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Abstract

To ease the transition into the multicore/manycore era, shared-memory programming must
be made more natural and accessible to the community. Furthermore, shared-memory algo-
rithms need to be fast and scalable in order to quickly process large data. In this proposed
thesis we will study techniques for simplifying parallel programming and allowing users to eas-
ily write efficient and scalable algorithms. Our work will consist of (1) designing a benchmark
suite which allows for head-to-head comparisons of parallel languages and architectures for given
problems, (2) developing methods for writing deterministic parallel programs to simplify pro-
gramming and debugging, (3) developing a useful primitive for reducing memory contention
on shared-memory multicore machines, (4) building a simple framework for implementing effi-
cient large-scale shared-memory graph algorithms and (5) designing efficient and scalable string
processing algorithms. We describe how each portion of our work fits into our overall goal of
simplifying the task of writing fast and scalable parallel programs.
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1 Introduction

The performance of single processor machines has reached a peak due to physical limitations of
processor hardware. As a result, many have turned to parallelism to deliver higher performance.
Broadly speaking, parallel computing is the study of using multiple resources to perform tasks.
Perhaps the most familiar example of parallelism is the presence of multiple cores on personal
computers today (in fact almost any personal computer has multiple cores nowadays). Even cellular
phones have started to adopt the multicore/manycore trend (for example the iPhone 5 from Apple
has a dual-core central processing unit (CPU) and tri-core graphical processing unit (GPU)). In
addition to multicore technology, parallelism has presented itself in distributed systems (multiple
machines working together), symmetric multiprocessing, field programmable gate arrays (FPGAs),
etc. The fastest supercomputers in the world all take advantage of parallelism.

Although parallelism has many advantages, parallel programming is notoriously difficult. In this
thesis we study techniques for simplifying parallel programming, and show that these techniques
can also lead to parallel algorithms which are fast and scalable. The topics studied are listed below:

1. We describe the Problem Based Benchmark Suite, a set of benchmarks defined only in terms
of problem specifications. It contains a wide variety of real-world problems, and can be used
for comparing parallel programs written using different algorithms, programming languages
and/or architectures.

2. We discuss techniques for writing internally deterministic parallel programs to simplify pro-
gramming and debugging. We also prove complexity bounds for some of these algorithms.

3. We explore the effect of memory contention on shared memory machines, and propose the
priority update operation for reducing contention in parallel algorithms.

4. We develop Ligra, a simple lightweight framework for writing graph algorithms on shared
memory machines. We demonstrate that programs written in this framework are simple,
efficient and outperform programs written in existing graph processing frameworks.

5. We design simple parallel algorithms for two problems on strings—suffix tree construction and
Lempel-Ziv factorization. We show that these algorithms have good theoretical guarantees.
Experimentally, our algorithms achieve good scalability and outperform the best sequential
algorithms for the same task on a modest number of processors.

Thesis statement: With appropriate tools, parallel algorithms can be simple to write, fast on
modern shared-memory multicore machines and scalable to large data.

2 Preliminaries

In this thesis, we use the parallel random access machine (PRAM) model for analyzing algorithms
[77]. We use the exclusive-read exclusive-write (EREW), concurrent-read exclusive-write (CREW)
and concurrent-read concurrent-write (CRCW) versions of the PRAM in our various algorithms,
and will specify which one we use when we use them. For CRCW, we assume both the arbitrary
and priority write versions, where a priority write here means that the minimum (or maximum)
value written concurrently is recorded. Our results are stated in the work-depth model where work
is equal to the number of operations (equivalently the product of the time and processors) and
depth is equal to the number of time steps.



3 Problem Based Benchmark Suite (PBBS)

We are developing the Problem Based Benchmark Suite (PBBS) which is a set of benchmarks for
non-numerical applications defined only in terms of problem specifications [132]. The motivation for
developing this benchmark suite is that for any particular problem, there are many different types of
parallel architectures, programming approaches and algorithms that can be used to solve the prob-
lem, but it is difficult to obtain a head-to-head comparison of the different solutions. Unlike most
existing benchmarks, which are based on specific code, the problem-based benchmarks are defined
in terms of the problem specifications—a concrete description of valid inputs and corresponding
valid outputs, along with some specific inputs. Any algorithms, programming methodologies, spe-
cific programming languages, or machines can be used to solve the problems. The benchmark suite
is designed to compare the benefits and shortcomings of different algorithmic and programming
approaches, and to serve as a dynamically improving set of educational examples of how to par-
allelize applications. The nature of PBBS will encourage the community to submit open-source
solutions that will be judged by not only its performance but also the quality of the code: its
elegance, readability, extensibility, modularity, scalability, correctness guarantees, and the ability
to formally analyze performance. Many of these measures are hard to quantify and ultimately the
judgment will be in the eye of the reader. Thus, the main outcome should be the code itself (and
its performance numbers).

Our benchmark problems are selected to have reasonably simple efficient solutions (all of our
base implementations use fewer than 500 lines of code), but represent realistic real-world problems
covering a wide class of domains and potential solution approaches. These consist of many well-
known problems that are already de facto standards for benchmarking, such as sorting, nearest-
neighbor searching, breadth-first search, Delaunay triangulation and ray tracing, as well as many
others. In the suite, each benchmark consists of (1) the problem specification including specific
input and output file formats, (2) input generators and specific input instances, (3) code for checking
the correctness of output for the given input, (4) scripts for running tests, (5) a reasonably efficient
sequential base implementation for the problem, and (6) a reasonably efficient parallel (multicore)
base implementation for the problem.

3.1 Related Work

Many benchmark suites have been designed and are currently being used for different purposes, but
none match our goals for a problem-based suite. There are several broad-based performance-based
suites such as SPEC, WorldBench, V8, and DaCapo [16]; and domain-specific benchmarks such as
BioBench [4], the San Diego vision benchmarks [138], MediaBench [90] (multimedia), SATLIB [71]
(satisfiability), MineBench [109] (data mining), and the TPC benchmarks (databases). Except for
SATLIB and the TPC benchmarks, these are code-based benchmarks. The TPC and SATLIB are
problem based, but for specific domains.

For parallel machines, there have also been many benchmarks developed. Broad-based perfor-
mance benchmarks include Splash-2 [142], PARSEC [15], and STAMP [29], which are designed for
shared memory machines. Other benchmarks cover a more general class of machines but are meant
to measure particular machine characteristics, such as the HPC Challenge Benchmarks [98] that put
an emphasis on measuring communication throughput. There are benchmarks aimed at particular
languages, such as the Java Grande Benchmark Suite [134]. There are also some domain-specific
parallel benchmarks such as ALPBench [92] (multimedia) and BioParallel [78]. All these bench-
marks are code-based. The Berkeley “dwarfs” define a set of 13 parallel computational patterns [6].
While sharing some of the same high-level goals as ours (e.g., evaluate parallel programming mod-



Basic Building Blocks Scan, Integer Sort, Comparison Sort, Remove Duplicates, Dictionary,
Sparse matrix-vector multiply

Graph Algorithms Breadth First Search, Spanning Forest, Minimum Spanning Forest,
Maximal Independent Set, Maximal Matching, Graph Separators

Computational Geometry Quad/Oct Tree, Delaunay Triangulation, Convex Hull, k-Nearest
Neighbors

Text Processing Tokenize, Suffix Array

Computational Biology Multiple sequence alignment, Phylogenetic tree, N-body

Data Mining Build Index, Edit Distance Graph
Graphics Ray Casting, Micropolygon Rendering
Machine Learning Sparse SVM, K-means, Gibbs Sampling in Graphical Models

Table 1: A preliminary set of 28 problem-based benchmarks covering a reasonably broad set of
non-numerical applications.

els), their benchmarks are in terms of patterns, not problems. The Galois benchmarks [117] are
defined in terms of particular algorithmic approaches but are not problem based.

In terms of being defined with regards to a problem specification, perhaps the closest bench-
marks to PBBS are the NAS benchmarks [7]. In the original form (NPB 1), these consisted of a
set of eight problem-based benchmarks where one of the main goals was architecture neutrality.
Indeed, several different programming styles (vector code, message passing, data parallel) were used
to code the benchmarks on different machines. These benchmarks, however, did not focus on code
quality and because vendors were not required to release their codes, some of the solutions were
extremely messy. Also, the NAS benchmarks were focused on numerical computing.

Finally, there have also been various attempts to compare programming languages by defining
a set of benchmarks. Probably the one that captures the broadest set of languages is the Computer
Language Benchmarks Game [52], which compares over 25 programming languages on a set of 12
micro benchmarks. Benchmarks results are reported in terms of performance and size of the gzip-
compressed source file (comments and redundant whitespace removed). The benchmarks, however,
only consider small inputs—for example, their “n-body” benchmark consists of 5 bodies. Also, the
benchmarks require that the program use the “same algorithm” as specified—returning the same
result is not sufficient.

3.2 Benchmark Problems and Current Status

We selected benchmark problems with the following goals in mind. First, the set of problems should
have a wide coverage from state-of-the-art real-world applications. Second, the problem must have a
well-defined way to validate output correctness or quality. Third, the problem should have efficient
solutions that can be implemented in a reasonably small program. Finally, the inputs to these
problem should be scalable. Table 1 summarizes a set of problem-based benchmarks categorized
by application domain or type of data. These 28 benchmarks represent our current list of what we
believe would make a good mix of problems, though the list is flexible.

We require the program to output the result to a file in a particular format. We provide test
code that checks correctness and outputs any quality criteria (e.g. the size of a graph cut). The
time for input and output is not included in the running time or code length—for some benchmarks
it could dominate the cost.



It is important to have at least one base implementation of each benchmark so that results can
be compared and as a proof of concept that the benchmarks fit within our parameters (e.g., have
reasonably simple and efficient solutions). We are currently developing two base implementations
for each benchmark, one serial and one parallel. Our parallel implementations are designed for
multicores and use only parallel loops, nested fork-join, and compare-and-swap operations and
are currently implemented in Intel Cilk Plus [74]. We have implemented an initial set of base
implementations for some of the benchmarks and have made initial timings. For various sets of
inputs, our parallel implementations are competitive with the serial implementations, and achieve
speedups ranging from 12 to 32 on a 40-core machine. All code is available on the benchmark
webpage: http://www.cs.cmu.edu/~pbbs.

3.3 Future Work

In some situations, one may want to take an existing serial implementation and make it parallel
without changing the code by too much. We plan on extending the current benchmark suite to
include code difference from certain baseline implementations as one of the measurements of quality.
Some problems have no clear specification, for example, tracking problems arising in computer
vision. In such cases, the input/output behavior can be defined by a serial implementation, and
parallel implementations should return results that are of the same quality as that of the serial
implementation. Currently we do not have these types of problems in PBBS, but we plan on
identifying problems of this type and adding them to PBBS. Finally we intend to explore more
enhanced solutions to the existing PBBS benchmark problems.

We plan on fully documenting all of the code in PBBS and increasing the number of problems
and test cases. As an extension of our previous work [132], we intend to write a paper explaining
each of the benchmarks in detail and comparing with solutions from other benchmarks if available.

4 Determinism

One of the key challenges of parallel programming is dealing with nondeterminism. For many
computational problems, there is no inherent nondeterminism in the problem statement, and indeed
a serial program would be deterministic—the nondeterminism arises solely due to the parallel
program and/or due to the parallel machine and its runtime environment. The challenges of
nondeterminism have been recognized and studied for decades [114, 64, 53, 135]. More recently,
there has been a surge of advocacy for and research in determinism, seeking to remove sources
of nondeterminism via specially-designed hardware mechanisms [43, 44, 72|, runtime systems and
compilers [11, 13, 111, 144], operating systems [12], and programming languages/frameworks [26,
95].

While there seems to be a growing consensus that determinism is important, there is disagree-
ment as to what degree of determinism is desired. Some examples of determinism include external
determinism, internal determinism and functional determinism. There are trade-offs among the
various options, with stronger forms of determinism often viewed as better for reasoning and de-
bugging but worse for performance and perhaps programmability.

4.1 Internal Determinism

We advocate a form of internal determinism as providing a sweet spot for a class of nested-parallel
(i.e., nested fork-join) computations in which there is no inherent nondeterminism in the problem
[17]. An execution of a nested-parallel program defines a dependence DAG (directed acyclic graph)



that represents every operation executed by the computation (the nodes) along with the control
dependencies among them (the edges). These dependencies represent ordering within sequential
code sequences, dependencies from a fork operation to its children, and dependencies from the end
of such children to the join point of the forking parent. We refer to this DAG when annotated
with the operations performed at each node (including arguments and return values, if any) as
the trace. Informally, a program/algorithm is internally deterministic if for any input there is a
unique trace. This definition depends on the level of abstraction of the operations in the trace. At
the most primitive level the operations could represent individual machine instructions, but more
generally, and as used in this work, it is any abstraction level at which the implementation is hidden
from the programmer. Internal determinism does not imply a fixed schedule since any schedule
that is consistent with the DAG is valid. Note that internal determinism is stronger than external
determinism, which only requires the output to be deterministic given the same input.

Internal determinism has many benefits. In addition to leading to external determinism [114]
it implies a sequential semantics—i.e., considering any sequential traversal of the dependence DAG
is sufficient for analyzing the correctness of the code. This in turn leads to many advantages
including ease of reasoning about the code, ease of verifying correctness, ease of debugging, ease of
defining invariants, ease of defining good coverage for testing, and ease of formally, informally and
experimentally reasoning about performance [43, 44, 72, 13, 111, 144, 12, 26, 11]. Two primary
concerns for internal determinism, however, are that it may restrict programmers to a style that
(1) is complicated to program, and (2) leads to slower, less scalable programs than less restrictive
forms of determinism. Indeed, prior work advocating less restrictive forms of determinism has cited
these concerns, particularly the latter concern [66].

In this thesis we will address these two concerns by studying a set of benchmark problems and
showing that for this broad set of problems, there are fast and scalable internally deterministic
solutions, and furthermore these algorithms are natural to reason about and not complicated to
code. Our approach for achieving internal determinism for these benchmarks is to use nested parallel
programs in which concurrent operations to shared states are required to commute [135, 140] in
their semantics and be linearizable [69] in their implementation. Many of the algorithms that
we implement use standard algorithmic techniques based on nested data parallelism (e.g. divide-
and-conquer, map, reduce, and scan), where the shared states across concurrent operations are
read-only. However, a key aspect to several of our algorithms is the use of non-trivial commutative
operations on shared states, detailed in the following section.

4.2 Commutative Building Blocks

In this section, we define some useful higher-level operations that we use as commutative operations
in many of our algorithms. They are all defined over abstract data types supporting a fixed set of
operations. We also have non-blocking linearizable implementations of each operation. These im-
plementations do not commute at the level of single memory instructions and hence the abstraction
is important.

Priority update. Our most basic data type is a memory cell that holds a value and supports a
priority update and a read. The priority update on a cell x, denoted by z.pUpdate(v) updates = to
be the maximum of the old value of  and a new value v. It does not return any value. z.read()
is just a standard read of the cell x returning its value.

Any two priority updates x.pUpdate(v;) and z.pUpdate(vy) commute, because (i) there are no
return values, and (ii) the final value of z is the maximum among its original value, v, and va,
regardless of which order these operations execute. A priority update and a read do not commute



since the priority update can change the value at the location.

Dynamic map. The purpose of our dynamic map is to incrementally insert keyed elements
and, once finished inserting, to return an array containing a pseudorandom permutation of these
elements, omitting duplicates. A dynamic map M supports insertions and an elements() call,
which returns an arbitrary, but deterministic, permutation of all the elements in the map M. The
map removes duplicate keys on inserts, where duplicate keys are discarded deterministically.

In our implementation, insertions commute which each other, however insertions do not com-
mute with the elements() operation. Hence, when we use dynamic maps we make sure that
insertions are not called logically in parallel with elements().

Disjoint sets. Our spanning forest algorithms rely on a structure for maintaining a collection of
disjoint sets corresponding to connected components. Each set is associated with a unique element
acting as the identifier for the set. A disjoint-set data type supports two operations: a find and a
link. For an instance F', the F.find(z) operation returns the set identifier for the set containing x.
The F.1ink(S,z) operation requires that S be a set identifier and the set containing x be disjoint
from the set S. It logically unions the set S with the set containing x such that the identifier for
the resulting unioned set is the identifier of the set containing x. Here, x and S denote references
or pointers to elements in the sets.

In our implementation, find operations commute with each other, as they cause no semantic
modifications. Two link operations commute with each other as long as they do not share the
same first argument. A link operation 1ink(S1, 1) and a find operation find(x2) only commute if
x9 ¢ S1. In our algorithms that use disjoint sets, £ind is never called in parallel with 1ink.

4.3 Deterministic Reservations

Several of our algorithms (maximal independent set, maximal matching, spanning forest, Delaunay
triangulation, and Delaunay refinement) are based on greedy sequential algorithms that process
elements (e.g., vertices or edges) in linear order. We implement these algorithms using our technique
of deterministic reservations, which preserves internal determinism. Deterministic reservations are
speculative executions on a sequential loop that iterates over the elements in the greedy order.

The generic greedy algorithm for deterministic reservations works as follows. Given a sequence
of iterates (e.g., the integers from 0 to n — 1), it proceeds in rounds until no iterates remain.
Each round takes any prefix of the remaining unprocessed iterates, and consists of two phases that
are each parallel loops over the prefix, followed by some bookkeeping to update the sequence of
remaining iterates. The first phase executes a reserve component on each iterate, using a priority
update (pUpdate) with the iterate priority, in order to reserve access to data that might interfere
(involve non-commuting or non-linearizable operations) with other iterates. The second phase
executes a commit component on each iterate, checking to see if the reservations succeeded (i.e.
whether value stored is equal the iterate priority), and if the required reservations succeed then
the iterate is processed, otherwise it is not. Typically updates to shared state (at the abstraction
level available to the programmer) are only made if successful. After running the commit phase,
the processed iterates are removed.

We note that the generic approach can select any prefix size including a single iterate or all the
iterates. There is a trade off, however between the two extremes. If too many iterates are selected
for the prefix, then many iterates can fail. This not only requires repeated effort for processing
those iterates, but can also cause high contention on the reservation slots. On the other hand if



too few iterates are selected then there might be insufficient parallelism. Clearly the amount of
contention depends on the specific algorithms and likely also on the input data.

4.3.1 Related Work

Various studies have suggested both compiler [123, 119] and runtime techniques [136, 66| to auto-
mate the process of simulating in parallel the sequential execution of such a loop. These approaches
rely on recognizing at compile and/or run time when operations in the loop iterates commute and
allowing parallel execution when they do. Often the programmer can specify what operations com-
mute. We are reasonably sure that the compiler-only techniques would not work for our benchmark
problems because the conflicts are highly data dependent and any conservative estimates allowing
for all possible conflicts would serialize the loop. We note that our technique does not require
any compiler extensions. The runtime techniques typically rely on approaches similar to software
transactional memory: the implementation executes the iterations in parallel or out of order but
only commits any updates after determining that there are no conflicts with earlier iterations. As
with software transactions, the software approach is expensive, especially if required to maintain
strict sequential order. In fact in practice the suggested approaches typically relax the total order
constraint by requiring only a partial order [119], potentially leading to nondeterminism. A second
problem with the software approach is that it makes it very hard for the algorithm designer to
analyze efficiency—it is possible that subtle differences in the under-the-hood conflict resolution
could radically change which iterates can run in parallel.

4.4 Experiments

The benchmark problems we use include many well-known problems such as sorting, minimum
spanning tree, breadth-first search, Delaunay triangulation, and maximal independent set, which
are all part of the Problem Based Benchmark Suite (see Section 3). Our experiments show that
our internally deterministic algorithms achieve good speedup and good performance even relative
to prior nondeterministic and externally deterministic solutions, implying that the performance
penalty of internal determinism is quite low. We achieve speedups of up to 31.6 on 32 cores
and almost all of our speedups are above 16. Compared to good sequential implementations,
our implementations are at most 2 times slower on a single core. All of our implementations
are quite concise (20-500 lines of code) and we believe that they are natural to reason about,
thereby addressing the concern that internally deterministic algorithms are hard to program. We
believe that this combination of performance and understandability provides significant evidence
that internal determinism is a sweet spot for a broad range of computational problems.

4.5 Theory of Deterministic Algorithms

Using deterministic reservations, we obtain parallel algorithms that return the same solution as a
simple greedy sequential algorithm would return. In this section, we study the theoretical bounds
of the maximal independent set and maximal matching algorithms implemented using deterministic
reservations.

4.5.1 Definitions

We use G(V, E) to denote a graph with vertex set V' and edge set E. We use n and m to refer to
the number of vertices and edges, respectively.



The mazimal independent set (MIS) problem is given an undirected graph G = (V, E) to return
a subset U C V such that no vertices in U are neighbors of each other (independent set), and
all vertices in V' \ U have a neighbor in U (maximal). MIS is a fundamental problem in parallel
algorithms with many applications [96]. For example, if the vertices represent tasks and each edge
represents the constraint that two tasks cannot run in parallel, MIS finds a maximal set of tasks
to run in parallel.

Parallel algorithms for the problem have been well studied. Luby’s randomized algorithm [96],
for example, runs in O(logn) time on O(m) processors of an CRCW PRAM. The problem, however,
is that on a modest number of processors it is very hard for these parallel algorithms to outperform
the very simple and fast sequential greedy algorithm. Furthermore the parallel algorithms give
different results than the sequential algorithm. This can be undesirable in a context where one
wants to choose between the algorithms based on platform but wants deterministic answers.

A related problem is the maximal matching problem. The mazimal matching (MM) problem
is given an undirected graph G = (V, E) to return a subset E’ C E such that no edges in E’ share
an endpoint, and all edges in E'\ E’ have a neighboring edge in E’. There are also polylogarithmic
depth and linear work algorithms for the MM problem [76, 75], but they do not return the same
result as the sequential greedy algorithm.

4.5.2 Results

We show that, perhaps surprisingly, a trivial parallelization of the sequential greedy algorithm
is in fact highly parallel (polylogarithmic time) when the order of vertices is randomized [19].
In particular, processing each vertex as in the sequential algorithm as soon as it has no more
neighbors earlier in the ordering gives a parallel linear work algorithm. The MIS returned by the
sequential greedy algorithm, and hence also its parallelization, is referred to as the lexicographically
first MIS [34]. In a general undirected graph and an arbitrary order, the problem of finding a
lexicographically first MIS is P-complete [34, 60], meaning that it is unlikely that any efficient low-
depth parallel algorithm exists for this problem. Moreover, it is even P-complete to approximate
the size of the lexicographically first MIS [60]. Our results show that for any graph and for the vast
majority of orders the lexicographically first MIS has O(log2 n) depth.

The MM of G can be solved by finding an MIS of its line graph (the graph representing adja-
cencies of edges in ), but the line graph can be asymptotically larger than G. Instead, the efficient
(linear time) sequential greedy algorithm goes through the edges in an arbitrary order adding an
edge if no adjacent edge has already been added. As with MIS this is naturally parallelized by
adding in parallel all edges that have no earlier neighboring edges. Our results on MIS directly
imply that this algorithm has O(log?m) depth depth for random edge orderings. We show how
to make the both our MIS and MM algorithms run in linear work, while incurring a logarithmic
factor in the depth bound.

4.6 Future Work
4.6.1 Theory

We found that the deterministic reservations-based spanning tree and minimum spanning tree
implementations also perform very well experimentally but we have not yet been able to prove
any good theoretical bounds (polylogarithmic depth) for them. The techniques we used for MIS
and MM do not directly apply due to the different dependences among elements. Our next goal
is to come up with good complexity bounds for our spanning forest and minimum spanning forest



algorithms. We have made a first step towards this goal by showing a polylogarithmic depth bound
for a deterministic reservations-based algorithm for list contraction.

4.6.2 Race Detectors for Commutativity Analysis

There has been previous work on data races and determinacy races in nested parallel programs
(e.g. Cilk) [10, 31, 50, 51], and has recently been extended to a more general class of async/finish
programs [122, 121]. These works include theoretical analyses of the serial and parallel race detec-
tors, and experimental results. Previous race detectors only handle races at the level of read and
write operations on memory locations. We plan to generalize the detection schemes to the object
level, and allow the user to provide specifications on what constitutes a "race”. There can be more
than two types of operations on each object, which makes designing the detection protocols more
challenging. One application of a more general "race” detector is to detect violation of commu-
tativity specifications when using our commutative building blocks (described in Section 4.2). A
separate goal is to design the race detector to run quickly in parallel.

4.6.3 Concurrent Hash Tables

We plan to further study the concurrent hash table (dynamic map) discussed in Section 4.2 [23].
We will prove the correctness of the various operations supported by the hash table. We will also
experimentally analyze the efficiency of the various operations under various loads, and compare
our performance to previous implementations of concurrent hash tables [68, 89].

We plan on using the hash table in various applications to simplify their implementations and
perhaps improve their performance. Additionally, the hash table preserves internal determinism
when used in an application. One example is to use hash tables to simplify and improve the efficiency
of parallel breadth-first search. In parallel breadth-first search, one can use a hash table to store
the frontier of vertices. This deterministically eliminates duplicates, which not only results in a
deterministic breadth-first search tree, but also obviates the need to separately remove duplicates
which could possibly lead to more efficient code. In Delaunay triangulation, we currently represent
the triangles as a collection of pointers, which is complicated to maintain. Using a dynamic map
to insert and delete triangles would dramatically simplify the code. Our graph-partitioning code is
based on recursive graph contraction, and after each contraction, we must combine the weights of
duplicate edges between components. This process can be implemented relatively easily by using
a hash table to keep only a single edge between two components, adding the weights of duplicate
edges to this single edge on insertion. The performance of connectivity algorithms based on graph
contraction could possibly be improved by using a hash table to store the edges.

5 Memory Contention

Memory contention can be a serious performance bottleneck in concurrent programs on shared-
memory multicore architectures. Having all threads write to a small set of shared locations, for
example, can lead to orders of magnitude loss in performance relative to all threads writing to
distinct locations, or even relative to a single thread doing all the writes. Shared write access,
however, can be very useful in parallel algorithms, concurrent data structures, and protocols for
communicating among threads.

Some of our internally deterministic algorithms operate on shared state and are thus poten-
tial victims of memory contention. These algorithms operate on shared state through priority



updates, discussed in Section 4.2. We will further investigate the priority update operation, both
experimentally and theoretically.

We distinguish between sharing and contention. By sharing we mean operations that share
the same memory location (or possibly other resource)—for example, a set of instructions reading
a single location. By contention we mean some form of sequential access to a resource that causes
a bottleneck. Contention can be a major source of performance problems on parallel systems while
sharing need not be. A key motivation for the priority update operation is to reduce contention
under a high degree of sharing.

5.1 Related Work

The problem with contention for shared memory access has been recognized since at least the
early 80s and the work on the NYU Ultracomputer [59, 58]. To avoid or reduce the problem,
the researchers suggested that hardware for combining requests be added to the memory system.
Although this was a nice idea, as far as we know no machine since the IBM RP3 (a follow up
on the Ultracomputer) and the Connection Machine II supported combining in hardware. Besides
the cost of implementing the combining techniques, the problem is that there are many possible
operations to use in combining and none or no known combination are universal, making it hard
to decide which ones to support. Furthermore, operations such as the compare-and-swap cannot
be combined. More recent work has suggested that combining be made more flexible so that it can
be programmed and used at the granularity of cache lines [46, 20]. However, no current machines
supports hardware combining.

To avoid the need for hardware combining researchers have suggested techniques for software
combining [128, 40, 49]. The idea of most of these approaches is to simulate in some way using
software what hardware combining would do. However, such combining can have a high overhead
due to various conditional checks. To avoid such overheads more recent work has suggested simply
sequentially combining from a buffer that has one location per core (or few cores) [67]. This
approach, however, does not scale.

Other work on avoiding contention involves recognizing that certain simple protocols can signif-
icantly reduce the number of concurrent updates to a shared location [125, 103], but the operations
are insufficient for many applications.

5.2 Preliminary Results

We implemented the priority update operation in software using the compare-and-swap primitive,
and experimentally showed that even in cases of high memory contention (for example, a vertex
in a graph concurrently written to by many neighboring vertices), our algorithms using priority
update do not suffer much in performance, whereas algorithms using plain writes do [131]. This
is due to properties of our implementation of priority update, which allows most of the writers to
avoid doing any writes (which would happen every time in the case of plain writes).

5.3 Future Work

We plan on proving theoretical properties of the priority update operation [130]. Also we will
perform a more extensive experimental analysis of the priority update operation and compare
its performance with that of fetch-and-add, compare-and-swap, test-and-set and plain writes. In
addition, we will explore the performance of priority update in applications on inputs causing high
sharing. We plan to develop more theoretical results of the priority update operation. Inspired by
the work of Gibbons et. al. [54, 55], we are interested in developing a theoretical model for parallel
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programs which can accurately capture the contention in computations and identify when using
priority updates will be beneficial.

6 Graph Algorithms

6.1 The Ligra Framework

We present Ligra, a framework for implementing parallel graph algorithms on shared-memory
multicore machines. Recently several packages have been developed for processing large graphs
on parallel machines including the parallel Boost graph library (PBGL) [61], Pregel [99], PEGA-
SUS [80], GraphLab [93, 94], PowerGraph [56], the Knowledge Discovery Toolkit [27, 97], GPS [126],
Giraph [1], and Grace [118]. Motivated by the need to process very large graphs, most of these
systems (with the exception of the original GraphLab) have been designed to work on distributed
memory parallel machines. Although shared memory machines cannot scale to the same size as
distributed memory clusters, current commodity single unit servers can easily fit graphs with well
over a hundred billion edges in memory, large enough for any of the graphs reported in the papers of
the aforementioned packages. Furthermore, commodity shared-memory servers are quite reliable,
often running for up to months or years without a failure.

Ligra is a lightweight interface for graph algorithms for shared-memory that is particularly well-
suited for graph traversal problems. Such problems visit possibly small subsets of the vertices on
each step. The interface is lightweight in that other than constructors and size query functions it
supplies only two functions, one for mapping over vertices and the other for mapping over edges.
The implementation is simple (a few hundred lines of code), fast, uses only a modest amount of
memory, and scales to large graphs.

6.1.1 Interface

Ligra supports two data types, one representing a graph G = (V, E') with vertices V and edges F,
and another for representing subsets of the vertices V', which we refer to as vertexSubsets. Other
than constructors and size queries, the interface supplies only two functions, one for mapping over
vertices (vertexMap) and the other for mapping over edges (edgeMap). Since a vertexSubset is a
subset of V', the vertexMap can be used to map over any subset of the original vertices, and hence its
utility in traversal algorithms—or more generally in any algorithm in which only (possibly small)
subsets of the graph are processed on each round. The edgeMap also processes a subset of the
edges, which is specified using a vertexSubset to indicate the valid sources, and a Boolean function
to indicate the valid targets of each edge. Abstractly, a vertexSubset is simply a set of integer
labels for the included vertices and the vertexMap simply applies the user supplied function to
each integer. It is up to the user to maintain any vertex based data. The implementation switches
between a sparse and dense representation of the integers depending on the size of the vertexSubset.
In our interface, multiple vertexSubsets can be maintained and furthermore, a vertexSubset can be
used for multiple graphs with different edge sets, as long as the number of vertices in the graphs
are the same.

6.1.2 Example: Breadth-First Search

With this interface a breadth-first search (BFS), for example, can be implemented as shown in
Figure 2. This version of BFS uses a Parents array (initialized all to —1, except for the root r
where Parents[r] = r) in which each vertex reachable from r will point to its parent in a BFS tree.
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1: Parents = {-1,...,—1} > initialized to all -1’s
2:

3: procedure UPDATE(s, d)

4: return (CAS(&Parents[d], —1 , s ))

5:

6: procedure COND(%)

7: return (Parents[i] == —1)

8:

9: procedure BFS(G, r) > r is the root
10: Parents[r] = r
11: Frontier = {r} > vertexSubset initialized to contain only r
12: while (size(Frontier) # 0) do
13: Frontier = EDGEMAP(G, Frontier, UPDATE, COND)

Figure 1: Pseudocode for Breadth-First Search in our framework. The compare-and-swap function
CAS(loc,0ldV,newV) atomically checks if the value at location loc is equal to oldV and if so it
updates loc with newV and returns true. Otherwise it leaves loc unmodified and returns false.

As with standard parallel versions of BFS [132, 91|, on each step i (starting at 0) the algorithm
maintains a frontier of all vertices reachable from the root r in ¢ steps. Initially a vertexSubset
containing just the root vertex is created to represent the frontier (line 11). Using edgeMap, each
step checks the neighbors of the frontier to see which have not been visited, updates those to point
to their parent in the frontier, and adds them to the next frontier (line 13). The user supplied
function UPDATE (lines 3-4) atomically checks to see if a vertex has been visited using a compare-
and-swap (CAS) and returns true if not previously visited (Parents[i] == —1). The COND function
(lines 6-7) tells edgeMap to consider only target vertices which have not been visited (here, this is
not needed for correctness, but is used for efficiency). The edgeMap function returns a new vertex
set containing the target vertices for which UPDATE returns true, i.e., all the vertices in the next
frontier (line 13). The BFS completes when the frontier is empty and hence no more unvisited
vertices are reachable.

6.1.3 Experiments

Ligra achieves close to the same efficiency (time and space) as the most efficient BFS implementa-
tion for shared-memory [8, 9], and we apply it to many other applications including betweenness
centrality, graph radii estimation, graph connectivity, PageRank and single-source shortest paths.
Our solutions get quite good speedups over sequential implementations (up to 39 fold on 40 cores in
our experiments), and compared to the distributed memory systems mentioned above, our system
is over an order of magnitude faster on a per-core basis for the benchmarks we could compare with,
and often faster even on absolute terms to the largest systems run, which sometimes have two
orders of magnitude more cores. We test our implementations on some of the largest real-world
graphs available, such as the Yahoo Web graph (1.4 billion vertices and 6.6 billion edges) [143]
and the Twitter graph (41.7 million vertices and 1.47 billion edges) [87]. These were the largest
real-world graphs reported in the papers of the other graph processing systems.
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6.2 Future Work
6.2.1 GPUs

There has been recent work on designing breadth-first search algorithms for graphics processing
units (GPUs) [104, 70]. One direction for future work is to extend Ligra to the GPU setting. This
would involve addressing issues in GPU computing, such as thread divergence, shared memory
bank conflicts, and how to maximize usage of the memory bandwidth. A framework for graph
algorithms for shared-memory using GPUs (possibly as part of an accelerated processing unit)
could potentially deliver even better performance.

6.2.2 External Memory Graph Algorithms

Another direction for future work is to incorporate techniques into Ligra to handle graphs which
do not fit in memory, for example as done in GraphChi [88].

We are interested in proving theoretical properties of disk-based graph algorithms written within
the GraphChi framework, and comparing their performance with previous disk-based algorithms for
the same problem. There has been a decent amount of research on the theory of external memory
algorithms [32, 2, 102, 41|, and we would like to design GraphChi-based algorithms that match the
previously obtained bounds. We will also design algorithms that are experimentally competitive
with the disk-based algorithms that have been previously implemented [41, 3, 33, 25].

6.2.3 Cache-Oblivious Triangle Listing

We are interested in developing a cache-oblivious algorithm for triangle listing, which lists all of the
triangles (3-cycles) in a graph, which has many applications in data mining [127]. This problem is
harder than that of triangle counting, which only requires a total count of the number of triangles
in a graph. Chu and Cheng [33] develop a disk-based algorithm for triangle listing, however their
algorithms makes assumes that the degrees of the vertices are not too large and that the number
of vertices fit in memory. We would like to improve upon their work and extend it to the cache-
oblivious setting by using the techniques of [21, 18].

6.2.4 Other Graph Algorithms

We are interested in further exploring graph problems arising in data mining. For example, it
would be interesting to prove guarantees (theoretically or empirically) of our parallel algorithm for
graph radii approximation [129] based on multiple breadth-first searches, and compare it to the
only other parallel algorithm for the same task by Kang et. al. [79].

7 String Algorithms

We present parallel algorithms for two string processing problems—suffix tree construction and
Lempel-Ziv factorization. Our algorithms are simple and our experiments show that they are fast
and scale to large data.

7.1 Suffix Trees

Suffix trees support constant-time searches in strings and also efficiently support many other oper-
ations on strings, such as longest common substring, maximal repeats, longest repeated substrings,
and longest palindrome, among many others [62]. As such it is one of the most important data

13



structures for string processing. For example, it is used in several bioinformatic applications, such
as REPuter [86], MUMmer [39], OASIS [101] and Trellis+ [115, 116].

7.1.1 Preliminaries

Given a string s of length n over an ordered alphabet X, the suffix array, SA, represents the n
suffixes of s in lexicographically sorted order. To be precise, SA[i| = j if and only if the suffix
starting at the j’th position in s appears in the i’th position in the suffix-sorted order. A Patricia
tree [107] (or compacted trie) of a set of strings S is a modified trie in which (1) edges can be
labeled with a sequence of characters instead of a single character, (2) no node has a single child,
and (3) every string in S’ corresponds to concatenation of labels for a path from the root to a leaf.
Given a string s of length n, the suffix tree for s stores the n suffixes of s in a Patricia tree.

In addition to supporting searches in s for any string ¢ € X* in O(|t|) expected time (worst
case time for constant sized alphabets), suffix trees efficiently support many other operations on
strings, such as longest common substring, maximal repeats, longest repeated substrings, and
longest palindrome, among many others [62].

We assume an integer alphabet ¥ C [1,...,n| where n is the total number of characters. We
require that the Patricia tree and suffix tree support the following queries on a node in constant
expected time: finding the child edge based on the first character of the edge, finding the first child,
finding the next and previous sibling in the character order, and finding the parent. If the alphabet
is constant sized all these operations can easily be implemented in constant worst-case time.

A Cartesian tree [139] on a sequence of elements taken from a total order is a binary tree that
satisfies two properties: (1) heap order on values, i.e. a node has an equal or lesser value than any
of its descendants, and (2) an inorder traversal of the tree defines the sequence order. If elements
in the sequence are distinct then the tree is unique, otherwise it might not be. When elements
are not distinct we refer to a connected component of equal value nodes in a Cartesian tree as a
cluster. A multiway Cartesian tree is derived from a Cartesian tree by contracting each cluster into
a single node while maintaining the order of the children. A multiway Cartesian tree of a sequence
is always unique.

Let LCP(s1,s2) be the length of the longest common prefix of s; and s3. Given a sorted sequence
of strings S = [s1,...,sy], if the string lengths are interleaved with the length of their longest
common prefixes (i.e. [|si|, LCP(s1,s2), |s2|,. .., LCP(sp—1, Sn) ,|sn|]) the corresponding multiway
Cartesian tree has the structure of the Patricia tree for S. The Patricia tree can be generated by
adding strings to the edges, which is easy to do—e.g. for a node with value v = LCP(s;, Si+1)
and parent with value v’ the edge corresponds to the substring s;[v' +1,...,v]. As a special case,
interleaving a suffix array with its LCPs and generating the multiway Cartesian tree gives the suffix
tree structure. In summary, beyond some trivial operations, generating a multiway Cartesian tree
is sufficient for converting a suffix array and its corresponding LCPs to a suffix tree.

7.1.2 Related Work

Both suffix trees and a linear time algorithm for constructing them were introduced by Weiner [141].
Since then various similar constructions have been described [100, 137] and there have been many
implementations of these algorithms. Although originally designed for fixed-sized alphabets with
deterministic linear time, Weiner’s algorithm can work on an alphabet [1,...,n] in linear expected
time simply by using hashing to access the children of a node.

The algorithm of Weiner and its derivatives are all incremental and inherently sequential. The
first parallel algorithm for suffix trees was given by Apostolico et. al. [5] and was based on a
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quite different doubling approach. For a parameter 0 < € < 1 the algorithm runs in O(%log n)
time, O(%logn) work and O(n'*¢) space on the CRCW PRAM for arbitrary alphabets. Although
reasonably simple, this algorithm is likely not practical since it is not work efficient and uses
superlinear memory (by a polynomial factor). The parallel construction of suffix trees was later
improved to linear work and space by Hariharan [65], with an algorithm taking O(log?n) time on
the CREW PRAM, and then by Farach and Muthukrishnan to O(logn) time using a randomized
CRCW PRAM [48] (high-probability bounds). These later results are for a constant-sized alphabet,
are “considerably non-trivial”, and do not seem to be amenable to efficient implementations.

One way to construct a suffix tree is to first generate a suffix array (an array of pointers to the
lexicographically sorted suffixes), and then convert it to a suffix tree. For binary alphabets and
given the length of the longest common prefix (LCP) between adjacent entries this conversion can
be done sequentially by generating a Cartesian tree in linear time and space. The approach can be
generalized to arbitrary alphabets using multiway Cartesian trees without much difficulty. Using
suffix arrays is attractive since in recent years there has been considerable theoretical and practical
advances in the generation of suffix arrays (see e.g. [120]). The interest is partly due to their need
in the widely used Burrows-Wheeler compression algorithm [28], and also as a more space-efficient
alternative to suffix trees. As such there have been dozens of papers on efficient implementations
of suffix arrays. Among these Karkkainen and Sanders have developed a quite simple and efficient
parallel algorithm for suffix arrays [81] that can also generate LCPs.

The story with generating Cartesian trees in parallel is less satisfactory. Berkman et. al [14]
describe a parallel algorithm for the all nearest smaller values (ANSV) problem, which can be
directly used to generate a binary Cartesian tree for fixed sized alphabets. However, it cannot
directly be used for non-constant sized alphabets, and the algorithm is very complicated. Iliopoulos
and Rytter [73] present two much simpler algorithms for generating suffix trees from suffix arrays,
one based on merging and one based on a variant of the ANSV problem that allows for multiway
Cartesian trees. However they both require O(nlogn) work.

7.1.3 Results

We develop a linear work, linear space, and O(log2 n) time algorithm for generating multiway
Cartesian trees on the CREW PRAM [22]. In conjunction with the parallel suffix array algorithm
of [81], this gives a rather simple suffix tree algorithm requiring linear work and O(log?n) time
algorithm for constant-sized alphabets, or O(n) time (0 < € < 1) integer alphabets on the CRCW
PRAM.

We have implemented a version of our algorithm for shared-memory. First, we compare our
Cartesian tree algorithm with a simple stack-based sequential implementation. On one core our
algorithm is about 3.5x slower, but achieves about 47x speedup on 40 cores with hyper-threading (2
threads per core). We also analyze the algorithm when used as part of code to generate a suffix tree
from the original string. We compared our parallel algorithm with the best sequential suffix tree
algorithm [85] available online. For a variety of real-world and artificial input strings, our algorithm
achieves 11-24 times speedup on 40 cores and is up to 31 times faster than the sequential algorithm.
We also show experimentally that searching and computing certain properties of repeated substrings
is efficient using our suffix tree [24].

7.2 Lempel-Ziv Compression

Lempel-Ziv-77 (LZ77) is a lossless dynamic compression method that has been popular due to its
simplicity and computational efficiency. It is used in the DEFLATE algorithm, which is used in

15



software packages such as gzip and PKZIP among others. It has also been used in algorithms for
detecting maximal repetitions in strings [84, 63]. The LZ77 algorithm consists of a compression
stage, which computes the Lempel-Ziv factorization (LZ-factorization) of the input string, and a
decompression stage, which recovers the original string from the compressed string.

7.2.1 Preliminaries

The LZ-factorization of a string S[0,...,n — 1] is S = wowi . ..wm-1, where m < n and for each
0 < i < m, w; (called the ith factor of the string) is either a single character which does not
appear in wq...w;_1 or is the longest prefix of wj;...w,,—1 that also appears starting at a position
to the left of w; in S.

7.2.2 Related Work

The LZ-factorization can be computed sequentially [124] in linear time with a suffix tree [100], and
decompression can be done sequentially in linear time with a scan. The first parallel algorithms
for LZ-factorization were described independently by Noar [108] and Crochemore and Rytter [38].
Their algorithms require O(logn) time and O(nlogn) work, which make them not work-efficient.
Farach and Muthukrishnan [47] give the first work-optimal algorithms for both LZ-factorization
and decompression, each requiring O(logn) expected time, and they make use of a parallel suffix
tree algorithm [48].

There has been much research done in designing practical sequential algorithms for computing
LZ-factorization. Recently researchers have proposed the use of suffix arrays instead of suffix trees
to obtain faster and more space-efficient algorithms for LZ-factorization [37, 35, 30, 36, 110, 82, 57].
Since suffix arrays can be computed in linear time [81], these LZ-factorization algorithms also able
to run in linear time. The aforementioned sequential algorithms have been shown to perform well
in practice.

To the best of our knowledge, the only parallel implementations of LZ-factorization described
in the literature are those of Klein and Wiseman (using CPUs) [83] and Ozsoy and Swany (us-
ing GPUs) [112]. Both implementations involve splitting the input string among processors and
having each processor independently compute the factorization of its substring. Because in these
implementations the processors do not necessarily have access to the entire input string, they do
not always compute the same LZ-factorization as would be computed sequentially, and thus can
produce larger compressed files. Furthermore, the corresponding papers [83, 112] do not provide
any complexity bounds on work and time. Previous work on parallel algorithms for computing the
same LZ-factorization as would be computed sequentially do not include any implementations or
experiments [47, 108, 38]. The linear-work algorithm of Farach and Muthukrishnan [47] is quite
complicated and not amenable to a practical implementation.

7.2.3 Results

We present a simple linear-work parallel algorithm for LZ-factorization and practical implementa-
tions of it [133]. Our algorithm computes the same factorization as would be computed sequentially.
The algorithm is based on parallel suffix arrays [81], finding all nearest smaller values [14], and uses
simple parallel routines such as prefix sums and leaffix operations [77]. Theoretically, our algorithm
requires O(n) work and O(log® n) time (randomized) on the CRCW PRAM due to the use of suffix
arrays, so does not achieve the O(logn) time bound of Farach and Muthukrishnan [47], but lends
itself to a practical implementation. We show experimentally that on 40 cores with hyper-threading
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we achieve speedups between 10 and 22 compared to running the algorithm on a single thread, and
outperforms good sequential implementations with just 2 or more threads.

7.3 Future Work

We plan on submitting a journal version of our paper on parallel suffix tree construction [22], which
will contain new and updated experiments on larger data, and a more detailed description of our
simpler algorithm for computing all nearest smaller values.

Recently there has been work on implementing compression algorithms on the GPU [113]. We
would like to extend this work by implementing suffix trees and Lempel-Ziv factorization on the
GPU. Suffix arrays and the longest common prefix arrays, which are components of our algorithms,
have recently been implemented on the GPU by Deo and Keely [42], using integer sorting and scan
techniques developed by Merrill and Grimshaw [105, 106].

There has been recent work on developing an adaptation of Lempel-Ziv-78 compression to allow
for fast random access support on the compressed representation of the data [45]. We would like
to see whether there is an analogous algorithm for LZ77.

8 Schedule

e Spring 2013: Submit journal version of suffix tree paper [22], and continue work on concurrent
hash tables and reducing memory contention.

e Summer 2013: Figure out bounds for the deterministic spanning tree algorithm, work on
external graph algorithms, and look at parallel I/O-efficient and cache-oblivious algorithms
for triangle listing.

e Fall 2013: Look at race detectors for commutative building blocks, and extend the Problem
Based Benchmark Suite.

o After 2013: Look at other graph and string problems, study GPUs and look at GPU algo-
rithms, and do more research on determinism.
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