
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews
Special Issue on Engineering Autonomic Systems, to appear

Abstract— An important domain for autonomic systems is the

area of ubiquitous computing: users are increasingly surrounded
by technology that is heterogeneous, pervasive, and var iable. In
this paper we descr ibe our work in developing self-adapting com-
puting infrastructure that automates the configuration and recon-
figuration of such environments. Focusing on the engineer ing
issues of self-adaptation in the presence of heterogeneous plat-
forms, legacy applications, mobile users, and resource var iable
environments, we descr ibe a new approach based on the follow-
ing key ideas: (a) Explicit representation of user tasks allows us to
determine what service qualities are required of a given configu-
ration; (b) Decoupling task and preference specification from the
lower level mechanisms that carry out those preferences provides
a clean engineer ing separation of concerns between what is
needed and how it is carr ied out; and (c) Efficient algor ithms
allow us to calculate in real time near-optimal resource alloca-
tions and reallocations for a given task.

Index Terms— Self-adaptation, ubiquitous computing, re-
source-aware computing, multi-fidelity applications.

I. INTRODUCTION

Self-adaptive systems are becoming increasingly important.
What was once the concern of specialized systems, with high
availability requirements, is now recognized as being relevant
to almost all of today’s complex systems [10,20]. Increasingly
computing systems that people depend on cannot be taken off-
line for repair – they must adapt to failures in environments
that are not entirely under the control of the system implemen-
ters, and they must adjust their run-time characteristics to ac-
commodate changing loads, resources, and goals.

One particularly important domain for self-adaptation is the
area of ubiquitous computing. Today users are surrounded by
technology that is heterogeneous, pervasive, and variable. It is
heterogeneous because computation can take place using a
wide variety of computing platforms, interfaces, networks, and
services. It is pervasive through wireless and wired connec-
tivity that pervades most of our working and living environ-
ments. It is variable because resources are subject to change:
users can move from resource-rich settings (such as worksta-
tions and high-bandwidth networks in an office) to resource-
poor environments (such as a PDA in a park).

Coping with this situation requires automated mechanisms.

In particular, ideally systems should be able to adapt to user
mobility, recover from service failures and degradations, and
allow continuity across diverse environments. Without auto-
mated mechanisms to support this kind of adaptation, users
become increasingly overloaded with distractions of managing
their system configurations; alternatively, they may simply opt
not to use the capabilities of their environments.

This automation raises a number of serious engineering
challenges: How can one determine when reconfiguration is
appropriate? Assuming reconfiguration is desirable, how does
one determine a satisfactory allocation of resources, particu-
larly if there are multiple ways to support a given computing
task, or limitations on the resource pool? How can users in-
struct the system about the kinds of adaptation that are desired,
without becoming bogged down in low-level system details?
How can one add adaptation mechanisms to the everyday
computing environments that users are familiar with: text edi-
tors, spreadsheets, video viewers, browsers, etc.

In this paper we describe our experience over the past five
years of developing self-adapting ubiquitous computing infra-
structure that automates the configuration and reconfiguration
of everyday computing environments. Focusing on the engi-
neering issues of providing self-adaptation in the presence of
heterogeneous platforms, legacy applications, mobile users,
and resource variable environments, Project Aura [9] has de-
veloped an approach that we believe addresses each of the
questions above. The key ideas behind this work are the fol-
lowing: (a) Explicit representation of user tasks allows us to
determine what service qualities are required of a given con-
figuration; (b) Decoupling task and preference specification
from the lower level mechanisms that carry out those prefer-
ences provides a clean engineering separation of concerns
between what is needed and how it is carried out; and (c) Effi-
cient algorithms allow us to calculate in real time near-optimal
resource allocations and reallocations for a given task.

The remainder of this paper is organized as follows: Section
II describes our work in the context of related research. Sec-
tion III outlines the research challenges in making self-
adaptive systems task-aware, describes the Aura architecture,
and illustrates how the architecture addresses such research
challenges. In Section IV, we elaborate on the specifics of
supporting such architecture: how the requirements and user

Task-based Adaptation for
Ubiquitous Computing

João Pedro Sousa, Vahe Poladian, David Garlan, Bradley Schmerl, Mary Shaw
School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh PA 15213

Phone: +1 412 268 5056 Fax: +1 412 268 3455
jpsousa|poladian|garlan|schmerl|mary.shaw@cs.cmu.edu

2

preferences are captured for each task; the formal underpin-
nings of the internal representation of tasks and preferences;
and the algorithm that supports automatic system configuration
and self-adaptation. In Section V we evaluate the effectiveness
of the approach and consider lessons learned from this work.
We present the conclusions in Section VI.

II. RELATED WORK

Currently, adaptive systems fall into two broad categories:
fault-tolerant systems, and fidelity-aware systems. First, fault-
tolerant systems react to component failure, compensating for
errors using a variety of techniques such as redundancy and
graceful degradation [6,13]. Such systems have been prevalent
in safety-critical systems or systems for which the cost of off-
line repair is prohibitive (e.g., telecom, space systems, power
control systems, etc.) Here the primary goal is to prevent or
delay large-scale system failure.

Second, fidelity-aware systems react to resource variation:
components adapt their computing strategies so they can func-
tion optimally with the current set of resources (bandwidth,
memory, CPU, power, etc.) [8,17,22,24]. Many of these sys-
tems emerged with the advent of mobile computing over wire-
less networks, where resource variability becomes a critical
concern. While most of this research focuses on one compo-
nent at a time, our work leverages on this research but tackles
the problem of multi-component integration, configuration,
and reconfiguration. Although somewhat related, this kind of
automatic configuration is distinct from the automatic configu-
ration being investigated in [21]. There, configuration is taken
in the sense of building and installing new applications into an
environment, whereas here, it is taken in the sense of selecting
and controlling applications so that the user can go about his
tasks with minimal disruption.

Principles of Autonomic Computing were first introduced.
Our work addresses two of the five principles of Computing,
which were first introduced in [16]. Specifically, Aura pro-
vides self-optimization and self-healing for everyday user tasks
in the domain of Ubiquitous Computing.

 Our work leverages microeconomic principles to deter-
mine optimal resource allocation. In this respect, our work is
similar to [2], which addresses resource allocation in large-
scale enterprise deployments. Computing the utility (value) of
different resource allocation schemes is expensive. To help
mitigate that problem, [2] describes a cooperative mechanism
for incrementally eliciting utility. In our work, we separate
elicitation of inputs into two levels. Specifically, we rely on
history-based profiling to obtain application resource require-
ments for a particular level of quality of service (see [22]), and
explicitly acquire user preferences for quality of service using
techniques and user interfaces described in this paper.

Resource scheduling [15], resource allocation [18,23], and
admission control have been extensively addressed in research.
From analytical point of view, closest to our work are Q-RAM
[18], a resource reservation and admission control system
maximizing the utility of a multimedia server based on prefer-

ences of simultaneously connected clients; Knapsack algo-
rithms [25]; and winner determination in combinatorial auc-
tions. In our work, we handle the additional problems of se-
lecting applications among alternatives, and accounting for
cost of change. Dynamic resolution of resource allocation pol-
icy conflicts involving multiple mobile users is addressed in
[3] using sealed bid auctions. While our work shares utility-
theoretic concepts with [3], the problem solved in our work is
different. In that work, the objective is to select among a hand-
ful of policies so as to maximize an objective function of mul-
tiple users. In our work, the objective is to choose among pos-
sibly thousands of configurations so as to maximize the objec-
tive function of one user. As such, our work has no game-
theoretic aspects, but faces a harder computational problem.
Furthermore, our work takes into account tasks that users wish
to perform.

At a coarser grain, research in distributed systems addresses
global adaptation: for example, a system might reconfigure a
set of clients and servers to achieve optimal load balancing.
Typically, such systems use global system models, such as
architectural models, to achieve these results [5,11,12]. To
achieve fault-tolerance and coarse-grain adaptation (e.g. hot
component swapping,) our work builds on this, as well as on
service location and discovery protocols [14,26].

III. TASK-BASED SELF-ADAPTATION

A. Task-aware Systems

A central tenet of our work is that systems are used to carry
out high-level activities of users: planning a trip, buying a car;
communicating with others. In today’s systems those activities
and goals are implicit. Users must map their tasks to comput-
ing systems by invoking specific applications (document edi-
tors, email programs, spreadsheets, etc.) on specific files, with
knowledge of specific resources. In a ubiquitous computing
world with shifting resources and increased heterogeneity, the
cognitive load required for users to manage this manually
quickly becomes untenable.

In contrast, a task-aware system makes user tasks explicit,
by encoding user goals, and by providing a placeholder to rep-
resent the quality attributes of the services used to perform
those tasks. So, for example, for a particular task, in the pres-
ence of limited bandwidth, the user may be willing to live with
a small video screen size, while in another task reducing the
frame rate would be preferable. In task-aware systems, users
specify their tasks and goals, and it is the job of the system to
automatically map them into the capabilities available in the
ubiquitous environment.

Once such information is represented, a self-managing sys-
tem can in principle query the task to determine both when the
system is behaving within an acceptable envelop for the task,
and also can choose among alternative system reconfigurations
when it is not.

However, a number of important research questions arise,
and the way we answer them strongly influences the way we
look at and build task-aware systems:

3

- How do we represent a task? What encoding schemes can
best be used to capture the user’s requirements for system
quality?

- How should we characterize the knowledge for mapping a
user task to a system’s configuration? As a user moves from
task to task, different configurations will be appropriate,
even for the same set of applications.

- Should we trigger an adaptation as soon as an opportunity
for improvement is detected, or should we factor in how dis-
tracting the change will be to the user against how serious
the fault is?

- Is the binary notion of fault enough, or do we need to come
up with a measure of fault “hardness” – a continuum be-
tween “all is well,” and “ the system is down?”

- What is the length of time that the user is expected to carry
out the current task? What are likely other tasks that the
user will work on next?
Over the past five years we have been experimenting with

various answers to these questions. Centered on a large ubiqui-
tous computing research project, Project Aura [9], we have
evolved a system that, in brief, addresses these questions as
follows:
- We represent a task as a set of services, together with a set

of quality attribute preferences expressed as multi-
dimensional utility functions, possibly conditioned by con-
text conditions.

- We define a vocabulary for expressing requirements, which
delimits the space of requirements that the automatic recon-
figuration can cover. The set of requirements for a particu-
lar task expresses which services are needed from the sys-
tem, as well as the fidelity constraints that make the system
adequate or inadequate for the task at hand. The required
services are dynamically mapped to the available compo-
nents and the fidelity constraints are mapped into resource-
adaptation policies.

- We incorporate the notion of cost of reconfiguration into the
evaluation of alternative reconfigurations. This cost captures
user’s intolerance for configuration changes by the infra-
structure. A high cost of reconfiguration will make the sys-
tem highly stable, but frequently less optimal; a low cost of
configuration will permit the system to change frequently,
but may introduce more user distraction from reconfigura-
tions.

- We invert the notion of fault by adopting an econometric-
based notion of task feasibility: ranging from 0 (the task is
not feasible under the current system conditions) to 1 (sys-
tem is totally appropriate for the current task). This enables
an objective evaluation of configuration alternatives, regard-
less of the sources of change (both changes to the task, and
also to the availability of resources and components).
We now describe the system architecture that permits such

task-based self-adaptation, and elaborate on these decisions.

B. The Aura layers

The starting point for understanding Aura is a layered view
of its infrastructure together with an explanation of the roles of

each layer with respect to task suspend-resume and dynamic
adaptation. Table 1 summarizes the relevant terminology.

The infrastructure exploits knowledge about a user’s tasks
to automatically configure and reconfigure the environment on
behalf of the user. First, the infrastructure needs to know what
to configure for; that is, what a user needs from the environ-
ment in order to carry out his or her tasks. Second, the infra-
structure needs to know how to best configure the environ-
ment: it needs mechanisms to optimally match the user’s needs
to the capabilities and resources in the environment.

In our architecture, each of these two subproblems is ad-
dressed by a distinct software layer: (1) the Task Manage-
ment layer determines what the user needs from the environ-
ment at a specific time and location; and (2) the Environment
Management layer determines how to best configure the envi-
ronment to support the user’s needs.

TABLE 1. TERMINOLOGY.

task An everyday activity such as preparing a presentation or
writing a report. Carrying out a task may require obtaining
several services from an environment, as well as accessing
several materials.

environment The set of suppliers, materials and resources accessible to a
user at a particular location.

service Either (a) a service type, such as printing, or (b) the occur-
rence of a service proper, such as printing a given docu-
ment. For simplicity, we will let these meanings be inferred
from context.

supplier An application or device offering services – e.g. a printer.
material An information asset such as a file or data stream.
capabilities The set of services offered by a supplier, or by a whole

environment.
resources Are consumed by suppliers while providing services. Ex-

amples are: CPU cycles, memory, battery, bandwidth, etc.
context Set of human-perceived attributes such as physical location,

physical activity (sitting, walking…), or social activity
(alone, giving a talk…).

user-level
state of a task

User-observable set of properties in the environment that
characterize the support for the task. Specifically, the set of
services supporting the task, the user-level settings (prefer-
ences, options) associated with each of those services, the
materials being worked on, user-interaction parameters
(window size, cursors…), and the user’s preferences with
respect to quality of service tradeoffs.

TABLE 2. SUMMARY OF THE SOFTWARE LAYERS IN THE INFRASTRUCTURE.

Table 2 summarizes the roles of the software layers in the
infrastructure. The top layer, Task Management (TM), cap-

layer mission roles

T
as

k
M

an
ag

em
en

t

what does
the user need

• monitor the user’s task, context and preferences

• map the user’s task to needs for
services in the environment

• complex tasks: decomposition, plans,
context dependencies

E
nv

ir
on

m
en

t
M

an
ag

em
en

t

how to best
configure

the environ-
ment

• monitor environment capabilities and resources

• map service needs, and user-level state of tasks
to available suppliers

• ongoing optimization of the utility of the environ-
ment relative to the user’s task

E
nv

. support the
user’s task

• monitor relevant resources

• fine grain management of QoS/resource tradeoffs

4

tures knowledge about user tasks and associated intent. Such
knowledge is used to coordinate the configuration of the envi-
ronment upon changes in the user’s task or context. For in-
stance, when the user attempts to carry out a task in a new en-
vironment, TM coordinates access to all the information re-
lated to the user’s task, and negotiates task support with Envi-
ronment Management (EM). Task Management also monitors
explicit indications from the user and events in the physical
context surrounding the user. Upon getting indication that the
user intends to suspend the current task or resume some other
task, TM coordinates saving the user-level state of the sus-
pended task and reinstantiates the resumed task, as appropri-
ate. Task Management may also capture complex representa-
tions of user tasks (out of scope of this paper) including task
decomposition (e.g., task A is composed of subtasks B and C),
plans (e.g., C should be carried out after B), and context de-
pendencies (e.g., the user can do B while sitting or walking,
but not while driving).

The EM layer maintains abstract models of the environment.
These models provide a level of indirection between the user’s
needs, expressed in environment-independent terms, and the
concrete capabilities of each environment.

This indirection is used to address both heterogeneity and
dynamic change in the environments. With respect to hetero-
geneity, when the user needs a service, such as speech recogni-
tion, EM will find and configure a “supplier” for that service
among those available in the environment. With respect to
dynamic change, the existence of explicit models of the capa-
bilities in the environment enables automatic reasoning when
those capabilities change dynamically. The Environment Man-
agement adjusts such a mapping automatically in response to
changes in the user’s needs (adaptation initiated by TM), and
changes in the environment’s capabilities and resources (adap-
tation initiated by EM). In both cases adaptation is guided by
the maximization of a utility function representing the user’s
preferences (see Section IV.A.1)).

The Environment layer comprises the applications and de-
vices that can be configured to support a user’s task. Configu-
ration issues aside, these suppliers interact with the user ex-
actly as they would without the presence of the infrastructure.
The infrastructure steps in only to automatically configure
those suppliers on behalf of the user. The specific capabilities
of each supplier are manipulated by EM, which acts as a trans-
lator for the environment-independent descriptions of user
needs issued by TM.

By factoring models of user preferences and context out of
individual applications, the infrastructure enables applications
to apply the adaptation policies appropriate for each task. That
knowledge is very hard to obtain at the application level, but
once it is determined at the user level – by Task Management
– it can easily be communicated to the applications supporting
the user’s task.

A detailed description of the architecture, including the
formal specification of the interactions between the compo-
nents in the layers defined above, is available in [27].

C. Examples of Self-Adaptation

To clarify how this design works, we illustrate how the in-
frastructure outlined in Section B handles a variety of exam-
ples of self-adaptation, ranging from traditional repair in reac-
tion to faults, to reactions to positive changes in the environ-
ment, to reactions to changes in the user’s task.

To set the stage, suppose that Fred is engaged in a conversa-
tion that requires real-time speech-to-speech translation. For
that task, assume the Aura infrastructure has assembled three
services: speech recognition, language translation, and speech
synthesis. Initially both speech recognition and synthesis are
running on Fred’s handheld. To save resources on Fred’s
handheld, and since language translation is computationally
intensive, but has very low demand on data-flow (the text rep-
resentation of each utterance), the translation service is config-
ured to run on a remote server.

Fault tolerance. Suppose now that there is loss of connec-
tivity to the remote server, or equivalently, that there is a soft-
ware crash that renders it unavailable. Live monitoring at the
EM level detects that the supplier for language translation is
lost. The EM looks for an alternative supplier for that service,
e.g., translation software on Fred’s handheld, activates it, and
automatically reconfigures the service assembly.

Resource/fidelity-awareness. Computational resources in
Fred’s handheld are allocated by the EM among the services
supporting Fred’s task. For computing optimal resource alloca-
tion, the EM uses each supplier’s spec sheet (relating fidelity
levels with resource consumption), live monitoring of the
available resources, and the user’s preferences with respect to
fidelity levels. Suppose that during the social part of the con-
versation, Fred is fine with a less accurate translation, but re-
sponse times should be snappy. The speech recognizer, as the
main driver of the overall response time, gets proportionally
more resources and uses faster, if less accurate, recognition
algorithms. When the translation service is activated on Fred’s
handheld in response to the fault mentioned above, resources
become scarcer for the three services. However, having the
knowledge about Fred’s preferences passed upon service acti-
vation, each supplier can react appropriately by shifting to
computation strategies that save response times at the expense
of accuracy [1].

Soft fault (negative delta). Each supplier issues periodic re-
ports on the Quality of Service (QoS) actually being provided
– in this example, response time and estimated accuracy of
recognition/translation.1 Suppose that at some point during the
conversation, Fred brings up his calendar to check his avail-
ability for a meeting. The suppliers for the speech-to-speech
translation task, already stretched for resources, reduce their
QoS below what Fred’s preferences state as acceptable. The
EM detects this soft fault, and replaces the speech recognizer
by a lightweight component, that although unable to provide as
high a QoS as the full-fledged version, performs better under
sub-optimal resource availability.

1 Additionally, the EM uses these periodic QoS reports to monitor the

availability of the suppliers, in a heartbeat fashion.

5

Soft fault (positive delta). Suppose that at some point, the
language translation supplier running on the remote server
becomes available again. The EM detects the availability of a
new candidate to supply a service required by Fred’s task, and
compares the estimated utility of the candidate solution against
the current one. If there is a clear benefit, the EM automati-
cally reconfigures the service assembly. In calculating the
benefit, the EM factors in a cost of change, which is also
specified in the user’s preferences associated with each ser-
vice. This mechanism introduces hysteresis in the reconfigura-
tion behavior, thus avoiding oscillation between closely com-
peting solutions.

Task QoS requirements change. Suppose that at some
point Fred’s conversation enters a technical core for which
translation accuracy becomes more important than fast re-
sponse times. The TM provides the mechanisms, if not to rec-
ognize the change automatically based on Fred’s social con-
text, at least to allow Fred to quickly indicate his new prefer-
ences; for instance, by choosing among a set of preference
templates. The new preferences are distributed by the TM to
the EM and all the suppliers supporting Fred’s task. Given a
new set of constraints, the EM evaluates the current solution
against other candidates, reconfigures, if necessary, and de-
termines the new optimal resource allocation. The suppliers
that remain in the configuration, upon receiving the new pref-
erences, change their computation strategies dynamically; e.g.,
by changing to algorithms that offer better accuracy at the ex-
pense of response time.

Task suspend/resume. Suppose that after the conversation,
Fred wants to resume writing one of his research papers.
Again, the TM provides the mechanisms to detect, or for Fred
to quickly indicate, his change of task. Once the TM is aware
that the conversation is over it coordinates with the suppliers
for capturing the user-level state of the current task, if any, and
with the EM to deactivate (and release the resources for) the
current suppliers. The TM then analyses the description it
saved the last time Fred worked on writing the paper, recog-
nizes which services Fred was using and requests those from
the EM. After the EM identifies the optimal supplier assign-
ment, the TM interacts with those suppliers to automatically
recover the user-level state where Fred left off. See [27] for a
formal specification of such interactions.

Task service requirements change. Suppose that while
writing his paper, Fred recognizes that it would be helpful to
refer to a presentation he gave recently to his research group.
The TM enables Fred to explicitly aggregate viewing the pres-
entation to the ongoing task. As soon as a new service is rec-
ognized as part of the task, the TM requests an incremental
update to the EM, which computes the optimal supplier and
resource assignment for the new task definition, and automati-
cally performs the required reconfigurations. Similarly, if Fred
decides some service is no longer necessary for his task, he
can let the TM know, and the corresponding (incremental)
deactivations are propagated to the EM and suppliers. By
keeping the TM up-to-date with respect to the requirements of

his tasks, Fred benefits from both the automatic incremental
reconfiguration of the environment, and from the ability to
suspend/resume exactly the set of services that he considers
relevant for each task.

D. Controlling Self-Adaptation

Aura can be viewed as a closed-loop control system, which
senses, actuates, and controls the runtime state of the environ-
ment, based on input from the user. Each layer reacts to
changes in user tasks and in the environment at a different
granularity and time-scale. Task Management acts at a human
perceived time-scale (minutes), evaluating the adequacy of sets
of services to support the user’s task. Environment Manage-
ment acts at a time-scale of seconds, evaluating the adequacy
of the mapping between the requested services and specific
suppliers. Adaptive applications (fidelity-aware and context-
aware) choose appropriate computation tactics at a time-scale
of milliseconds.

Specifically, let’s see how the infrastructure handles the
changes for a number of scenarios described in Section C:

Task Service or QoS Requirements Change. The TM im-
mediately coordinates a change in the environment, by adding,
disbanding, replacing suppliers, or changing their QoS policies
appropriately.

Hard Fault (failure of a running supplier). The EM im-
mediately replaces the failed supplier with an alternative.

Soft Fault (negative or positive delta in resources). The
suppliers immediately adjust their quality of service to the
available resources. The EM periodically computes a new
near-optimal configuration, which may imply swapping sup-
pliers (we have not yet experimented with varying the time-
scale of reaction of the EM).

IV. SUPPORTING TASK-BASED ADAPTATION

A. Defining Task Requirements

The user expresses the requirements for a task by specifying
the services needed and the associated preferences. A shared
vocabulary of services and service-specific quality dimensions
must exist between the user and the system. Developing such a
vocabulary is a subject of related research and out of the scope
of this paper (see for instance [7]), but we give insights to the
essential characteristics of such a vocabulary [27,28].

For instance, to address user mobility across different ma-
chines, we use terms that are generic enough to be meaningful
on different platforms. For example, a task may capture the
fact that the user needs to edit text, as opposed to capturing the
fact that he needs to use Microsoft Word.

To make these ideas concrete, let’s suppose that Fred is
about to start writing a new paper. Fred starts by pressing the
down arrow at the bottom of an empty task definition window
and selecting edit text (Fig. 1). The text editor activated by the
infrastructure brings up a (default) blank document and Fred
starts working. As Fred browses the web, he decides to associ-
ate an especially relevant page with the task, so that it is
brought up automatically every time the task is resumed. For

6

that, Fred simply drags the page shortcut out of the browser
and into the more field of the task window (the default browse
web appears automatically). Later, Fred decides to start ana-
lyzing the performance data on a spreadsheet. Again, Fred
simply drags the file produced by the data gathering tool, from
the file system explorer into the more field and selects edit
spreadsheet for it.

Fig. 1. Fred’s task definition for writing XYZ’04 paper

Note that the infrastructure imposes no constraints on the
user’s work. This comes from recognizing that many user ac-
tivities are spontaneous and short lived, and need not be classi-
fied as pertaining to a particular task. However, once the user
recognizes an enduring association with a task, the infrastruc-
ture makes it easy to update the task definition on the fly.

In addition to specifying the services required by each task,
the user may specify preferences with respect to how the envi-
ronment should be configured. User preferences (and their
formal representation, utility functions) used in our work have
three parts: first, configuration preferences capture prefer-
ences with respect to the set of services to support a task. Sec-
ond, supplier preferences capture which specific suppliers are
preferred to provide the required services; and third, QoS pref-
erences capture the acceptable Quality of Service (QoS) levels
and preferred tradeoffs.

The right-hand side of Fig. 1 defines Fred’s configuration
preferences for the task: that is, alternative operation modes
and their order of preference. The (default) full configuration
includes all the activities defined for the task. In addition, Fred
also specifies the skip web degraded-mode configuration for
when the circumstances are such that either a browser or con-
nection are not available, or that the quality of service is so
poor (for instance, due to low bandwidth) that Fred would
rather focus on the other activities. Fred also permits the paper
only configuration for last resort circumstances, for instance
when having only a handheld with extremely limited resources.
Note that Fred can define as many or as few operating modes
as he feels appropriate, and indicate his relative preference for
each by sliding the corresponding bar.

Suppose that for typing the notes (edit text service), Fred
prefers MSWord over Emacs, and is unwilling to use the vi
editor at all. This is an example of supplier preferences. Note
that representing supplier preferences by discriminating the
supplier type is a compact representation for the preferences
with respect to the availability of desired features, such as spell

checking or richness of editing capabilities, as well as to the
user’s familiarity with the way those features are offered. For
the sake of space, the user interface for specifying supplier
preferences is not shown, but it is similar to the tabular form
shown in Fig. 2.

Suppose now that Fred will be browsing the web over a
wireless network link. Suppose that the bandwidth suddenly
drops: should the browser preserve the full quality of web
pages at the expense of download time, or reduce the quality,
for instance by skipping images? The answer depends on
Fred’s QoS preferences for the current task. For browsing cita-
tions, Fred probably will be fine with dropping images and
banners, with benefits in response times. However, for brows-
ing a museum’s site on painting or online mapping, Fred may
prefer full page quality to be preserved at the expense of
download times.

 Fig. 2. QoS preferences for the web browsing service

Let’s look at the user interface of defining QoS preferences.
Fig. 2 shows an example of QoS preferences for the web
browsing service. The service has two dimensions: latency and
content. Latency refers to the average time a web page takes to
load after being requested. Content refers to the richness of
the web page content. Latency is numeric and is expressed in
seconds. The user manipulates the good and bad thresholds by
dragging the green (lighter) and red (darker) handles, respec-
tively.2 Note that the utility space is represented simply using
four intervals: from the lowest where the user prefers the con-
figuration not to be considered, represented by a cross (), to
the highest corresponding to satiation, represented by a happy
face (). The slide bar associated to each dimension captures
how important, that is how much the user cares, about varia-
tions along that dimension.

We don’ t expect every user to interact with the system at
this kind of detail for every task. Rather, the infrastructure
provides a set of templates for each service type, correspond-
ing to common situations. For instance, the web browsing ser-
vice includes the high quality template shown in Fig. 2, as well
as the fast loading template, where the latency thresholds are
stricter, and the content threshold is more relaxed. The user
can choose which preference template to apply to each service
when defining a task (Fig. 1) or, by selecting customized tun-
ing, manipulate preferences directly.

2 The upper limit of the scale adjusts automatically between the values 10,
50, 100, 500, and 1000, further changes being enabled by a change in unit.

7

1) Representing User Preferences
To make preferences easier to both elicit and process, we

make two simplifying assumptions. First, preferences are mod-
eled independently of each other. In other words, the utility
function for each aspect captures the user’s preferences for that
aspect independently of others. Second, preferences fall into
two categories: those characterized by enumeration, and those
characterized by numeric values. Supplier preferences are
characterized by enumeration (e.g. MSWord, Emacs, or other),
and so are QoS dimensions such as audio fidelity (e.g. high,
medium and low). For these, the utility function takes the form
of a discrete mapping to the utility space (see below).

For preferences characterized by numeric values, we distin-
guish two intervals: one where the user considers the quantity
to be good enough for his task, the other where the user con-
siders the quantity to be insufficient. Sigmoid functions, which
look like smooth step functions, characterize such intervals
and provide a smooth interpolation between the limits of those
intervals (see Fig. 2). Sigmoids are easily encoded by just two
points: the values corresponding to the knees of the curve that
define the limits good of the good-enough interval, and bad of
the inadequate interval. The case of “more-is-better" qualities
(e.g., accuracy) are as easily captured as “ less-is-better” quali-
ties (e.g., latency) by flipping the order of the good and bad
values. In case studies evaluated so far, we have found this
level of expressiveness to be sufficient.

Fig. 3. Internal representation of the QoS preferences in Fig. 2

Fig. 3 shows the internal representation of the preferences
captured in Fig. 2. Note that the infrastructure creates user
interfaces like the one in Fig. 2 dynamically, based on the in-
ternal representation, which in turn is updated by manipulating
the representations in the interface.

B. Formal Underpinnings

This section describes how user preferences, as defined in
the previous section, guide the automatic configuration and
reconfiguration of the environment. Our approach is based on
finding the best match between the user’s needs and prefer-
ences for a specific task, and the environment’s capabilities.
This framework is used both to find the optimal initial configu-
ration, and to address the ongoing optimization of the support
for the user’s tasks.

In practice, finding such a match corresponds to a con-
strained maximization problem. The function to be maximized
is a utility function that denotes the user preferences, and the

constraints are the environment’s capabilities and available
resources. The result of the maximization is an abstract meas-
ure of the feasibility of carrying out the task, given the current
conditions in the environment.

Utility space. Utility functions map the capability space
(see below) onto the utility space. The latter is represented by
the real number interval [0, 1]. The user will be happier, the
higher the values in the utility space. The value 0 corresponds
to the environment being unacceptable for the task; and 1 cor-
responds to user satiation, in the sense that increasing the ca-
pabilities of the environment will not improve the user’s per-
ception of feasibility of the specific task.

Capability space. The capability space CCss corresponding to
service s is the Cartesian product of the individual quality di-
mensions d of the service:

)(ˆ)dim(ddomC sQoSds ∈⊗=

For example, possible quality dimensions for the play video
service are frame update rate, the frame size, and audio qual-
ity. Thus, the capability space of video playing is three-
dimensional. Cartesian product is used to combine the capabil-
ity space of two services. For distinct services s and t, their
combined capability space is formally expressed as:

tsts CCC ⊗=∪ ˆ

For example, a web browsing service has two quality di-
mensions: latency and page richness, and video playing has 3
dimensions of quality. Thus joint capability space of video
playing and web browsing has 5 quality dimensions.

Typically, an application supports only a subset of the capa-
bility space corresponding to its various fidelities of output. In
practice, approximating this subset using a discrete enumera-
tion of points provides a reasonable solution, even if the corre-
sponding capability space is conceptually continuous. For ex-
ample, while it makes sense to discuss a video stream encoding
of decimal frames per second, typically video streams are en-
coded at integer rates. Despite discrete approximation, our
approach does allow the handling of a rich capability space.
For example, the capability space of a specific video player
application can have 90 points, which is made possible by
combining 5 frame rates, 6 frame sizes, and 3 audio qualities.
Such a capability space can be made possible by encoding the
same video in multiple frame rates, frame size, and audio qual-
ity, and possibly leveraging application-specific features such
as video smoothing.

An application profile specifies a discrete enumeration of
the capability points supported by an application and corre-
sponding resource demand for each point. Note that specific
mechanisms for obtaining and expressing application profiles
exist. As demonstrated in [22], resource demand prediction
based on historical data from experimental profiling is both
feasible and accurate. Further, metadata and reflection can be
used to express application profiles [4].

Application profiles describe the relationship between the
capability points supported by applications, and the corre-
sponding resource requirements. Formally, the quality resource
mapping of supplier p is a partial function from the capability

<utility combine="product">
 <QoSdimension name="latency" type="float">
 <function type="sigmoid" weight=".5">
 <thresholds good="3" bad="60" unit="second"/>
 </function>
 </QoSdimension>
 <QoSdimension name="vocabulary" type="enum">
 <function type="table" weight="0.7">
 <entry x="noImage" f_x=".2"/>
 <entry x="image" f_x="1"/>
 </function>
 </QoSdimension>
</utility>

8

space of service s to the resource space: RCQoSprof sp
�: .

The range of the function is the subset of the capability space
that is supported by the supplier.

Resource Space. The resource space RR is the Cartesian
product of the individual resource dimensions r of the entire
environment EE:

)(ˆ)dim(rdomR ERESr∈⊗=

Examples of resource dimensions are: CPU cycles, network
bandwidth, memory, and battery. The actual number of re-
source dimensions is dependent on the environment.

Utility Functions. There is one utility function for each al-
ternative configuration for a given task. The feasibility of the
task corresponds to the best utility among the alternatives,
weighted by the user’s preference for each alternative. The
utility function for each configuration has two components,
reflecting QoS and supplier preferences, respectively.

QoS preferences specify the utility function associated with
each QoS dimension. The names of the QoS dimensions are
part of the vocabulary shared between the user and the system.
The utility of service s as a function of the quality of service is
given by:

∏
∈

=
)dim(

ˆ)(
sQoSd

c
dQoS

dFsU

where for each QoS dimension d of service s,

]1,0()(: →ddomF d
 is a function that takes a value in the

domain of d, and the weight cd∈[0,1] reflects how much the
user cares about QoS dimension d. As an example, video play-
ing has a QoS dimension of frame update rate. The function
FframeRate gives utility for various frame rates, and cframerate
specifies the weight of frame rate.

To evaluate the assignment of specific suppliers, we employ
a supplier preference function, which is a discreet function that
assigns a score to a supplier, based on its type. Also, we ac-
count for the cost of switching from one supplier to another at
run time.

Precisely, the utility of the supplier assignment for a set a of
requested services is:

∏
∈

⋅=
as

c
s

x
sSupp

ss FhaU ˆ)(

where for each service s in the set a,]1,0()(: →sSuppFs

is a function that appraises the choice for the supplier for s;
and the weight cs∈[0,1] reflects how much the user cares about
the supplier assignment for that service.

The term sx
sh above expresses a change penalty as follows:

hs indicates the user’s tolerance for a change in supplier as-
signment: a value close to 1 means that the user is fine with a
change, the closer the value is to zero, the less happy the user
will be. The exponent xs indicates whether the change penalty
should be considered (xs=1 if the supplier for s is being ex-
changed by virtue of dynamic change in the environment) or
not (xs=0 if the supplier is being newly added or replaced at
the user’s request).

The overall utility is the product of the QoS preference and
supplier preference. The overall utility over a set a of suppliers
is:

���
�����⋅= ∏∏

∈∈)dim(

)(
sQoSd

c
d

as

c
s

x
soverall

dss FFhaU

1) The Optimization Problem
The optimization problem is to find a supplier assignment a,

and for each supplier p in this assignment, a capability point
such that the utility is maximized:

∏ ∏
∈ ∈

∈
∈ ���

	

��⋅⋅
as

dp
sQoSd

c
ds

c
s

x
s

ddomf
sSuppp

fFpFh dss

d

s

)()(maxarg ,
)dim(

)(
)(

The maximization is over a set of constraints, which we ex-
press below. The capability constraint stating that the chosen
point fp,d is in the capability space for supplier p is as follows:

pdpsQoSdpsSuppp Cff ∈⊗=∀ ∈∈ ,)dim()(

And to ensure that the resource constraints are met:

RfQoSprof
sSuppp

pp ≤

∈

)(
)(

where summation is in the vector space R of resources, and
the inequality is observed in each dimension of that space. In
non-mathematical terms, this constraint expresses the fact that
the aggregate resource demand by all the suppliers can not
exceed the resource supply.

C. Algorithm and Analysis

In this section we solve the optimization problem. The op-
timization algorithm must be efficient to be usable at runtime.
Two metrics we are interested in are the latency of computing
an answer to a given instance of the problem, and in the com-
putational overhead of the algorithm.
1) The Algorithm

The algorithm works in three phases: (1) query, (2) gener-
ate, and (3) explore. In the first phase, it queries for relevant
suppliers for each service in the task. In the second phase, it
combines suppliers into configurations and ranks them accord-
ing to the supplier preference only. In the third phase, it ex-
plores the quality space of the configurations. The pseudo-
code for the algorithm is shown in Figure 1.

The double product term of the utility formula in B.1) al-
lows for a clever exploration strategy. The outer product is the
supplier preference score. It can be computed at the time the
supplier assignment is known (in phase 2), and can be used as
an upper bound for overall utility during the explore phase.
Since overall utility is the product of supplier preference and
QoS preference, and the latter is bounded by one, then maxi-
mum overall utility is bounded by supplier preference. The
break in the loop in BestConfig takes advantage of that fact.

Consider a simple example. Assume that two services are
requested. For each service, there are two possible suppliers:
a1 and a2 for the first service, b1 and b2 for the second, yielding
4 possible configurations as shown in Table 3. The search
space can be divided into 4 quadrants, each representing the

9

capability space of a specific configuration. We are searching
for a point with the highest utility.

TABLE 3. THE STRUCTURE OF THE SEARCH SPACE

a1, b1 a1, b2

a2, b1 a2, b2
As noted, the maximum utility that can be achieved within

each quadrant is bounded by the supplier preference portion of
utility. These observations help provide a stop condition for
the search: once a point is found that has overall utility of

�
,

there is no need to explore configurations with supplier prefer-
ence portion of utility of less than

�
.

In Table 3, the shading of each quadrant reflects the hypo-
thetical values of supplier preference portion of utility for each
configuration: the darker the shade, the higher the value. As-
sume these values are: .8, .6, .4, and .2. Each of these values is
an upper bound for maximum overall utility possible from the
respective quadrant. We explore inside the quadrants, starting
from the darkest. If the maximum utility for the quadrant a1, b1
is higher than 0.6, then at this time we know the best point in
the entire space is found, and can stop the search. If not, we
continue the search in quadrant a2, b1, and so on.

Exploring the quality space of a configuration is a variant of
a 0-1 Knapsack problem, called multiple dimensional, multiple
choice 0-1 Knapsack. Multiple dimensions refer to the multi-
ple constraints that are present in the problem. Multiple choice
refers to choosing one among a set of similar items. In our
problem, resources map to knapsack dimensions and the capa-
bility space of one service maps to one set of similar items.
This is a well-studied problem in the optimizations research,
and is at the core of such optimization problems as winner
determination in combinatorial algorithms. [18,25] show the
problem to be NP-complete, and give approximation algo-
rithms. [25] gives an exact solution that is demonstrably fast
on inputs drawn from certain probability distributions.

One of the approximating algorithms to the problem uses
utility to resource ratio as a metric for ranking the capability
points, it then applies greedy branch-and-bound and LP-
relaxation to find a near-optimal answer. In the multiple re-
source case, quadratic weighted-average is used to compute a
single resource currency from multiple resources, and the solu-
tion to the single resource case is reused iteratively [18].

In our solution, SearchQoS invokes a third-party library
called Q-RAM, the package described in [18].
2) Analysis

To analyze the running time of the algorithm, let:
n be the number of requested services
P be the total number of available suppliers
p be the number of suppliers for a given service type
q be the size of the capability space of a supplier.
P and p describe the richness of the environment, and can

potentially increase as more applications, hardware, and de-
vices are made available. q describes the capability richness of
a supplier. It is reasonable to assume that the size of the user
task is limited to a small number of applications. Thus n is

bounded.
Next we analyze the running time of the three phases.
The query phase retrieves items from a hashtable. Retriev-

ing one item is logarithmic in the size of the hashtable. n re-
trievals from a hashtable of size P/p take O(n* log(P/p)).

The generate phase is a recursion of depth n, with a loop of
size p at each level. Thus, it takes O(pn).

The explore phase in the worse case takes O(pn) *
O(searchQoS). The size of the QoS space of a configuration of
n suppliers each of which has a capability space of size q is
O(qn). Approximation algorithm we use can search that space
in time O(n*q* logq) [18,25]. Thus the explore phase takes
O(pn) * O(n*q* logq) in the worst case, and dominates all
other terms. The first term, O(pn), presents a possible scalabil-
ity bottleneck.

Let us demonstrate how the exploration strategy described
earlier helps tackle that bottleneck. Recall the break condition
in the explore phase, illustrated in the example introduced in
IV.C.1). The number of configurations that are explored will
depend on the distribution of the supplier preference values,
and

�
, the highest achievable utility value. Let’s assume an

average number of suppliers per service p = 10, and a specific
distribution of supplier preference values that is uniform, i.e.
the most preferred supplier scores 0.90, the next one scores:
0.91, etc. In Table 4, we show the number of configurations
generated, and the number of configurations that are actually
explored depending on the value of maximum achievable util-
ity,

�
, and number of services in the task, n.

TABLE 4. NUMBER OF CONFIGURATIONS GENERATED AND EXPLORED FOR

VARIOUS VALUES OF N, AND � , MAXIMUM UTILITY ACHIEVED

 n=1 2 3 4 … 8

Generated 10 102 103 104 … 108
�

 = .9 2 3 4 5 … 8
�

 = .81 3 6 10 15 … 36
�

 = .73 4 10 20 35 … 120
�

 = .66 5 15 35 70 … 330

The first row shows the number of services. The second row
shows the number of configurations generated, which is pn, in
this case, 10n. In each subsequent row, we show the number of
configurations that are sufficient to explore, if the maximum
utility shown in the first column in that row is actually
achieved by some configuration. For instance, for a task with 4
requested services, even if the maxim utility achievable is as
modest as

�
 = 0.6, then the number of supplier configurations

explored is 126, which is two orders of magnitude smaller than
the 104, the total number of configurations.
3) Reconfiguration

The algorithm also handles reconfiguration scenarios de-
scribed in Section III.D. When there is a running configura-
tion, the utility from the best computed configuration is com-
pared with the observed utility of the running configuration,
and a switch is made if the latter is lower than the former. The
cost of change introduces a kind of histeresys, giving the cur-

10

rently running configuration preference. Because a user’s tol-
erance to change might depend on a type of service, the model
explicitly allows provides means to specify this.

V. EVALUATION

A. Case Study

In this section we report on a case study of automatically
configuring an environment for the task of reviewing a docu-
mentary video clip. The user watches the clip, takes notes,
while browsing the net for information. Table 5 lists the ser-
vices in the task and the QoS Dimensions of each service.

Table 5: The services required for the task, their quality dimen-
sions, and available suppliers for each service. These suppliers

jointly allow a total of 2*5*3=30 combinations.

Service QoS Dimensions Available Suppliers
Play
Video

Frame rate, frame
size, audio quality

Real One,
Windows Media Player

Edit Text None TextPad, WordPad, Note-
pad, MS Word, Emacs

Browse
Web

Latency,
Content

Internet Explorer, Netscape,
Opera

We performed the case study in two steps. In the first step

we collected application profile data, specified preferences,
and identified resource limits. In the second step, we ran a
prototype implementation of the algorithm.
1) Input Data Collection

As an experimental platform, we chose an IBM Thinkpad
30 laptop, equipped with 256 MB of memory, 1.6 Ghz CPU,
WaveLAN card, and Windows XP Professional. In power sav-
ing mode, the CPU can run at a percentage of the maximum
speed, effectively creating a tight CPU constraint.

The model requires three inputs: (1) user preferences, (2)
application profiles, and (3) resource availability. For the pur-
poses of this experiment, we used synthetic preferences in-
tended to be representative of the task. We identified several
applications that supported various facets of the task. Those
applications were installed on the laptop. To obtain application
profiles, we measured resource usage corresponding to a small
set of capability points. We performed this profiling offline,
with each supplier running separately. Resource availability is
as follows: 400 MHz of processing power, when the CPU is
running at ¼ of the baseline speed; 64 MB of free memory
after excluding the memory taken by the operating system and
other essential critical systems; and 512 Kbps of bandwidth,
provided by an 802.11 wireless access point backed by a DSL
line.

Column 3 of Table 5 lists the applications used in the ex-
periment were.

We measured CPU and physical memory load using Win-
dows Performance Monitor. We used percent processor time,
working set counters of the Process performance object to
measure CPU and memory utilization respectively. We took
the sampling average over a period of time. The performance

monitoring API does not provide per process network statis-
tics, so the mechanism for measuring bandwidth demand was
different in each case, as explained below.

For a representative clip to watch, we obtained a two minute
trailer of a movie in Windows native .wmv and Real Networks
native .rpm in several different bit-rates. Where cross-player
compatibility is supported, we obtained additional capability
points. For example, RealOne plays .wmv format. Also, play-
ers provide quality knobs, allowing improved quality in ex-
change for higher CPU utilization. For example, Windows
Media player supports video smoothing that provides higher
frame rate than the rate encoded in the stream. For each player,
32 points quality points were sampled. To measure bandwidth
demand, we consider the bit-rate of the stream, and cross-
check with the application-reported value. The CPU consump-
tion of different players are widely different for the same qual-
ity point.

We measured CPU and memory used while typing and for-
matting text for 2 minutes with each text editor. The memory
consumption of the text editors is widely different.

All browsers surveyed support a text-only mode, providing
two points in the page richness dimension. To obtain different
levels of latency, we used a bandwidth-limiting http proxy, and
pointed the browser to the proxy. We measured latency by
allowing the following bandwidth limits: 28, 33, 56, 128, 256,
512 Kbps. Our script included a sequence of approximately 15
pages with a mix of both text graphics on the internet. By start-
ing with a clean browser cache, we sampled 16 quality points.
We observed that the browsers have very similar resource con-
sumption patterns.

Although we realize that the methods for obtaining resource
consumption measures are not precise, we believe that they
yield good enough approximations for this feasibility analysis.

Note that the capability space of a configuration of suppliers
has approximately 500 points (32*16*1), based on the samples
taken. 30 configurations together provide a capability space of
approximately 15,000 points.
2) Prototype Evaluation

The algorithm is guaranteed to find an optimal assignment
of suppliers. Furthermore, it will obtain the optimal set of
quality points for the suppliers, as long as Q-RAM finds the
optimal point inside each quadrant. Whenever Q-RAM returns
a near-optimal answer, our algorithm will return a near-optimal
set of quality points.

Additionally, we evaluated a prototype implementation of
the algorithm according to two metrics: (1) latency, and (2)
system overhead. Latency measures the time it takes to com-
pute an optimal configuration, from the time that a client pro-
gram requests it. Overhead measures percent CPU and mem-
ory utilization of the algorithm. To adapt the configuration in
response to environment changes, it is necessary to run the
algorithm periodically. Thus, the overhead of the periodic in-
vocation provides a useful metric.

The latency of computing the best configuration averaged
over 10 trials was 531 ms. In the query and generate phases,
the algorithm spends less then 10 ms each. In the explore

11

phase, it spends just under 500 ms (approximately 10 ms was
due to parsing the request, and formatting the answer). The
bulk of the time in the explore phase was due to external proc-
ess invocation and file input-output (Q-RAM package is an
external executable). Thus, the latency can be significantly
reduced by linking into Q-RAM in-process.

We invoke the algorithm a total of 50 times in 5 second in-
tervals over a period of 250 seconds, and measure average
CPU utilization. Average CPU utilization is 3.8%. This over-
head is fairly low, and can be further lowered by running the
algorithm less frequently, e.g. once per 10 or 25 seconds.

Table 6: Summary of the experiment results.

Configuration Latency
(average)

Percent CPU Used
during long-term

utilization

Virtual
Memory

Used
531 ms 3.8 % 8 MB

Memory usage of the process running the algorithm is ap-

proximately 8.8 MB. While this is a significant overhead, most
of it is due to the Java virtual machine.

Table 6 summarizes the key results of the experiments.

B. Lessons Learned and Design Guidelines for Applications

The form of self-adaptation that we address in this work is
targeted at support for everyday computing in ubiquitous com-
puting environments. An essential component of this work is to
integrate applications into the infrastructure. However, using
existing applications is a challenge since these applications are
not in general designed for self-configuring capabilities, such
as those that we are attempting to provide.

To integrate legacy applications as suppliers of Aura, we
have written wrappers around the applications. These wrappers
mediate communication with Aura so that the application state
can be set and retrieved, and so that resource usage and quality
of service can be monitored. Our experience in writing over a
dozen suppliers for applications in both Windows and Linux
environments has proven that it is easy to implement wrappers
to get basic set / get state functionality. However, it is much
more challenging to control application adaptation policies.

In order to facilitate smooth integration of applications into
the infrastructure, we have identified two groups of desirable
requirements:

1. To support mobility and coarse-grained adaptation, we
require applications to provide mechanisms to get and
set the task-level state of each application.

2. To support fine-grained QoS adaptation, we require
applications to report aggregate resource usage and
quality of service information, and to provide mecha-
nism to restrict usage of certain resources.

1) Mobility
As described in Section III.B, the task layer requires that the

user-level state of application be retrieved and set. This facili-
tates task transfer between environments and enables task sus-
pend and resume by a user. Our approach requires some con-
sensus about the meaning of the state of a particular generic
service, such as text editing. However, not all applications

need to handle all the details of the task state: certain addi-
tional properties can be treated as optional. If a supplier can
not interpret these properties, they are simply ignored, but pre-
served for future instantiations of the task.

In our experience with developing suppliers, we have had
mixed success with getting state information from applications.
While more recent applications allow reflective access to get
and set this information through programmatic interfaces such
as .NET, it is not as easy with older applications. Even when
applications provide a programmatic interface, it is possible
that they do not expose the required information. For example,
to restore the state of web browsing, it is desirable to set and
get the history of the browser so that backward and forward
browsing state can be maintained. Internet Explorer, while
providing an interface for setting the current web page, does
not provide these additional APIs.

We argue that our requirements for a programmatic inter-
face to set and get the state of the task are not unreasonable.
Applications increasingly allow access to such information. In
our experience, it has always been possible to get and set some
form of the state; the challenge has been in the varying mecha-
nisms that we have had to use, and the issue has been the scope
of the information that we have access to.

Our experience has also demonstrated the need for applica-
tions to “sandbox” the set of materials belonging to one task.
For example, suppose that one user task requires two spread-
sheets to be edited, while another task requires on spreadsheet
to be edited. If these tasks are simultaneously active, the origi-
nating task of each spreadsheet needs to be recorded. Applica-
tions provide varying support for such sandboxing. Microsoft
Excel supports directly such functionality, because there can
be multiple physical instances of the Excel process running,
each with its own set of files. On the other hand, Microsoft
PowerPoint makes this difficult, because only one process
instance can be running on a given workstation. This makes
the design of the supplier wrapper much more complex and
time consuming.
2) Adaptation

To allow for adaptation to changing resources in Section
IV.B we described a formalism that can provide optimal con-
figurations or reconfigurations based on the available supply
of resources, and the expected resource usage of the applica-
tions. For the mathematical formalism to work in practice,
Aura infrastructure requires information about resource usage
and quality of service of applications, resource supply in the
environment, as well as certain level of cooperation from ap-
plications about expected resource usage.

In practice, the following set of requirements need to be sat-
isfied in order for the mathematical model of Aura to produce
accurate outcomes: (1) ability to monitor application-provided
quality of service, (2) ability to monitor and report application
resource usage, (3) ability to monitor available resource sup-
ply, and (4) ability to enforce resource usage limits on applica-
tions.

 Let us discuss how each of these requirements can be trans-
lated into design guidelines for application and system devel-

12

opers.
Requirement 1 can be satisfied directly by application de-

velopers by exposing rich APIs that report the quality of ser-
vice. For example, many of the commercial and open-source
video/media players report the richness of the stream in bit
rates, the frame update rate of the video, the size of the frame,
the color depth, etc.

Requirements 2 and 3 can be satisfied by a shared service
that is either provided by the operating system, or third-party
middleware. While modern-operating systems generally pro-
vide reasonable performance and resource monitoring hooks,
there is room for improvement. However, some resources can
be more difficult to account for on a per-process basis (e.g.,
battery). Notice that there are research systems, such as the
Nemesis operating system [19] and Odyssey adaptive platform
[24] that specifically provide accurate resource usage and sup-
ply estimates.

With respect to requirement 4, we believe that a two-fold
approach is needed. First, applications can provide various
adaptation strategies (e.g., more CPU-intensive video stream
decoding or less CPU-intensive decoding); we believe that
applications should provide the ability to comply with resource
usage limitations. Some of the video players on the market
provide such ability directly, e.g., with respect to network
bandwidth. However, it is also desirable to have an operating
system-provided mechanism for ensuring that resource limita-
tions are enforced if an application proves to be uncooperative.
For example, some video players aggressively pre-fetch and
saturate use all available bandwidth, despite being told to use
low bit rate stream. In such cases, a mechanism external to
application (e.g., bandwidth throttling) can enforce resource
limitations imposed on applications.3

VI. CONCLUSION AND FUTURE WORK

In this paper we have described an approach to self-
configuring capabilities for everyday computing environments.
Motivated by the challenges of supporting heterogeneity, re-
source variability, mobility, ubiquity, and task-specific user
requirements, we have developed a self-adaptation infrastruc-
ture that has three distinctive features. It allows explicit repre-
sentation of user tasks, including preferences and service
qualities. It provides an environment management capability to
translate user-oriented task and preference specifications into
resource allocations that match the intended environment. Fi-
nally, it provides a formal basis for understanding the resource
allocation and derived algorithms that support optimal alloca-
tion at run time.

While providing a good starting point, this work also sug-
gests a number of important future directions. First is the ex-
tension of task specification so it can express richer notions of

3 Notice that we are not advocating here the need for applications to inter-

fere with the low level scheduling of resources by the operating system. We
simply advocate that on the level timescale of seconds the resource usage by
applications should be consistent with the expected quality of service deliv-
ered.

task, such as work flow, cognitive models, and goal driven task
realization. Second is the extension of resource allocation al-
gorithms to take advantage of future predictions. This entails
much richer notions of utility, such as those prescribed by Op-
tions Theory. Finally, there are many directions that one could
pursue in the area of user interface design to make it even eas-
ier for users to create and reuse task descriptions.

ACKNOWLEDGEMENTS

This research is supported by the National Science Founda-
tion under Grant ITR-0086003, by the Sloan Software Industry
Center at Carnegie Mellon, and by the High Dependability
Computing Program from NASA Ames cooperative agreement
NCC-2-1298.

REFERENCES

1. R.K. Balan, J.P. Sousa, M. Satyanarayanan. Meeting the Software Engi-
neering Challenges of Adaptive Mobile Applications. Tech. Report,
CMU-CS-03-11, Carnegie Mellon U., Pittsburgh, PA, 2003.

2. C. Boutilier, et al. Cooperative Negotiation in Autonomic Systems using
Incremental Utility Elicitation. Proceedings of the Nineteenth Annual
Conference on Uncertainty in Artificial Intelligence (UAI-03), Acapulco,
pp.89--97 (2003).

3. L. Capra, W. Emmerich and C. Mascolo. A Micro-Economic Approach
to Conflict Resolution in Mobile Computing. In Proc Foundations of
Software Engineering (ACM SIGSOFT/FSE), 2002.

4. L. Capra, W. Emmerich and C. Mascolo. Reflective Middleware Solu-
tions for Context-Aware Applications. Proc Int’ l Conference on
Metalevel Architectures and Separation of Crosscutting Concerns
(REFLECTION), 2001. LNCS (Springer-Verlag).

5. Cheng, S.W. et al. Software Architecture-based Adaptation for Pervasive
Systems. Proc of the International Conf. on Architecture of Computing
Systems: Trends in Network and Pervasive Computing, April 2002.
Springer LNCS Vol. 2299, Schmeck, H., Ungerer, T., Wolf, L. (Eds),
2002.

6. F. Cristian. Understanding Fault-Tolerant Distributed Systems. Commu-
nications of the ACM, 34(2):56-78, 1991.

7. The DAML Services Coalition (multiple authors), "DAML-S: Web Ser-
vice Description for the Semantic Web", Proc Int’ l Semantic Web Con-
ference (ISWC), 2002.

8. J. Flinn, E. de Lara, et al. Reducing the Energy Usage of Office Applica-
tions. Proc. IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), 2001.

9. D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project Aura:
Towards Distraction-Free Pervasive Computing. IEEE Pervasive Com-
puting, Volume 21, Number 2, April-June, 2002.

10. D. Garlan, J. Kramer, J., and A. Wolf (eds). Proceedings of the ACM
SIGSOFT Workshop on Self-Healing Systems (WOSS’02), Charleston,
SC, November 18-19, 2002.

11. D. Garlan, S.W. Cheng, B. Schmerl. Increasing System Dependability
through Architecture-Based Self-repair. Architecting Dependable Sys-
tems, R. Lemos, C. Gacek, A. Romanovsky (Eds), Springer-Verlag, 2003.

12. Georgiadis, I., Magee, J., Kramer, J. Self-Organising Software Architec-
tures for Distributed Systems. Proc. ACM SIGSOFT Wksp on Self-
Healing Sys. (WOSS’02). Nov. 2002.

13. M. Hiltunen, R. Schlichting. Adaptive Distributed and Fault-Tolerant
Systems, International Journal of Computer Systems Science and Engi-
neering, 11(5):125-133, September, 1996.

14. Jini. www.jini.org. Accessed: Sep. 2003.

15. M. Jones, D. Rosu, M. Rosu. CPU Reservations and Time Constraints:
Efficient, Predictable Scheduling of Independent Activities. Proc ACM
Symp Operating Systems Principles (SOSP), 1997.

13

16. J. Kephart and D. M. Chess, "The vision of autonomic computing," IEEE
Computer, vol. 36, no. 1, pp. 41-50, 2003.

17. E. de Lara, D. S. Wallach, W. Zwaenepoel. Puppeteer: Component-based
Adaptation for Mobile Computing. Proc. 3rd USENIX Symposium on
Internet Technologies and Systems (USITS), 2001.

18. C. Lee, et al. A Scalable Solution to the Multi-Resource QoS Problem.
Proc. IEEE Real-Time Systems Symposium (RTSS), 1999.

19. I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R.
Fairbairns, and E. Hyden. The Design and Implementation of an Operat-
ing System to Support Distributed Multimedia Applications. IEEE Jour-
nal on Selected Areas In Communications, 14(7):1280-1297, September
1996.

20. J. Kephart, M. Parashar (eds) Proc. International Conference on Auto-
nomic Computing, May 17-18, 2004. New York, NY. IEEE Press.

21. F. Kon, et al. Dynamic Resource Management and Automatic Configura-
tion of Distributed Component Systems. Proc. USENIX Conference on
OO Technologies and Systems (COOTS), 2001.

22. D. Narayanan, J. Flinn, M. Satyanarayanan. Using History to Improve
Mobile Application Adaptation. Proc. 3rd IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA), 2000.

23. R. Neugebauer and D. McAuley. Congestion Prices as Feedback Signals:
An Approach to QoS Management. Proc. ACM SIGOPS European
Workshop, 2000.

24. B. Noble, et al. Agile Application-Aware Adaptation for Mobility. Proc.
of the 16th ACM Symp. on Operating Systems Principles (SOSP’97) Oc-
tober 1997. Operating Systems Review 31(5), ACM Press, 276-287.

25. D. Pisinger. An exact algorithm for large multiple knapsack problems.
European Journal of Operational Research, 114, (1999).

26. Service Location Protocol. www.srvloc.org. Accessed: Sep. 2003.

27. J.P. Sousa, D. Garlan. The Aura Software Architecture: an Infrastructure
for Ubiquitous Computing. Tech. Report CMU-CS-03-183, Carnegie
Mellon U., Pittsburgh, PA, 2003.

28. J.P. Sousa, D. Garlan. Beyond Desktop Management: Scaling Task Man-
agement in Space and Time. Tech. Report CMU-CS-04-160, Carnegie
Mellon U., Pittsburgh, PA, 2004.

João Pedro Sousa is a doctoral candidate at Carnegie Mel-
lon University. His research interests are in the area of in-
creasing the benefit to users of Ubicomp environments. He
received his Masters of Software Engineering at Carnegie
Mellon University. Contact him at jpsousa@cs.cmu.edu.

Vahe Poladian is a doctoral candidate at Carnegie Mellon
University. His research interests are in applications of mi-
croeconomics, utility theory, and decision theory in configur-
ing software on mobile computing platforms. He received his
BS in Computer Science and Mathematics from Macalester
College. Contact him at poladian@cs.cmu.edu.

David Garlan is a professor of computer science at Carne-
gie Mellon University. His research interests include software
architectures, formal methods, self-healing systems, and task-
based computing. He received his PhD in computer science
from Carnegie Mellon University. Contact him at
garlan@cs.cmu.edu.

Bradley Schmerl is a systems scientist at Carnegie Mellon
University. His research interests include dynamic adaptation,
software architectures, and software engineering environ-
ments. He received his PhD in computer science from Flinders
University in South Australia. Contact him at
schmerl@cs.cmu.edu.

Mary Shaw is the Alan J. Perlis professor of computer sci-

ence at Carnegie Mellon University. Her research interests
include value-based software engineering, everyday software,
software engineering research paradigms, and software archi-
tecture. She received her PhD in computer science from Car-
negie Mellon University. Contact her at
mary.shaw@cs.cmu.edu.

