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Abstract— An important domain for  autonomic systems is the 

area of ubiquitous computing: users are increasingly surrounded 
by technology that is heterogeneous, pervasive, and var iable. In 
this paper we descr ibe our  work in developing self-adapting com-
puting infrastructure that automates the configuration and recon-
figuration of such environments. Focusing on the engineer ing 
issues of self-adaptation in the presence of heterogeneous plat-
forms, legacy applications, mobile users, and resource var iable 
environments,  we descr ibe a new approach based on the follow-
ing key ideas: (a) Explicit representation of user  tasks allows us to 
determine what service qualities are required of a given configu-
ration; (b) Decoupling task and preference specification from the 
lower level mechanisms that carry out those preferences provides 
a clean engineer ing separation of concerns between what is 
needed and how it is carr ied out; and (c) Efficient algor ithms 
allow us to calculate in real time near-optimal resource alloca-
tions and reallocations for  a given task. 
 

Index Terms— Self-adaptation, ubiquitous computing, re-
source-aware computing, multi-fidelity applications. 
 

I. INTRODUCTION 

Self-adaptive systems are becoming increasingly important. 
What was once the concern of specialized systems, with high 
availability requirements, is now recognized as being relevant 
to almost all of today’s complex systems [10,20]. Increasingly 
computing systems that people depend on cannot be taken off-
line for repair – they must adapt to failures in environments 
that are not entirely under the control of the system implemen-
ters, and they must adjust their run-time characteristics to ac-
commodate changing loads, resources, and goals. 

One particularly important domain for self-adaptation is the 
area of ubiquitous computing. Today users are surrounded by 
technology that is heterogeneous, pervasive, and variable. It is 
heterogeneous because computation can take place using a 
wide variety of computing platforms, interfaces, networks, and 
services. It is pervasive through wireless and wired connec-
tivity that pervades most of our working and living environ-
ments. It is variable because resources are subject to change:  
users can move from resource-rich settings (such as worksta-
tions and high-bandwidth networks in an office) to resource-
poor environments (such as a PDA in a park). 

Coping with this situation requires automated mechanisms. 

In particular, ideally systems should be able to adapt to user 
mobility, recover from service failures and degradations, and 
allow continuity across diverse environments. Without auto-
mated mechanisms to support this kind of adaptation, users 
become increasingly overloaded with distractions of managing 
their system configurations; alternatively, they may simply opt 
not to use the capabilities of their environments. 

This automation raises a number of serious engineering 
challenges: How can one determine when reconfiguration is 
appropriate? Assuming reconfiguration is desirable, how does 
one determine a satisfactory allocation of resources, particu-
larly if there are multiple ways to support a given computing 
task, or limitations on the resource pool? How can users in-
struct the system about the kinds of adaptation that are desired, 
without becoming bogged down in low-level system details? 
How can one add adaptation mechanisms to the everyday 
computing environments that users are familiar with: text edi-
tors, spreadsheets, video viewers, browsers, etc. 

In this paper we describe our experience over the past five 
years of developing self-adapting ubiquitous computing infra-
structure that automates the configuration and reconfiguration 
of everyday computing environments. Focusing on the engi-
neering issues of providing self-adaptation in the presence of 
heterogeneous platforms, legacy applications, mobile users, 
and resource variable environments, Project Aura [9] has de-
veloped an approach that we believe addresses each of the 
questions above. The key ideas behind this work are the fol-
lowing: (a) Explicit representation of user tasks allows us to 
determine what service qualities are required of a given con-
figuration; (b) Decoupling task and preference specification 
from the lower level mechanisms that carry out those prefer-
ences provides a clean engineering separation of concerns 
between what is needed and how it is carried out; and (c) Effi-
cient algorithms allow us to calculate in real time near-optimal 
resource allocations and reallocations for a given task. 

The remainder of this paper is organized as follows: Section 
II describes our work in the context of related research. Sec-
tion III outlines the research challenges in making self-
adaptive systems task-aware, describes the Aura architecture, 
and illustrates how the architecture addresses such research 
challenges. In Section IV, we elaborate on the specifics of 
supporting such architecture: how the requirements and user 
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preferences are captured for each task; the formal underpin-
nings of the internal representation of tasks and preferences; 
and the algorithm that supports automatic system configuration 
and self-adaptation. In Section V we evaluate the effectiveness 
of the approach and consider lessons learned from this work. 
We present the conclusions in Section VI. 

II. RELATED WORK 

Currently, adaptive systems fall into two broad categories: 
fault-tolerant systems, and fidelity-aware systems. First, fault-
tolerant systems react to component failure, compensating for 
errors using a variety of techniques such as redundancy and 
graceful degradation [6,13]. Such systems have been prevalent 
in safety-critical systems or systems for which the cost of off-
line repair is prohibitive (e.g., telecom, space systems, power 
control systems, etc.) Here the primary goal is to prevent or 
delay large-scale system failure. 

Second, fidelity-aware systems react to resource variation: 
components adapt their computing strategies so they can func-
tion optimally with the current set of resources (bandwidth, 
memory, CPU, power, etc.) [8,17,22,24]. Many of these sys-
tems emerged with the advent of mobile computing over wire-
less networks, where resource variability becomes a critical 
concern. While most of this research focuses on one compo-
nent at a time, our work leverages on this research but tackles 
the problem of multi-component integration, configuration, 
and reconfiguration. Although somewhat related, this kind of 
automatic configuration is distinct from the automatic configu-
ration being investigated in [21]. There, configuration is taken 
in the sense of building and installing new applications into an 
environment, whereas here, it is taken in the sense of selecting 
and controlling applications so that the user can go about his 
tasks with minimal disruption.   

Principles of Autonomic Computing were first introduced.  
Our work addresses two of the five principles of Computing, 
which were first introduced in [16].  Specifically, Aura pro-
vides self-optimization and self-healing for everyday user tasks 
in the domain of Ubiquitous Computing. 

  Our work leverages microeconomic principles to deter-
mine optimal resource allocation.  In this respect, our work is 
similar to [2], which addresses resource allocation in large-
scale enterprise deployments.  Computing the utility (value) of 
different resource allocation schemes is expensive.  To help 
mitigate that problem, [2] describes a cooperative mechanism 
for incrementally eliciting utility.  In our work, we separate 
elicitation of inputs into two levels.  Specifically, we rely on 
history-based profiling to obtain application resource require-
ments for a particular level of quality of service (see [22]), and 
explicitly acquire user preferences for quality of service using 
techniques and user interfaces described in this paper. 

Resource scheduling [15], resource allocation [18,23], and 
admission control have been extensively addressed in research. 
From analytical point of view, closest to our work are Q-RAM 
[18], a resource reservation and admission control system 
maximizing the utility of a multimedia server based on prefer-

ences of simultaneously connected clients; Knapsack algo-
rithms [25]; and winner determination in combinatorial auc-
tions. In our work, we handle the additional problems of se-
lecting applications among alternatives, and accounting for 
cost of change. Dynamic resolution of resource allocation pol-
icy conflicts involving multiple mobile users is addressed in 
[3] using sealed bid auctions. While our work shares utility-
theoretic concepts with [3], the problem solved in our work is 
different. In that work, the objective is to select among a hand-
ful of policies so as to maximize an objective function of mul-
tiple users. In our work, the objective is to choose among pos-
sibly thousands of configurations so as to maximize the objec-
tive function of one user. As such, our work has no game-
theoretic aspects, but faces a harder computational problem. 
Furthermore, our work takes into account tasks that users wish 
to perform. 

At a coarser grain, research in distributed systems addresses 
global adaptation: for example, a system might reconfigure a 
set of clients and servers to achieve optimal load balancing. 
Typically, such systems use global system models, such as 
architectural models, to achieve these results [5,11,12]. To 
achieve fault-tolerance and coarse-grain adaptation (e.g. hot 
component swapping,) our work builds on this, as well as on 
service location and discovery protocols [14,26]. 

III. TASK-BASED SELF-ADAPTATION 

A. Task-aware Systems 

A central tenet of our work is that systems are used to carry 
out high-level activities of users: planning a trip, buying a car; 
communicating with others. In today’s systems those activities 
and goals are implicit. Users must map their tasks to comput-
ing systems by invoking specific applications (document edi-
tors, email programs, spreadsheets, etc.) on specific files, with 
knowledge of specific resources. In a ubiquitous computing 
world with shifting resources and increased heterogeneity, the 
cognitive load required for users to manage this manually 
quickly becomes untenable.  

In contrast, a task-aware system makes user tasks explicit, 
by encoding user goals, and by providing a placeholder to rep-
resent the quality attributes of the services used to perform 
those tasks. So, for example, for a particular task, in the pres-
ence of limited bandwidth, the user may be willing to live with 
a small video screen size, while in another task reducing the 
frame rate would be preferable. In task-aware systems, users 
specify their tasks and goals, and it is the job of the system to 
automatically map them into the capabilities available in the 
ubiquitous environment. 

Once such information is represented, a self-managing sys-
tem can in principle query the task to determine both when the 
system is behaving within an acceptable envelop for the task, 
and also can choose among alternative system reconfigurations 
when it is not. 

However, a number of important research questions arise, 
and the way we answer them strongly influences the way we 
look at and build task-aware systems: 
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- How do we represent a task? What encoding schemes can 
best be used to capture the user’s requirements for system 
quality? 

- How should we characterize the knowledge for mapping a 
user task to a system’s configuration?  As a user moves from 
task to task, different configurations will be appropriate, 
even for the same set of applications. 

- Should we trigger an adaptation as soon as an opportunity 
for improvement is detected, or should we factor in how dis-
tracting the change will be to the user against how serious 
the fault is?  

- Is the binary notion of fault enough, or do we need to come 
up with a measure of fault “hardness”  – a continuum be-
tween “all is well,”  and “ the system is down?”  

- What is the length of time that the user is expected to carry 
out the current task?  What are likely other tasks that the 
user will work on next? 
Over the past five years we have been experimenting with 

various answers to these questions. Centered on a large ubiqui-
tous computing research project, Project Aura [9], we have 
evolved a system that, in brief, addresses these questions as 
follows: 
- We represent a task as a set of services, together with a set 

of quality attribute preferences expressed as multi-
dimensional utility functions, possibly conditioned by con-
text conditions. 

- We define a vocabulary for expressing requirements, which 
delimits the space of requirements that the automatic recon-
figuration can cover.  The set of requirements for a particu-
lar task expresses which services are needed from the sys-
tem, as well as the fidelity constraints that make the system 
adequate or inadequate for the task at hand. The required 
services are dynamically mapped to the available compo-
nents and the fidelity constraints are mapped into resource-
adaptation policies. 

- We incorporate the notion of cost of reconfiguration into the 
evaluation of alternative reconfigurations. This cost captures 
user’s intolerance for configuration changes by the infra-
structure. A high cost of reconfiguration will make the sys-
tem highly stable, but frequently less optimal; a low cost of 
configuration will permit the system to change frequently, 
but may introduce more user distraction from reconfigura-
tions. 

- We invert the notion of fault by adopting an econometric-
based notion of task feasibility: ranging from 0 (the task is 
not feasible under the current system conditions) to 1 (sys-
tem is totally appropriate for the current task). This enables 
an objective evaluation of configuration alternatives, regard-
less of the sources of change (both changes to the task, and 
also to the availability of resources and components). 
We now describe the system architecture that permits such 

task-based self-adaptation, and elaborate on these decisions. 

B. The Aura layers 

The starting point for understanding Aura is a layered view 
of its infrastructure together with an explanation of the roles of 

each layer with respect to task suspend-resume and dynamic 
adaptation. Table  1 summarizes the relevant terminology. 

The infrastructure exploits knowledge about a user’s tasks 
to automatically configure and reconfigure the environment on 
behalf of the user. First, the infrastructure needs to know what 
to configure for; that is, what a user needs from the environ-
ment in order to carry out his or her tasks. Second, the infra-
structure needs to know how to best configure the environ-
ment: it needs mechanisms to optimally match the user’s needs 
to the capabilities and resources in the environment. 

In our architecture, each of these two subproblems is ad-
dressed by a distinct software layer: (1) the Task Manage-
ment layer determines what the user needs from the environ-
ment at a specific time and location; and (2) the Environment 
Management layer determines how to best configure the envi-
ronment to support the user’s needs.  

TABLE  1. TERMINOLOGY.  

task An everyday activity such as preparing a presentation or 
writing a report. Carrying out a task may require obtaining 
several services from an environment, as well as accessing 
several materials. 

environment The set of suppliers, materials and resources accessible to a 
user at a particular location. 

service Either (a) a service type, such as printing, or (b) the occur-
rence of a service proper, such as printing a given docu-
ment. For simplicity, we will let these meanings be inferred 
from context. 

supplier An application or device offering services – e.g. a printer. 
material An information asset such as a file or data stream. 
capabilities The set of services offered by a supplier, or by a whole 

environment. 
resources Are consumed by suppliers while providing services. Ex-

amples are: CPU cycles, memory, battery, bandwidth, etc. 
context Set of human-perceived attributes such as physical location, 

physical activity (sitting, walking…), or social activity 
(alone, giving a talk…). 

user-level 
state of a task 

User-observable set of properties in the environment that 
characterize the support for the task. Specifically, the set of 
services supporting the task, the user-level settings (prefer-
ences, options) associated with each of those services, the 
materials being worked on, user-interaction parameters 
(window size, cursors…), and the user’s preferences with 
respect to quality of service tradeoffs. 

TABLE  2. SUMMARY OF THE SOFTWARE LAYERS IN THE INFRASTRUCTURE. 

Table  2 summarizes the roles of the software layers in the 
infrastructure. The top layer, Task Management (TM), cap-

layer mission roles 
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context dependencies 
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the environ-
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• monitor environment capabilities and resources 

• map service needs, and user-level state of tasks 
to available suppliers 

• ongoing optimization of the utility of the environ-
ment relative to the user’s task 
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. support the 
user’s task 

• monitor relevant resources 

• fine grain management of QoS/resource tradeoffs 
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tures knowledge about user tasks and associated intent. Such 
knowledge is used to coordinate the configuration of the envi-
ronment upon changes in the user’s task or context. For in-
stance, when the user attempts to carry out a task in a new en-
vironment, TM coordinates access to all the information re-
lated to the user’s task, and negotiates task support with Envi-
ronment Management (EM). Task Management also monitors 
explicit indications from the user and events in the physical 
context surrounding the user. Upon getting indication that the 
user intends to suspend the current task or resume some other 
task, TM coordinates saving the user-level state of the sus-
pended task and reinstantiates the resumed task, as appropri-
ate. Task Management may also capture complex representa-
tions of user tasks (out of scope of this paper) including task 
decomposition (e.g., task A is composed of subtasks B and C), 
plans (e.g., C should be carried out after B), and context de-
pendencies (e.g., the user can do B while sitting or walking, 
but not while driving). 

The EM layer maintains abstract models of the environment. 
These models provide a level of indirection between the user’s 
needs, expressed in environment-independent terms, and the 
concrete capabilities of each environment. 

This indirection is used to address both heterogeneity and 
dynamic change in the environments. With respect to hetero-
geneity, when the user needs a service, such as speech recogni-
tion, EM will find and configure a “supplier”  for that service 
among those available in the environment. With respect to 
dynamic change, the existence of explicit models of the capa-
bilities in the environment enables automatic reasoning when 
those capabilities change dynamically. The Environment Man-
agement adjusts such a mapping automatically in response to 
changes in the user’s needs (adaptation initiated by TM), and 
changes in the environment’s capabilities and resources (adap-
tation initiated by EM). In both cases adaptation is guided by 
the maximization of a utility function representing the user’s 
preferences (see Section IV.A.1)). 

The Environment layer comprises the applications and de-
vices that can be configured to support a user’s task. Configu-
ration issues aside, these suppliers interact with the user ex-
actly as they would without the presence of the infrastructure. 
The infrastructure steps in only to automatically configure 
those suppliers on behalf of the user. The specific capabilities 
of each supplier are manipulated by EM, which acts as a trans-
lator for the environment-independent descriptions of user 
needs issued by TM. 

By factoring models of user preferences and context out of 
individual applications, the infrastructure enables applications 
to apply the adaptation policies appropriate for each task. That 
knowledge is very hard to obtain at the application level, but 
once it is determined at the user level – by Task Management 
– it can easily be communicated to the applications supporting 
the user’s task. 

A detailed description of the architecture, including the 
formal specification of the interactions between the compo-
nents in the layers defined above, is available in [27]. 

C. Examples of Self-Adaptation  

To clarify how this design works, we illustrate how the in-
frastructure outlined in Section B handles a variety of exam-
ples of self-adaptation, ranging from traditional repair in reac-
tion to faults, to reactions to positive changes in the environ-
ment, to reactions to changes in the user’s task. 

To set the stage, suppose that Fred is engaged in a conversa-
tion that requires real-time speech-to-speech translation. For 
that task, assume the Aura infrastructure has assembled three 
services: speech recognition, language translation, and speech 
synthesis. Initially both speech recognition and synthesis are 
running on Fred’s handheld. To save resources on Fred’s 
handheld, and since language translation is computationally 
intensive, but has very low demand on data-flow (the text rep-
resentation of each utterance), the translation service is config-
ured to run on a remote server. 

Fault tolerance. Suppose now that there is loss of connec-
tivity to the remote server, or equivalently, that there is a soft-
ware crash that renders it unavailable. Live monitoring at the 
EM level detects that the supplier for language translation is 
lost. The EM looks for an alternative supplier for that service, 
e.g., translation software on Fred’s handheld, activates it, and 
automatically reconfigures the service assembly. 

Resource/fidelity-awareness. Computational resources in 
Fred’s handheld are allocated by the EM among the services 
supporting Fred’s task. For computing optimal resource alloca-
tion, the EM uses each supplier’s spec sheet (relating fidelity 
levels with resource consumption), live monitoring of the 
available resources, and the user’s preferences with respect to 
fidelity levels. Suppose that during the social part of the con-
versation, Fred is fine with a less accurate translation, but re-
sponse times should be snappy. The speech recognizer, as the 
main driver of the overall response time, gets proportionally 
more resources and uses faster, if less accurate, recognition 
algorithms. When the translation service is activated on Fred’s 
handheld in response to the fault mentioned above, resources 
become scarcer for the three services. However, having the 
knowledge about Fred’s preferences passed upon service acti-
vation, each supplier can react appropriately by shifting to 
computation strategies that save response times at the expense 
of accuracy [1]. 

Soft fault (negative delta). Each supplier issues periodic re-
ports on the Quality of Service (QoS) actually being provided 
– in this example, response time and estimated accuracy of 
recognition/translation.1 Suppose that at some point during the 
conversation, Fred brings up his calendar to check his avail-
ability for a meeting. The suppliers for the speech-to-speech 
translation task, already stretched for resources, reduce their 
QoS below what Fred’s preferences state as acceptable. The 
EM detects this soft fault, and replaces the speech recognizer 
by a lightweight component, that although unable to provide as 
high a QoS as the full-fledged version, performs better under 
sub-optimal resource availability. 

 
1  Additionally, the EM uses these periodic QoS reports to monitor the 

availability of the suppliers, in a heartbeat fashion. 
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Soft fault (positive delta). Suppose that at some point, the 
language translation supplier running on the remote server 
becomes available again. The EM detects the availability of a 
new candidate to supply a service required by Fred’s task, and 
compares the estimated utility of the candidate solution against 
the current one. If there is a clear benefit, the EM automati-
cally reconfigures the service assembly. In calculating the 
benefit, the EM factors in a cost of change, which is also 
specified in the user’s preferences associated with each ser-
vice. This mechanism introduces hysteresis in the reconfigura-
tion behavior, thus avoiding oscillation between closely com-
peting solutions. 

Task QoS requirements change. Suppose that at some 
point Fred’s conversation enters a technical core for which 
translation accuracy becomes more important than fast re-
sponse times. The TM provides the mechanisms, if not to rec-
ognize the change automatically based on Fred’s social con-
text, at least to allow Fred to quickly indicate his new prefer-
ences; for instance, by choosing among a set of preference 
templates. The new preferences are distributed by the TM to 
the EM and all the suppliers supporting Fred’s task. Given a 
new set of constraints, the EM evaluates the current solution 
against other candidates, reconfigures, if necessary, and de-
termines the new optimal resource allocation. The suppliers 
that remain in the configuration, upon receiving the new pref-
erences, change their computation strategies dynamically; e.g., 
by changing to algorithms that offer better accuracy at the ex-
pense of response time. 

Task suspend/resume. Suppose that after the conversation, 
Fred wants to resume writing one of his research papers. 
Again, the TM provides the mechanisms to detect, or for Fred 
to quickly indicate, his change of task. Once the TM is aware 
that the conversation is over it coordinates with the suppliers 
for capturing the user-level state of the current task, if any, and 
with the EM to deactivate (and release the resources for) the 
current suppliers. The TM then analyses the description it 
saved the last time Fred worked on writing the paper, recog-
nizes which services Fred was using and requests those from 
the EM. After the EM identifies the optimal supplier assign-
ment, the TM interacts with those suppliers to automatically 
recover the user-level state where Fred left off. See [27] for a 
formal specification of such interactions. 

Task service requirements change. Suppose that while 
writing his paper, Fred recognizes that it would be helpful to 
refer to a presentation he gave recently to his research group. 
The TM enables Fred to explicitly aggregate viewing the pres-
entation to the ongoing task. As soon as a new service is rec-
ognized as part of the task, the TM requests an incremental 
update to the EM, which computes the optimal supplier and 
resource assignment for the new task definition, and automati-
cally performs the required reconfigurations. Similarly, if Fred 
decides some service is no longer necessary for his task, he 
can let the TM know, and the corresponding (incremental) 
deactivations are propagated to the EM and suppliers. By 
keeping the TM up-to-date with respect to the requirements of 

his tasks, Fred benefits from both the automatic incremental 
reconfiguration of the environment, and from the ability to 
suspend/resume exactly the set of services that he considers 
relevant for each task. 

D. Controlling Self-Adaptation  

Aura can be viewed as a closed-loop control system, which 
senses, actuates, and controls the runtime state of the environ-
ment, based on input from the user.  Each layer reacts to 
changes in user tasks and in the environment at a different 
granularity and time-scale. Task Management acts at a human 
perceived time-scale (minutes), evaluating the adequacy of sets 
of services to support the user’s task. Environment Manage-
ment acts at a time-scale of seconds, evaluating the adequacy 
of the mapping between the requested services and specific 
suppliers. Adaptive applications (fidelity-aware and context-
aware) choose appropriate computation tactics at a time-scale 
of milliseconds. 

Specifically, let’s see how the infrastructure handles the 
changes for a number of scenarios described in Section C: 

Task Service or QoS Requirements Change.  The TM im-
mediately coordinates a change in the environment, by adding, 
disbanding, replacing suppliers, or changing their QoS policies 
appropriately. 

Hard Fault (failure of a running supplier).  The EM im-
mediately replaces the failed supplier with an alternative. 

Soft Fault (negative or positive delta in resources).  The 
suppliers immediately adjust their quality of service to the 
available resources.  The EM periodically computes a new 
near-optimal configuration, which may imply swapping sup-
pliers  (we have not yet experimented with varying the time-
scale of reaction of the EM). 

IV. SUPPORTING TASK-BASED ADAPTATION 

A. Defining Task Requirements 

The user expresses the requirements for a task by specifying 
the services needed and the associated preferences.  A shared 
vocabulary of services and service-specific quality dimensions 
must exist between the user and the system. Developing such a 
vocabulary is a subject of related research and out of the scope 
of this paper (see for instance [7]), but we give insights to the 
essential characteristics of such a vocabulary [27,28]. 

For instance, to address user mobility across different ma-
chines, we use terms that are generic enough to be meaningful 
on different platforms. For example, a task may capture the 
fact that the user needs to edit text, as opposed to capturing the 
fact that he needs to use Microsoft Word. 

To make these ideas concrete, let’s suppose that Fred is 
about to start writing a new paper. Fred starts by pressing the 
down arrow at the bottom of an empty task definition window 
and selecting edit text (Fig. 1). The text editor activated by the 
infrastructure brings up a (default) blank document and Fred 
starts working. As Fred browses the web, he decides to associ-
ate an especially relevant page with the task, so that it is 
brought up automatically every time the task is resumed. For 
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that, Fred simply drags the page shortcut out of the browser 
and into the more field of the task window (the default browse 
web appears automatically). Later, Fred decides to start ana-
lyzing the performance data on a spreadsheet. Again, Fred 
simply drags the file produced by the data gathering tool, from 
the file system explorer into the more field and selects edit 
spreadsheet for it. 

Fig. 1. Fred’s task definition for writing XYZ’04 paper 

Note that the infrastructure imposes no constraints on the 
user’s work. This comes from recognizing that many user ac-
tivities are spontaneous and short lived, and need not be classi-
fied as pertaining to a particular task. However, once the user 
recognizes an enduring association with a task, the infrastruc-
ture makes it easy to update the task definition on the fly. 

In addition to specifying the services required by each task, 
the user may specify preferences with respect to how the envi-
ronment should be configured. User preferences (and their 
formal representation, utility functions) used in our work have 
three parts: first, configuration preferences capture prefer-
ences with respect to the set of services to support a task. Sec-
ond, supplier preferences capture which specific suppliers are 
preferred to provide the required services; and third, QoS pref-
erences capture the acceptable Quality of Service (QoS) levels 
and preferred tradeoffs. 

The right-hand side of Fig. 1 defines Fred’s configuration 
preferences for the task: that is, alternative operation modes 
and their order of preference. The (default) full configuration 
includes all the activities defined for the task. In addition, Fred 
also specifies the skip web degraded-mode configuration for 
when the circumstances are such that either a browser or con-
nection are not available, or that the quality of service is so 
poor (for instance, due to low bandwidth) that Fred would 
rather focus on the other activities. Fred also permits the paper 
only configuration for last resort circumstances, for instance 
when having only a handheld with extremely limited resources. 
Note that Fred can define as many or as few operating modes 
as he feels appropriate, and indicate his relative preference for 
each by sliding the corresponding bar. 

Suppose that for typing the notes (edit text service), Fred 
prefers MSWord over Emacs, and is unwilling to use the vi 
editor at all. This is an example of supplier preferences. Note 
that representing supplier preferences by discriminating the 
supplier type is a compact representation for the preferences 
with respect to the availability of desired features, such as spell 

checking or richness of editing capabilities, as well as to the 
user’s familiarity with the way those features are offered. For 
the sake of space, the user interface for specifying supplier 
preferences is not shown, but it is similar to the tabular form 
shown in Fig. 2. 

Suppose now that Fred will be browsing the web over a 
wireless network link. Suppose that the bandwidth suddenly 
drops: should the browser preserve the full quality of web 
pages at the expense of download time, or reduce the quality, 
for instance by skipping images?  The answer depends on 
Fred’s QoS preferences for the current task. For browsing cita-
tions, Fred probably will be fine with dropping images and 
banners, with benefits in response times. However, for brows-
ing a museum’s site on painting or online mapping, Fred may 
prefer full page quality to be preserved at the expense of 
download times. 

 

 

   Fig. 2. QoS preferences for the web browsing service 

Let’s look at the user interface of defining QoS preferences.  
Fig. 2 shows an example of QoS preferences for the web 
browsing service. The service has two dimensions: latency and 
content. Latency refers to the average time a web page takes to 
load after being requested.  Content refers to the richness of 
the web page content.  Latency is numeric and is expressed in 
seconds. The user manipulates the good and bad thresholds by 
dragging the green (lighter) and red (darker) handles, respec-
tively.2  Note that the utility space is represented simply using 
four intervals: from the lowest where the user prefers the con-
figuration not to be considered, represented by a cross ( ), to 
the highest corresponding to satiation, represented by a happy 
face ( ). The slide bar associated to each dimension captures 
how important, that is how much the user cares, about varia-
tions along that dimension. 

We don’ t expect every user to interact with the system at 
this kind of detail for every task. Rather, the infrastructure 
provides a set of templates for each service type, correspond-
ing to common situations. For instance, the web browsing ser-
vice includes the high quality template shown in Fig. 2, as well 
as the fast loading template, where the latency thresholds are 
stricter, and the content threshold is more relaxed. The user 
can choose which preference template to apply to each service 
when defining a task (Fig. 1) or, by selecting customized tun-
ing, manipulate preferences directly. 
 

2 The upper limit of the scale adjusts automatically between the values 10, 
50, 100, 500, and 1000, further changes being enabled by a change in unit. 
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1) Representing User Preferences 
To make preferences easier to both elicit and process, we 

make two simplifying assumptions. First, preferences are mod-
eled independently of each other. In other words, the utility 
function for each aspect captures the user’s preferences for that 
aspect independently of others. Second, preferences fall into 
two categories: those characterized by enumeration, and those 
characterized by numeric values. Supplier preferences are 
characterized by enumeration (e.g. MSWord, Emacs, or other), 
and so are QoS dimensions such as audio fidelity (e.g. high, 
medium and low). For these, the utility function takes the form 
of a discrete mapping to the utility space (see below). 

For preferences characterized by numeric values, we distin-
guish two intervals: one where the user considers the quantity 
to be good enough for his task, the other where the user con-
siders the quantity to be insufficient. Sigmoid functions, which 
look like smooth step functions, characterize such intervals 
and provide a smooth interpolation between the limits of those 
intervals (see Fig. 2). Sigmoids are easily encoded by just two 
points: the values corresponding to the knees of the curve that 
define the limits good of the good-enough interval, and bad of 
the inadequate interval. The case of “more-is-better" qualities 
(e.g., accuracy) are as easily captured as “ less-is-better”  quali-
ties (e.g., latency) by flipping the order of the good and bad 
values. In case studies evaluated so far, we have found this 
level of expressiveness to be sufficient. 

Fig. 3. Internal representation of the QoS preferences in Fig. 2 

Fig. 3 shows the internal representation of the preferences 
captured in Fig. 2. Note that the infrastructure creates user 
interfaces like the one in Fig. 2 dynamically, based on the in-
ternal representation, which in turn is updated by manipulating 
the representations in the interface. 

B. Formal Underpinnings 

This section describes how user preferences, as defined in 
the previous section, guide the automatic configuration and 
reconfiguration of the environment. Our approach is based on 
finding the best match between the user’s needs and prefer-
ences for a specific task, and the environment’s capabilities. 
This framework is used both to find the optimal initial configu-
ration, and to address the ongoing optimization of the support 
for the user’s tasks. 

In practice, finding such a match corresponds to a con-
strained maximization problem. The function to be maximized 
is a utility function that denotes the user preferences, and the 

constraints are the environment’s capabilities and available 
resources. The result of the maximization is an abstract meas-
ure of the feasibility of carrying out the task, given the current 
conditions in the environment. 

Utility space. Utility functions map the capability space 
(see below) onto the utility space. The latter is represented by 
the real number interval [0, 1]. The user will be happier, the 
higher the values in the utility space. The value 0 corresponds 
to the environment being unacceptable for the task; and 1 cor-
responds to user satiation, in the sense that increasing the ca-
pabilities of the environment will not improve the user’s per-
ception of feasibility of the specific task. 

Capability space. The capability space CCss corresponding to 
service s is the Cartesian product of the individual quality di-
mensions d of the service: 

)(ˆ )dim( ddomC sQoSds ∈⊗=  

For example, possible quality dimensions for the play video 
service are frame update rate, the frame size, and audio qual-
ity. Thus, the capability space of video playing is three-
dimensional. Cartesian product is used to combine the capabil-
ity space of two services. For distinct services s and t, their 
combined capability space is formally expressed as: 

tsts CCC ⊗=∪ ˆ  

For example, a web browsing service has two quality di-
mensions: latency and page richness, and video playing has 3 
dimensions of quality. Thus joint capability space of video 
playing and web browsing has 5 quality dimensions. 

Typically, an application supports only a subset of the capa-
bility space corresponding to its various fidelities of output. In 
practice, approximating this subset using a discrete enumera-
tion of points provides a reasonable solution, even if the corre-
sponding capability space is conceptually continuous. For ex-
ample, while it makes sense to discuss a video stream encoding 
of decimal frames per second, typically video streams are en-
coded at integer rates. Despite discrete approximation, our 
approach does allow the handling of a rich capability space. 
For example, the capability space of a specific video player 
application can have 90 points, which is made possible by 
combining 5 frame rates, 6 frame sizes, and 3 audio qualities. 
Such a capability space can be made possible by encoding the 
same video in multiple frame rates, frame size, and audio qual-
ity, and possibly leveraging application-specific features such 
as video smoothing. 

An application profile specifies a discrete enumeration of 
the capability points supported by an application and corre-
sponding resource demand for each point. Note that specific 
mechanisms for obtaining and expressing application profiles 
exist. As demonstrated in [22], resource demand prediction 
based on historical data from experimental profiling is both 
feasible and accurate. Further, metadata and reflection can be 
used to express application profiles [4]. 

Application profiles describe the relationship between the 
capability points supported by applications, and the corre-
sponding resource requirements. Formally, the quality resource 
mapping of supplier p is a partial function from the capability 

<utility combine="product"> 
 <QoSdimension name="latency" type="float"> 
  <function type="sigmoid" weight=".5"> 
   <thresholds good="3" bad="60" unit="second"/> 
  </function> 
 </QoSdimension> 
 <QoSdimension name="vocabulary" type="enum"> 
  <function type="table" weight="0.7"> 
   <entry x="noImage" f_x=".2"/> 
   <entry x="image" f_x="1"/> 
  </function> 
 </QoSdimension> 
</utility> 
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space of service s to the resource space: RCQoSprof sp
�: . 

The range of the function is the subset of the capability space 
that is supported by the supplier. 

Resource Space. The resource space RR is the Cartesian 
product of the individual resource dimensions r of the entire 
environment EE: 

)(ˆ )dim( rdomR ERESr∈⊗=  

Examples of resource dimensions are: CPU cycles, network 
bandwidth, memory, and battery. The actual number of re-
source dimensions is dependent on the environment. 

Utility Functions. There is one utility function for each al-
ternative configuration for a given task. The feasibility of the 
task corresponds to the best utility among the alternatives, 
weighted by the user’s preference for each alternative. The 
utility function for each configuration has two components, 
reflecting QoS and supplier preferences, respectively. 

QoS preferences specify the utility function associated with 
each QoS dimension. The names of the QoS dimensions are 
part of the vocabulary shared between the user and the system. 
The utility of service s as a function of the quality of service is 
given by: 

∏
∈

=
)dim(

ˆ)(
sQoSd

c
dQoS

dFsU  

where for each QoS dimension d of service s, 

]1,0()(: →ddomF d
 is a function that takes a value in the 

domain of d, and the weight cd∈[0,1] reflects how much the 
user cares about QoS dimension d. As an example, video play-
ing has a QoS dimension of frame update rate. The function 
FframeRate gives utility for various frame rates, and cframerate 
specifies the weight of frame rate. 

To evaluate the assignment of specific suppliers, we employ 
a supplier preference function, which is a discreet function that 
assigns a score to a supplier, based on its type. Also, we ac-
count for the cost of switching from one supplier to another at 
run time.  

Precisely, the utility of the supplier assignment for a set a of 
requested services is: 

∏
∈

⋅=
as

c
s

x
sSupp

ss FhaU ˆ)(  

where for each service s in the set a, ]1,0()(: →sSuppFs  

is a function that appraises the choice for the supplier for s; 
and the weight cs∈[0,1] reflects how much the user cares about 
the supplier assignment for that service.  

The term sx
sh  above expresses a change penalty as follows: 

hs indicates the user’s tolerance for a change in supplier as-
signment: a value close to 1 means that the user is fine with a 
change, the closer the value is to zero, the less happy the user 
will be. The exponent xs indicates whether the change penalty 
should be considered (xs=1 if the supplier for s is being ex-
changed by virtue of dynamic change in the environment) or 
not (xs=0 if the supplier is being newly added or replaced at 
the user’s request). 

The overall utility is the product of the QoS preference and 
supplier preference. The overall utility over a set a of suppliers 
is: 

���
�����⋅= ∏∏

∈∈ )dim(

)(
sQoSd

c
d

as

c
s

x
soverall

dss FFhaU  

1) The Optimization Problem 
The optimization problem is to find a supplier assignment a, 

and for each supplier p in this assignment, a capability point 
such that the utility is maximized: 

∏ ∏
∈ ∈

∈
∈ ���

	

��⋅⋅
as

dp
sQoSd

c
ds

c
s

x
s

ddomf
sSuppp

fFpFh dss

d

s

)()(maxarg ,
)dim(

)(
)(

 

The maximization is over a set of constraints, which we ex-
press below. The capability constraint stating that the chosen 
point fp,d is in the capability space for supplier p is as follows: 

pdpsQoSdpsSuppp Cff ∈⊗=∀ ∈∈ ,)dim()(  

And to ensure that the resource constraints are met: 

RfQoSprof
sSuppp

pp ≤



∈

)(
)(

 

where summation is in the vector space R of resources, and 
the inequality is observed in each dimension of that space. In 
non-mathematical terms, this constraint expresses the fact that 
the aggregate resource demand by all the suppliers can not 
exceed the resource supply. 

C. Algorithm and Analysis 

In this section we solve the optimization problem. The op-
timization algorithm must be efficient to be usable at runtime.  
Two metrics we are interested in are the latency of computing 
an answer to a given instance of the problem, and in the com-
putational overhead of the algorithm. 
1) The Algorithm 

The algorithm works in three phases: (1) query, (2) gener-
ate, and (3) explore. In the first phase, it queries for relevant 
suppliers for each service in the task. In the second phase, it 
combines suppliers into configurations and ranks them accord-
ing to the supplier preference only. In the third phase, it ex-
plores the quality space of the configurations. The pseudo-
code for the algorithm is shown in Figure 1. 

The double product term of the utility formula in B.1) al-
lows for a clever exploration strategy. The outer product is the 
supplier preference score. It can be computed at the time the 
supplier assignment is known (in phase 2), and can be used as 
an upper bound for overall utility during the explore phase. 
Since overall utility is the product of supplier preference and 
QoS preference, and the latter is bounded by one, then maxi-
mum overall utility is bounded by supplier preference. The 
break in the loop in BestConfig takes advantage of that fact. 

Consider a simple example. Assume that two services are 
requested. For each service, there are two possible suppliers: 
a1 and a2 for the first service, b1 and b2 for the second, yielding 
4 possible configurations as shown in Table  3. The search 
space can be divided into 4 quadrants, each representing the 
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capability space of a specific configuration. We are searching 
for a point with the highest utility. 

TABLE  3. THE  STRUCTURE OF THE  SEARCH  SPACE 

a1, b1 a1, b2 

a2, b1 a2, b2 
As noted, the maximum utility that can be achieved within 

each quadrant is bounded by the supplier preference portion of 
utility. These observations help provide a stop condition for 
the search: once a point is found that has overall utility of 

�
, 

there is no need to explore configurations with supplier prefer-
ence portion of utility of less than 

�
. 

In Table  3, the shading of each quadrant reflects the hypo-
thetical values of supplier preference portion of utility for each 
configuration: the darker the shade, the higher the value. As-
sume these values are: .8, .6, .4, and .2. Each of these values is 
an upper bound for maximum overall utility possible from the 
respective quadrant. We explore inside the quadrants, starting 
from the darkest. If the maximum utility for the quadrant a1, b1 
is higher than 0.6, then at this time we know the best point in 
the entire space is found, and can stop the search. If not, we 
continue the search in quadrant a2, b1, and so on. 

Exploring the quality space of a configuration is a variant of 
a 0-1 Knapsack problem, called multiple dimensional, multiple 
choice 0-1 Knapsack. Multiple dimensions refer to the multi-
ple constraints that are present in the problem. Multiple choice 
refers to choosing one among a set of similar items. In our 
problem, resources map to knapsack dimensions and the capa-
bility space of one service maps to one set of similar items. 
This is a well-studied problem in the optimizations research, 
and is at the core of such optimization problems as winner 
determination in combinatorial algorithms. [18,25] show the 
problem to be NP-complete, and give approximation algo-
rithms. [25] gives an exact solution that is demonstrably fast 
on inputs drawn from certain probability distributions. 

One of the approximating algorithms to the problem uses 
utility to resource ratio as a metric for ranking the capability 
points, it then applies greedy branch-and-bound and LP-
relaxation to find a near-optimal answer. In the multiple re-
source case, quadratic weighted-average is used to compute a 
single resource currency from multiple resources, and the solu-
tion to the single resource case is reused iteratively [18]. 

In our solution, SearchQoS invokes a third-party library 
called Q-RAM, the package described in [18]. 
2) Analysis 

To analyze the running time of the algorithm, let: 
n be the number of requested services 
P be the total number of available suppliers 
p be the number of suppliers for a given service type 
q be the size of the capability space of a supplier.  
P and p describe the richness of the environment, and can 

potentially increase as more applications, hardware, and de-
vices are made available. q describes the capability richness of 
a supplier.   It is reasonable to assume that the size of the user 
task is limited to a small number of applications. Thus n is 

bounded. 
Next we analyze the running time of the three phases. 
The query phase retrieves items from a hashtable. Retriev-

ing one item is logarithmic in the size of the hashtable. n re-
trievals from a hashtable of size P/p take O(n* log(P/p)). 

The generate phase is a recursion of depth n, with a loop of 
size p at each level. Thus, it takes O(pn). 

The explore phase in the worse case takes O(pn) * 
O(searchQoS). The size of the QoS space of a configuration of 
n suppliers each of which has a capability space of size q is 
O(qn). Approximation algorithm we use can search that space 
in time O(n*q* logq) [18,25]. Thus the explore phase takes 
O(pn) * O(n*q* logq) in the worst case, and dominates all 
other terms. The first term, O(pn), presents a possible scalabil-
ity bottleneck. 

Let us demonstrate how the exploration strategy described 
earlier helps tackle that bottleneck. Recall the break condition 
in the explore phase, illustrated in the example introduced in 
IV.C.1). The number of configurations that are explored will 
depend on the distribution of the supplier preference values, 
and 

�
, the highest achievable utility value. Let’s assume an 

average number of suppliers per service p = 10, and a specific 
distribution of supplier preference values that is uniform, i.e. 
the most preferred supplier scores 0.90, the next one scores: 
0.91, etc. In Table  4, we show the number of configurations 
generated, and the number of configurations that are actually 
explored depending on the value of maximum achievable util-
ity, 

�
, and number of services in the task, n. 

TABLE  4. NUMBER OF CONFIGURATIONS GENERATED AND EXPLORED FOR 

VARIOUS VALUES OF N, AND � , MAXIMUM UTILITY ACHIEVED 

 n=1 2 3 4 … 8 

Generated 10 102 103 104 … 108 
�

 = .9 2 3 4 5 … 8 
�

 = .81 3 6 10 15 … 36 
�

 = .73 4 10 20 35 … 120 
�

 = .66 5 15 35 70 … 330 

The first row shows the number of services. The second row 
shows the number of configurations generated, which is pn, in 
this case, 10n. In each subsequent row, we show the number of 
configurations that are sufficient to explore, if the maximum 
utility shown in the first column in that row is actually 
achieved by some configuration. For instance, for a task with 4 
requested services, even if the maxim utility achievable is as 
modest as 

�
 = 0.6, then the number of supplier configurations 

explored is 126, which is two orders of magnitude smaller than 
the 104, the total number of configurations. 
3) Reconfiguration 

The algorithm also handles reconfiguration scenarios de-
scribed in Section III.D. When there is a running configura-
tion, the utility from the best computed configuration is com-
pared with the observed utility of the running configuration, 
and a switch is made if the latter is lower than the former. The 
cost of change introduces a kind of histeresys, giving the cur-
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rently running configuration preference.  Because a user’s tol-
erance to change might depend on a type of service, the model 
explicitly allows provides means to specify this. 

V. EVALUATION 

A. Case  Study 

In this section we report on a case study of automatically 
configuring an environment for the task of reviewing a docu-
mentary video clip. The user watches the clip, takes notes, 
while browsing the net for information.  Table 5 lists the ser-
vices in the task and the QoS Dimensions of each service. 

Table 5: The services required for the task, their quality dimen-
sions, and available suppliers for each service.  These suppliers 

jointly allow a total of 2*5*3=30 combinations. 

Service QoS Dimensions Available Suppliers 
Play 
Video 

Frame rate, frame 
size, audio quality 

Real One,  
Windows Media Player 

Edit Text None TextPad, WordPad, Note-
pad, MS Word, Emacs 

Browse 
Web 

Latency,  
Content 

Internet Explorer, Netscape, 
Opera 

 
We performed the case study in two steps. In the first step 

we collected application profile data, specified preferences, 
and identified resource limits. In the second step, we ran a 
prototype implementation of the algorithm. 
1) Input Data Collection 

As an experimental platform, we chose an IBM Thinkpad 
30 laptop, equipped with 256 MB of memory, 1.6 Ghz CPU, 
WaveLAN card, and Windows XP Professional. In power sav-
ing mode, the CPU can run at a percentage of the maximum 
speed, effectively creating a tight CPU constraint. 

The model requires three inputs: (1) user preferences, (2) 
application profiles, and (3) resource availability. For the pur-
poses of this experiment, we used synthetic preferences in-
tended to be representative of the task. We identified several 
applications that supported various facets of the task. Those 
applications were installed on the laptop. To obtain application 
profiles, we measured resource usage corresponding to a small 
set of capability points. We performed this profiling offline, 
with each supplier running separately. Resource availability is 
as follows: 400 MHz of processing power, when the CPU is 
running at ¼ of the baseline speed; 64 MB of free memory 
after excluding the memory taken by the operating system and 
other essential critical systems; and 512 Kbps of bandwidth, 
provided by an 802.11 wireless access point backed by a DSL 
line. 

Column 3 of Table 5 lists the applications used in the ex-
periment were. 

We measured CPU and physical memory load using Win-
dows Performance Monitor. We used percent processor time, 
working set counters of the Process performance object to 
measure CPU and memory utilization respectively. We took 
the sampling average over a period of time. The performance 

monitoring API does not provide per process network statis-
tics, so the mechanism for measuring bandwidth demand was 
different in each case, as explained below. 

For a representative clip to watch, we obtained a two minute 
trailer of a movie in Windows native .wmv and Real Networks 
native .rpm in several different bit-rates. Where cross-player 
compatibility is supported, we obtained additional capability 
points. For example, RealOne plays .wmv format. Also, play-
ers provide quality knobs, allowing improved quality in ex-
change for higher CPU utilization. For example, Windows 
Media player supports video smoothing that provides higher 
frame rate than the rate encoded in the stream. For each player, 
32 points quality points were sampled. To measure bandwidth 
demand, we consider the bit-rate of the stream, and cross-
check with the application-reported value. The CPU consump-
tion of different players are widely different for the same qual-
ity point.  

We measured CPU and memory used while typing and for-
matting text for 2 minutes with each text editor. The memory 
consumption of the text editors is widely different. 

All browsers surveyed support a text-only mode, providing 
two points in the page richness dimension. To obtain different 
levels of latency, we used a bandwidth-limiting http proxy, and 
pointed the browser to the proxy. We measured latency by 
allowing the following bandwidth limits: 28, 33, 56, 128, 256, 
512 Kbps. Our script included a sequence of approximately 15 
pages with a mix of both text graphics on the internet. By start-
ing with a clean browser cache, we sampled 16 quality points. 
We observed that the browsers have very similar resource con-
sumption patterns. 

Although we realize that the methods for obtaining resource 
consumption measures are not precise, we believe that they 
yield good enough approximations for this feasibility analysis.  

Note that the capability space of a configuration of suppliers 
has approximately 500 points (32*16*1), based on the samples 
taken. 30 configurations together provide a capability space of 
approximately 15,000 points. 
2) Prototype Evaluation 

The algorithm is guaranteed to find an optimal assignment 
of suppliers. Furthermore, it will obtain the optimal set of 
quality points for the suppliers, as long as Q-RAM finds the 
optimal point inside each quadrant. Whenever Q-RAM returns 
a near-optimal answer, our algorithm will return a near-optimal 
set of quality points.  

Additionally, we evaluated a prototype implementation of 
the algorithm according to two metrics: (1) latency, and (2) 
system overhead. Latency measures the time it takes to com-
pute an optimal configuration, from the time that a client pro-
gram requests it. Overhead measures percent CPU and mem-
ory utilization of the algorithm. To adapt the configuration in 
response to environment changes, it is necessary to run the 
algorithm periodically. Thus, the overhead of the periodic in-
vocation provides a useful metric. 

The latency of computing the best configuration averaged 
over 10 trials was 531 ms. In the query and generate phases, 
the algorithm spends less then 10 ms each. In the explore 
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phase, it spends just under 500 ms (approximately 10 ms was 
due to parsing the request, and formatting the answer). The 
bulk of the time in the explore phase was due to external proc-
ess invocation and file input-output (Q-RAM package is an 
external executable). Thus, the latency can be significantly 
reduced by linking into Q-RAM in-process.  

We invoke the algorithm a total of 50 times in 5 second in-
tervals over a period of 250 seconds, and measure average 
CPU utilization. Average CPU utilization is 3.8%. This over-
head is fairly low, and can be further lowered by running the 
algorithm less frequently, e.g. once per 10 or 25 seconds. 

Table  6: Summary of the experiment results. 

Configuration Latency 
(average) 

Percent CPU Used 
during long-term 

utilization 

Virtual 
Memory 

Used 
531 ms 3.8 % 8 MB 

 
Memory usage of the process running the algorithm is ap-

proximately 8.8 MB. While this is a significant overhead, most 
of it is due to the Java virtual machine. 

Table  6 summarizes the key results of the experiments. 

B. Lessons Learned and Design Guidelines for Applications  

The form of self-adaptation that we address in this work is 
targeted at support for everyday computing in ubiquitous com-
puting environments. An essential component of this work is to 
integrate applications into the infrastructure. However, using 
existing applications is a challenge since these applications are 
not in general designed for self-configuring capabilities, such 
as those that we are attempting to provide. 

To integrate legacy applications as suppliers of Aura, we 
have written wrappers around the applications. These wrappers 
mediate communication with Aura so that the application state 
can be set and retrieved, and so that resource usage and quality 
of service can be monitored. Our experience in writing over a 
dozen suppliers for applications in both Windows and Linux 
environments has proven that it is easy to implement wrappers 
to get basic set / get state functionality.  However, it is much 
more challenging to control application adaptation policies. 

In order to facilitate smooth integration of applications into 
the infrastructure, we have identified two groups of desirable 
requirements: 

1. To support mobility and coarse-grained adaptation, we 
require applications to provide mechanisms to get and 
set the task-level state of each application. 

2. To support fine-grained QoS adaptation, we require 
applications to report aggregate resource usage and 
quality of service information, and to provide mecha-
nism to restrict usage of certain resources. 

1) Mobility 
As described in Section III.B, the task layer requires that the 

user-level state of application be retrieved and set. This facili-
tates task transfer between environments and enables task sus-
pend and resume by a user. Our approach requires some con-
sensus about the meaning of the state of a particular generic 
service, such as text editing. However, not all applications 

need to handle all the details of the task state: certain addi-
tional properties can be treated as optional. If a supplier can 
not interpret these properties, they are simply ignored, but pre-
served for future instantiations of the task. 

In our experience with developing suppliers, we have had 
mixed success with getting state information from applications. 
While more recent applications allow reflective access to get 
and set this information through programmatic interfaces such 
as .NET, it is not as easy with older applications. Even when 
applications provide a programmatic interface, it is possible 
that they do not expose the required information. For example, 
to restore the state of web browsing, it is desirable to set and 
get the history of the browser so that backward and forward 
browsing state can be maintained. Internet Explorer, while 
providing an interface for setting the current web page, does 
not provide these additional APIs. 

We argue that our requirements for a programmatic inter-
face to set and get the state of the task are not unreasonable. 
Applications increasingly allow access to such information. In 
our experience, it has always been possible to get and set some 
form of the state; the challenge has been in the varying mecha-
nisms that we have had to use, and the issue has been the scope 
of the information that we have access to. 

Our experience has also demonstrated the need for applica-
tions to “sandbox”  the set of materials belonging to one task. 
For example, suppose that one user task requires two spread-
sheets to be edited, while another task requires on spreadsheet 
to be edited. If these tasks are simultaneously active, the origi-
nating task of each spreadsheet needs to be recorded. Applica-
tions provide varying support for such sandboxing. Microsoft 
Excel supports directly such functionality, because there can 
be multiple physical instances of the Excel process running, 
each with its own set of files. On the other hand, Microsoft 
PowerPoint makes this difficult, because only one process 
instance can be running on a given workstation.  This makes 
the design of the supplier wrapper much more complex and 
time consuming. 
2) Adaptation 

To allow for adaptation to changing resources in Section 
IV.B we described a formalism that can provide optimal con-
figurations or reconfigurations based on the available supply 
of resources, and the expected resource usage of the applica-
tions. For the mathematical formalism to work in practice, 
Aura infrastructure requires information about resource usage 
and quality of service of applications, resource supply in the 
environment, as well as certain level of cooperation from ap-
plications about expected resource usage. 

In practice, the following set of requirements need to be sat-
isfied in order for the mathematical model of Aura to produce 
accurate outcomes: (1) ability to monitor application-provided 
quality of service, (2) ability to monitor and report application 
resource usage, (3) ability to monitor available resource sup-
ply, and (4) ability to enforce resource usage limits on applica-
tions. 

 Let us discuss how each of these requirements can be trans-
lated into design guidelines for application and system devel-
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opers. 
Requirement 1 can be satisfied directly by application de-

velopers by exposing rich APIs that report the quality of ser-
vice. For example, many of the commercial and open-source 
video/media players report the richness of the stream in bit 
rates, the frame update rate of the video, the size of the frame, 
the color depth, etc. 

Requirements 2 and 3 can be satisfied by a shared service 
that is either provided by the operating system, or third-party 
middleware. While modern-operating systems generally pro-
vide reasonable performance and resource monitoring hooks, 
there is room for improvement. However, some resources can 
be more difficult to account for on a per-process basis (e.g., 
battery). Notice that there are research systems, such as the 
Nemesis operating system [19] and Odyssey adaptive platform 
[24] that specifically provide accurate resource usage and sup-
ply estimates. 

With respect to requirement 4, we believe that a two-fold 
approach is needed. First, applications can provide various 
adaptation strategies (e.g., more CPU-intensive video stream 
decoding or less CPU-intensive decoding); we believe that 
applications should provide the ability to comply with resource 
usage limitations. Some of the video players on the market 
provide such ability directly, e.g., with respect to network 
bandwidth. However, it is also desirable to have an operating 
system-provided mechanism for ensuring that resource limita-
tions are enforced if an application proves to be uncooperative. 
For example, some video players aggressively pre-fetch and 
saturate use all available bandwidth, despite being told to use 
low bit rate stream. In such cases, a mechanism external to 
application (e.g., bandwidth throttling) can enforce resource 
limitations imposed on applications.3 

VI. CONCLUSION AND FUTURE WORK 

In this paper we have described an approach to self-
configuring capabilities for everyday computing environments. 
Motivated by the challenges of supporting heterogeneity, re-
source variability, mobility, ubiquity, and task-specific user 
requirements, we have developed a self-adaptation infrastruc-
ture that has three distinctive features. It allows explicit repre-
sentation of user tasks, including preferences and service 
qualities. It provides an environment management capability to 
translate user-oriented task and preference specifications into 
resource allocations that match the intended environment. Fi-
nally, it provides a formal basis for understanding the resource 
allocation and derived algorithms that support optimal alloca-
tion at run time. 

While providing a good starting point, this work also sug-
gests a number of important future directions. First is the ex-
tension of task specification so it can express richer notions of 

 
3 Notice that we are not advocating here the need for applications to inter-

fere with the low level scheduling of resources by the operating system.  We 
simply advocate that on the level timescale of seconds the resource usage by 
applications should be consistent with the expected quality of service deliv-
ered. 

task, such as work flow, cognitive models, and goal driven task 
realization. Second is the extension of resource allocation al-
gorithms to take advantage of future predictions. This entails 
much richer notions of utility, such as those prescribed by Op-
tions Theory. Finally, there are many directions that one could 
pursue in the area of user interface design to make it even eas-
ier for users to create and reuse task descriptions. 
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