr,s(Er,s + E—r,—s)-

[rl=[s| modn
r-—r

Thus, the set B¥(D,,) in (3.43)) spans Zy(D,,), and since it is clearly linearly independent, it is a
basis for Z(D,,).

Part (c) is apparent from (3.11)), part (b), and Theorem (c), which says that dim Z;(Ca,) is
the coefficient of z¥ in (1 + 2)?% | n_y. O
Example 3.16. Assume k =4 and n = 5. Then dim Z;(D,,) is § the coefficient of z* in

(14 2)% |so1= 1+ 82 + 282% + 5623 + 702" + 56 + 282 + 822 + 23,

so that dimZ4(D5) = 1 - 70 = 35. Since z* appears only once in (1 + 2)® |.n—; for n > 5, in fact
dimZ4(D,,) = 35 for all n > 5.
Now when n =4 = k, dimZy(D5,) is 3 the coefficient of z* = 20 =1 in

(1+2)8 |ty =1+ 82 + 2822 +562% 4 70 + 562 + 2822 + 823 + 1.

Thus, dimZ4(D4) = (1 + 704 1) = 36.

3.3 Copies of DY in V& for ¢ € {1,...,n—1}
The next result locates copies of Dg ) inside V®* when 1 < ¢ <n — 1.
Theorem 3.17. Assume £ € Ap(Dy,) and 1 < ¢ <n—1. Set
K¢ = {re{—l,l}k ’ k —2|r| = £ mod 2n, r>—r}. (3.18)

)

t=ky_,, v, determine a standard basis for a copy of D,(f .

(i) For each r € Ky, the vectors i
(ii) Forr,s € Ky, the transformation e, s := E;s + E_, _s € Z;(D,,) = Endp, (V®k) satisfies

er,s(vt) = 6s,tVr7 er,s(iz_kV—t) = 557ti£_kv_r.

(i) Forr,s,t,u € Ky, ersery = dstery holds, so spanc{es | r,s € Ky} can be identified with the
matriz algebra Mg, (C), where d; = |Ky|.

28



(iv) B](f) :=spanc{i*Fv_,, v, | r € K¢} is an irreducible bimodule for D, x Mg, (C).

Proof. (i) Since r € K satisfies k — 2|r| = ¢ mod 2n, we have

g(ieikv—r) = Cie(ieikv—r) and  gve = CZVH
h(i'Fv_,) =ity and  hv, = ifve, = ifGF ) = iR,

so {i""*v_,,v,} forms a standard basis for a copy of Dg).

Part (ii) can be verified by direct computation.

For (iii) note that if s € Ky, then —s & Ky, as otherwise —¢ = k — 2| — s| = ¢ mod 2n, which is
impossible for ¢ € {1,...,n — 1}. Thus, for r,s,t,u € Ky,

€rs€tu = 6s,ter,u + 6fs,tefr,u = 5s,ter,u-

For (iv), assume S # 0 is a sub-bimodule of B,(f), and 0 # u =}, , (qf,riﬁ_kv,r + V) €S.
Then since k — 2|r| = £ mod2n, gu — (~fu = (¢! — ¢7Y) Dorek, WVr €S, As ¢t — ¢t #£0 for
£=1,...,n—1, we have that w := ZreKl YV € S. If vy # 0 for some u € Ky, then e yw = y,v¢ € S

for all t € Ky, But then hv = i*v_, € S for all such t as well. This implies S = B{”. If instead
Yo = 0 for all u € Ky, then v = ZrEKg y_pi'~Fv_,. There is some v_s # 0, and applying ers to u

shows that v_y € S for all t € Ky. Applying h to those elements shows that v € S for all t € K,.

Hence S = B](f) in this case also, and B,(f) must be irreducible. O

3.4 Copies of DY in V& for ¢ ¢ {0,0/,n,n'}

Throughout this section, let £ = 0,n and ¢ = 0',n/. Observe that if kK — 2|r| = ¢ mod 2n, for
¢=0,n, then k — 2| —r| = —¢ = ¢ mod 2n.

Theorem 3.19. Assume £ =0 orn and ¢ € Ay(Dy,). Let
K, = {re (=1, 1}* | k=2l =¢ mod2n, r> —r} (3.20)

(i) C(v, +i"Fv_,) = DY and Clv, — i Fv_,) = D) for each r € Ky.

(ii) Forr,s € Ky, the transformations

1 Y —
e?’:s = 2 <(Er’s T E_r’_s) +f k(Er,—S + E—r,s>> < Zk(Dn)
satisfy
(e £i TPy = (v iRV
efs(vt + Z'Z_kV—t) = 0.

(ili) Forr,s,t,u € Ky, efseifu = dseei, and efef, = 0 hold. Therefore spanc{e;5} can be identified

r,u

with the matriz algebra My,(C)*, where dy = |Ky|.

(iv) B,(f) = spanc{v, +i"Fv_, | r € K¢} and B,(f,) = spanc{v, — " Fv_, | r € K¢} are irreducible
bimodules for D,, x My, (C)*.
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Proof. Part (i) follows directly from (3.5)), and parts (ii) and (iii) can be verified by direct compu-
tation using the fact that if r;s € Ky, then it cannot be the case that r = —s. Indeed, if r = —s,
then —s =r > —r =s, which contradicts that s belongs to Ky. Part (iv) can be deduced from the
earlier parts and the fact that the maps e, belong to Z;(D,,), hence commute with the D,,-action.
The argument follows the proof of (iv) of Theorem [3.17 and is left to the reader. O]

Corollary 3.21. (a) The following set is a basis for Zx(Dy,) which gives its decomposition into
matriz summands:

BiDn) = |J A{eslnsekg u | {&, [tueKed, (3.22)
{=1,...n—1 {=0,n
where £ € A} (Dy,) (see - )iers=Es+E_ s forr,seKy, £=1,...,n—1, and Ky is as
in , and et,u = %( tu+ E_t—u) :l:zf k(Et _u+E_¢ u)) fort,u € Kg, £ =0,n, and Ky
is as in (3.20)).
(b) {z¢|€{l,...,n—1}}U {ZZE | £=0,n}, €€ Ay(Dy), is a basis for the center of Zy(Dy,),

where
zp = Z err for £€{1,...,n—1}, (3.23)
reKy, r=r’
f = Z ef, for ¢ € {0,n}. (3.24)
reKye

3.5 Example V®*

Example 3.25. In this example, we decompose V®* for n > 4.

First, suppose n > 5. Then using the results in Proposition [3.4] we have
v# =3.D") 3. DO a4.DP DM,
Correspondingly, Zx(D,,) decomposes into matrix blocks according to
Zr(Dy,) =2 M3(C) & M3(C) @ My (C) & M4 (C),

and dim Zy(D,,) = 3% + 32 + 42 + 12 = 35 as in Example More explicitly we have for n > 5
the following:
(i) Let £ =k =4, and set q = (1,1,1,1). Then i*~% = 1, so {v_q,vq} gives a standard basis for
a copy of D", and {eq,q == Eq,q + E—q,—q} is a basis for M;(C).

(ii) Let £ = 2, and set r = (1,1,1,—-1), s = (1,1,—-1,1), t = (1,—-1,1,1), and u = (—1,1,1,1).
Then the pair {—v_j, vy} for A =r,s,t,u determines a standard basis for a copy of D7(12). The
maps ey, := Ex, +E_\ _, for A, u € {r,s,t,u} give a matrix unit basis for My(C).

(iii) Let ¢ = 0, and set v = (1,1,—1,—-1), w = (1,-1,1,—1), and x = (1,—1,—1,1). Then

£~k = 1, the vector vy — v_, gives a basis for a copy of D%O/) for A € {v,w,x}. The

since 14
transformations ey = %((E,\,# +E_\—pu) — (E,\,_lﬁ—E_,\,M)) for A, u € {v,w, x} form a matrix
unit basis for M3(C)~ = M3(C) (in the notation of Theorem [3.19)). Similarly, the vector vy +
v_) gives a basis for a copy of DT(IO), and the maps e;\ru = %((E,\# +E_\—u)+ (E,\7_“+E_>\’N)>

for A\, u € {v,w,x} form a matrix unit basis for M3(C)* = M3(C).
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In (i) and (ii), the space BEIZ) = spanc{viy}, as A ranges over the appropriate indices, is an irre-
ducible bimodule for D,, x Z;(D,,). In (iii), BELO) = spanc{vy +v_,} and BELOI) = spanc{vy —v_y}
are irreducible (D,, x Z;(D,))-bimodules in V®*. Therefore, as a D,, x Z(D,)-bimodule V®*
decomposes into irreducible bimodules of dimensions 2,8, 3, 3.

Suppose now that n = 4. Then V¥ = 3. D @3- D o 4.D? & DY © D), and
Z(Dy) = M3(C) @ M3(C) @ My (C) & My (C) ®M;(C), which has dimension 36 (compare Example
3.16). The only change is in (i), where {vq —v_q} is a basis for a copy of D514) and {vq+v_q} is a

(4)

basis for a copy of D, . In the first case, eq ; = %((Eq,q +E_g-q) — (Eq—q + E,q,q)> gives a basis

for M;(C)~, while in the second, e, = %((Eq,q +E_q—q)+ (Eq—q + E,qu)) for M;(C)*.

3.6 A diagram basis for D,

The basis {E;s+E__s|r,s€ {~1,1}% r = —r,|r| = |s| modn} of matrix units can be viewed
diagrammatically. If r = (r1,...,7%) € {=1,1}¥ and s = (sy,...,sp) € {—1,1}*, let d,s be the
diagram on two rows of k vertices labeled by 1,2,...,k on top and 1’,2',... k' on bottom. Mark
the ith vertex on top with + if 7; = 1 and with — if r; = —1. Similarly, mark the j'th vertex on
the bottom with + if s; = 1 and with — if s; = —1. The positive and negative vertices correspond
to a set partition of {1,...,k,1’,... k'} into two parts. Draw edges in the diagram so that the +
vertices form a connected component and the — vertices form a connected component. For example,
if

r=(-1,-1,1,-1,-1,1,1,-1) and s=(1,-1,-1,—-1,1,-1,1,-1),

then the corresponding diagram and set partition are

= {{1,2,47578,2',3',4',6',8'},{3,6,77 1',5',7'}}-

v
o2 3 4 5 ¢ 7 ¥

Two diagrams are equivalent if they correspond to the same underlying set partition. Furthermore,
switching the + signs and — signs give the same diagram, since d,s =d_, _s.

If d is any diagram corresponding to a set partition of {1,...,k,1’,... k'} into two parts, then
d acts on V&* by d.v, = Zte{—l,l}k dt v for t = (ug,...,ug) and u = (uyr,...,up) € {—1,1}* with

{1 if ug = up if and only if a and b are in the same block of d, (3.26)

0 otherwise

for a,b e {1,...,k,1’,... k'}. In this notation d, denotes the (t,u)-entry of the matrix of d on V&F
with respect to the basis of simple tensors. It follows from this construction that e;s = E, s +E_; _
and d, s have the same action on V® and so are equal. Note that in the example above, we have

drs.(Va @ Vp @ Vp @ Vp @ Vg @ Vp @ Vg @ Vp) = Vp @V ® Vg @ Vp @V @ Vg @ Vg @y,

for {a,b} = {—1,1} and d,s acts as 0 on all other simple tensors.
The diagrams multiply as matrix units. Let b(d) and t(d) denote the set partitions imposed by
d on the bottom and top rows of d, respectively. If d; and dy are diagrams, then

dl d2 = 5b(d1),t(d2)d3 )
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where d3 is the diagram given by placing d; on top of da, identifying b(d;) with ¢(d3), and taking
ds to be the connected components of the resulting diagram. For example,

dy

do

If the set partitions in the bottom of d; do not match ezactly with the set partitions of the top of
ds then this product is 0. Note that the set partitions must match, but the + and — labels might

be reversed.
For d; s to belong to the centralizer algebra Z;(D,,), we must have r,s € K. For a block B in a

set partition diagram d we let ¢(B) = |BN{1,...,k}| and b(B) = |BN{1l’,...,k'}|. Thenr,s € Ky
if and only if |r| = |s| = 3(k — ) modn which is equivalent to

t(B) = b(B) modn  for each block B in d. (3.27)

Example 3.28. Recall from Example that dimZ4(Dy4) = 36, and the diagrammatic basis is
given by diagrams on two rows of 4 vertices each that partition the vertices into < 2 blocks B that

satisfy ¢(B) = b(B) mod 4. They are

(a) w has one block B with t(B) = b(B) = 4.

U
A~

(c) There are 16 diagrams d = Bj U By in which B; has 3 vertices in each row and Bs has 1
vertex in each row:

Bl B BR K oo

(d) There are 18 diagrams d = Bj Ll By in which both blocks have 2 vertices in each row:

HH Pl R B

3.7 Irreducible modules for Z;(D,)

has t(B1) =4 =0 = b(B;) mod4 and t(Bz) = 0 =4 = b(B2) mod 4.

Theorem 3.29. Assume ¢ € A}(Dy), and let a, € {0,1...,k} be minimal such that £ = k —
2ay mod 2n.
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(i) Forte{l,...,n—1},
Z’(f) = Zp (D)W := spanc{v; | t € K¢l (3.30)

where Ky is as in (3.18), is an irreducible Zy(D,,)-module, and

N LA . , K
dimZz,” = Z <b> = coefficient of 2™ in (1+ z) |z":1' (3.31)
0<b<k
b=ay modn
(ii) For £ € {0,n},
79 = 7,0, = spanc{ve + i Fv_¢ |te K}, (3.32)
Z,(f/) = Z(Dp)Y) = spanc{vi — " Fv_¢ |te K,

where Ky is as in (3.20), are irreducible Z(D,,)-modules, and

7 _ gimz® 1 ky _1 : a k
dmZ, ' =dimZ,~’ = 5 O;k <b> =3 (coeﬂiczent of 2% in (1+2) }Zn:l). (3.33)

b=ay modn

Up to isomorphism, the modules in (i) and (ii) are the only irreducible Zy,(Dy,)-modules.

Proof. Assume initially that £ € {1,...,n — 1} and £ € A}(D,). Let Z,(f) be as in (3.30). For
all r;s,t € Ky, ersvy = dstvr, where e, s =E s +E_, s € Z;(D,) is as in Theorem |3__]—7| (ii).
Thus, Z,(f) is the unique irreducible module (up to isomorphism) for the matrix subalgebra of
Z;(D;,) having basis the matrix units e,s, r,s € K;. Since the other basis elements in the basis
Bk (D) (in Corollary act trivially on the vectors in Zg), we have that Z,(f) is an irreducible

mat

Zi(Dy,)-module. Since k — 2|t| = ¢ mod2n for all t € K;, we have [t| = ay modn. Therefore
dim Zg) =Y o<k (IZ) = coefficient of 2% in (1 + Z)k‘zn:p as claimed in (i). Observe

b=ay modn

W](f) := spanc{iFv_; | t € K} is also a Zi(D,,)-module isomorphic to Z,(f) by Theorem (ii),
and the (D, x Z(D,,))-bimodule BY”) in that theorem is the sum B\ = W\ & 7",

Now assume ¢ = 0,n and £ € A}(D,,). Let Z,(f) and Zl(f/) be as in (3.32)). Since according to
Theorem [3.19

el (v £ iszv_t) = Ost(vr £ iefkv_r), efs(vt F z'z*kv_t) =0

r,s

for efs =1 ((Er,s +Eor—s) £ iF(E s + E_r75)> with r,s € Ky, and since all other elements of the

2
basis B . (D,) act trivially on Z,(f) and Z,(fl), we see that they are irreducible Zj(D,,)-modules.

Moreover, since |t| = ay for all t € K, they have dimension

% Z <IZ> = % (coefﬁcient of z% in (1+ z)k‘znzl) .

0<b<lk
b=ay modn

As the sum of the squares of the dimensions of the modules in (i) and (ii) adds up to dim Zx(D,,),
these are all the irreducible Z;(D,,)-modules up to isomorphism. O
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Example 3.34. Assume k =4 and n = 5. Then Ax(D,,) = {0,0,2,4} and ay

respectively. Thus,

dimz{") = dimz{¥ = % 3 <:> = ;(g) = 3.

0<b<4

b=2 mod 5
4 4
> (6)=0)=
b 1
- L
dImZi — b=1 mod 5 4 4
> ()=o)
b 0
0<b<4
b=0 mod 5

if ¢ =2,

if £=4.

=1(k—10)=2,1,0,

Then dim Z,(D,,) is the sum of the squares of these numbers which is 35, as in Example

Remark 3.35. For £ € {1,...,n — 1} we have

dim Zj,(C2,) " = dim Z;,(C2,) Y = dim Z;,(D,,) .

This can be seen from the observation that if 2n — ¢ = k — 2a mod 2n, for some a € {0,1,..

)= = (

c=k—a modn

then ¢ = k — 2(k — a) modn, so that

> () -

0<b<k 0<k—b<lk
b=a modn k—b=k—a modn

= dimZ(Cgp)® = dim Z4(D,,)®.

dim Z;,(Cap )29

For ¢ € {0,n}, we have seen that

> (5

dim Zk(Dn)(ZI) — dim Zkz(Dn)(Z) - %dim Zk(an)“).

Therefore,
n—1
dimZy(D,) = (d|mZk
=1 Le{0,n}
1 2n—1 1
- - dim Zy (Can)¢ >> 5 (d.m Z4(Cop)© >)
t=1,0#n
1.
= idlm Zk(CQn)
as in Theorem [3.13|(b).

3.8 The infinite binary dihedral subgroup D, of SU,
Let Dy, denote the subgroup of SUy generated by

(¢t (0
=% ) ()

34

1)+ 3 ((amz,)0) + (aimzu(,))°)

+ % (dim zk(cgn)m))

(3.36)

')k})

2

(3.37)



where ¢ =€, § € R, i = v/—1, and ( is not a root of unity. Then the following relations hold in

D.:
R*=1, hlgh=g¢7', ¢"#1 for n#0. (3.38)
For ¢ =1,2,..., let DC(Q denote the two-dimensional Ds,-module on which the generators g, h

have the following matrix representations:

(¢t o0 (0 i
=% o) n=(F o)

relative to the basis {v_s,vs}. In particular, V = Dg)). For ¢ = 0,0, let the one-dimensional

D..-module Dq(f) be given by

Dgg’) — CVO/7 gvy = Vo, hVO/ = —Vy. (340)

Proposition 3.41. Tensor products of V with the irreducible modules D(()Q decompose as follows:

(a) D(OQ RV = D&_l) @ Dgffl) forl < £ < oo;
(b) DY ev=DY ¢ DY & DY;
) DYev=DP=v, DY ev=DY =v.

The representation graph Ry (D) of Dy is the Dynkin diagram Do, (see Section , where
each of the nodes ¢ = 0,0’,1,2,... corresponds to one of these irreducible Dy-modules. The
arguments in previous sections can be adapted to show the next result.

Theorem 3.42. Let Z;(Dso) = Endp_ (VEF).
(a) Zk(Doo) = {X € Zx(Cwx) | hX = Xh}.
(b) A basis for Z;,(Dog) = Endp_ (V) is the set
BE(D) = {E +E o s|nse {11} re—r, |r|= |s|}, (3.43)
where r = —r is the order in Definition[3.9

(¢) The dimension of Zy(Dso) is given by

dimZy(Dy) = %dimZk(Coo) = ;<2:) = (%k_ 1) (3.44)

1
= 3 <c0efﬁcient of 2¥in (1+ z)2k> .

(d) Fort=0,1,2,...,k such that k — { is even, let

Ky = {r e {~1,1}* ‘ k—2|r| = @} - {r e {~1,1}* ‘ " = L(k —z)}. (3.45)

(i) When 1 < ¢ <k, then Z,(f) = Z1(Doo) ) = spanc{v; | t € Ky} is an irreducible Zj,(Do)-
module with L .

dimz\" = <b> where b= (k — ). (3.46)

For allr,s,t € Ky, ersve = dstvr, where e s =Ers +E_y s € Z; (D).
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(ii) When ¢ =0 (necessarily k is even), then
0) _ -k - oy _ ok ~
Z,’ =spanc{vi +i "v_¢ |te€ Ko} and Z;' ' =spanc{vi —i "v_¢ |t € Ko},

are irreducible Z(Dso)-modules with dimensions

/ 1/k 1
dimZ® = dimz{") = - where b= -k, (3.47)
2\b 2
and
efs(vt + i*kv_t) = Js¢(vr = fkv_r), efs(vt F i*kv_t) =0

for eﬁfs = %((Er,s +E_ )+ i_k(Er,_s + E_ns)) with r,s € Ko.
() Zk(Duo) = Qg, where Qg is the subalgebra of the planar rook algebra Py having basis

(i) {Xrs |0 <RI =S| < 3(k— 1)} when k is odd;
(i) {Xrs |0 <|R[ =S| < 3(k—2)}U{Xsrss | Rl =|S| =3k, R~ —R, S —S} when k

1S even;

where the Xgrs for R,S C {1,...,k} are the matriz units in Remark and > s the order
coming from the order in Definition and the identification of a subset R with the tuple
re{-1,1}*

Remark 3.48. In Remark we identified a subset R C {1,...,k} with the k-tuple r =
(ri,...,r;) such that r; = —=1if j € Rand r; = 1if j ¢ R. The element e, s =E s+ E_;
in part (b) of this theorem has the property that |r| = |s| and r = —r. Therefore, |R| = |r| (the
number of —1s in r) is less than or equal to | — r| (the number of of —1s in —r) by the definition of
>, and |R| < |3k]. Thus, when k is odd, sending each such e to the corresponding matrix unit
Xr,s will give the desired isomorphism in part (e). When k is even,

{er,s = Er,s + E—r,—s

nse{—L1} r=—r || =s| < %k} (3.49)

U {e

is a basis for Z;(Ds). Note that Cef @ Ce = (Ce;f_s @ Ce, _, so we can assume s = —s. Then

nse {11} r——r, |r|=]s| = %k:}

sending e, s to Xg s when |r| = |s| < %k‘, and efs to X4Rr,+s when |r| = [s| = %k: gives the isomorphism
in (e).
In the planar rook algebra Py, the elements Xgs with |R| = |S| = %kz comprise a matrix unit
2
basis of a matrix algebra of dimension (];) where b = 2k. The subsets {Xgs | R = —R,S = —S}

and {X_r_s | R —R,S > —S} each give a basis of a matrix algebra of dimension (%(’Z))Q The
sum of those two matrix subalgebras is included in Q.

4 Dynkin Diagrams, Bratteli Diagrams, and Dimensions

4.1 Representation Graphs and Dynkin Diagrams

The representation graph ?QV(G)A for a Aﬁniice subgroup G of SUs is the corresponding extended affine
Dynkin diagram of type A,—_1,Dn+1, Eg, E7, Eg. In the figures below, the label on the node is the
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index of the representation, and the label above the node is its dimension. The trivial module is
shown in blue and the defining module V is shown in red.
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4.2 Bratteli Diagrams

The first few rows of the Bratteli diagrams By/(G) for finite subgroups G of SUy are displayed here.
The nodes label the irreducible G-modules that appear in V®*. The label below each node at level
k is the multiplicity of the corresponding G-module in V®*, which is also the dimension of the
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corresponding module for Z;(G) with that same label. The right-hand column contains the sum of
the squares of these dimensions and equals dim Z;(G). An edge between level k and level k£ + 1 is
highlighted if it cannot be obtained as the reflection, over level k, of an edge between level k — 1
and k. The non-highlighted edges correspond to the Jones basic construction discussed in Section
1.6. Note that the highlighted edges produce an embedding of the representation graph Ry(G) into
the Bratteli diagram By (G).

SU, : k=3

14
42

132

Observe that Cs and Cig have isomorphic Bratteli diagrams; they each correspond to Pascal’s
triangle on a cylinder of “diameter” 5:

20

Cs:

70

254

948

20

ClO .

70

254

948
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k=1 1
k=2 2
k=3 5
1: k=4 14
k=5 42
k=6 133
k=7 442
k=8 1534

4.3 Dimensions

Using an inductive proof on the structure of the Bratteli diagram, we can compute the dimensions
of the irreducible Z;(G)-modules. The dimension of the centralizer algebra Z;(G) is the multiplicity
of the trivial G-module (the blue node) at level 2k. That dimension is also the sum of the squares
of the irreducible G-modules occurring in V¥¥. We record dim Z;(G) for G = T, O,I in the next
result. The cyclic and dihedral cases can be found in Sections 3 and 4.

Theorem 4.1. For k > 1,

4k 4+ 8
dimZ,(T) =
(a) dim Zy(T) D

Zy(T)-modules, and thus also the multiplicities of the irreducible T-modules in V& are as
shown in the following diagram:

(IOEIS] Sequence |A047849). For k > 2, the dimensions of the irreducible

4n48 3.4m 4n—4 an—4
k=2n
k=2n+1:
_ 4k 4 6.2 18 . ,
(b) dimZ,(0) = —r (IOEIS] Sequence A007581). For k > 2, the dimensions of the

irreducible Z(O)-modules, and thus also the multiplicities of the irreducible O-modules in
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VO are as shown in the following diagram:

4" 46-27"48 3-4"46-2" 2.4"—8 3-4"—6-2™ 4" —6-2"48
24 24 24 24 24
k=2n
k=2n+1:
qntlgpg.2nt+148 2.47+1_8 qntl_g.2n+148
24 24 24

4% 4+ 12Lyy, 4 20
(¢) dimZi(I) = i 60% i , where L, is the Lucas number defined by Lo = 2,L; = 1, and

Lypio = Lpt1+ L. Fork > 6, the dimensions of the irreducible Zy(I)-modules, and thus also
the multiplicities of the irreducible I-modules in V®F, are as shown in the following diagram:

4" 412L2,+20 3:4"+12L3p 41 5.4™—20 34" —12L3y41 4.4™—12L2,+20
60 60 60 60 60

k=2n:

k=2n+1:

4" t1 41205, 2+20 247141205, 41 —20 34711205, 41  47+t1_12L,,+20
60 60 60 60

Proof. The proofs of the dimension formulas for the irreducible modules are by induction on k.
The base cases are given in the Bratteli diagrams in the previous section. The inductive step is
given by verifying that each dimension formula at level k (for k = 2n and k = 2n + 1) equals the
sum of the dimension formulas on level & — 1 connected to the given formula by an edge. Each of

these is a straightforward calculation. The fact that dim Z;(G) = dim Zg,? follows from (1.17). O
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