Comparing Transitive to Non-transitive Object Immutability

Michael Coblenz, Joshua Sunshine, Brad
Myers

School of Computer Science
Carnegie Mellon University

{mcoblenz, joshua.sunshine, bam}®@cs.cmu.edu

Abstract

Many programming languages provide features that express
restrictions on which data structures can be changed. For ex-
ample, C++ includes const and Java includes final. Lan-
guages that are in widespread use typically provide non-
transitive immutability: when a reference is specified to be
immutable or read-only, the object referenced can still refer-
ence mutable structures. However, some languages, partic-
ularly research languages, provide transitive immutability,
in which immutable objects can only reference other im-
mutable objects (with some exceptions). We are designing
a lab study of programmers to elucidate the differences in
programmer effectiveness between these two approaches.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.2.9
[Software Engineering]: Management—Productivity

Keywords Programming languages, Immutability, Muta-
bility
1. Introduction

Many designers of APIs and programming languages recom-
mend using immutability in order to prevent bugs and secu-
rity flaws. For example, Bloch devoted a section of his book,
Effective Java, to minimizing mutability [1]. He cited these
benefits of immutability: simple state management; thread-
safety; and safe and efficient sharing. Likewise, Oracle’s Se-
cure Coding Guidelines for Java SE [2] recommend mini-
mizing mutability. There are questions, however, about what
immutability means and how to express immutability in pro-
gramming languages. Some languages support programmer-
provided specifications of immutability or read-only restric-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

PLATEAU’15, October 26, 2015, Pittsburgh, PA, USA

© 2015 ACM. 978-1-4503-3907-0/15/10...$15.00
http://dx.doi.org/10.1145/2846680.2846688

47

Sam Weber, Forrest Shull

Software Engineering Institute
samweber@cert.org, fjshull@sei.cmu.edu

tion in order to express and enforce (either statically or
dynamically) that either certain data structures cannot be
changed, or that clients who obtain references to certain data
structures do not have permission to change them. For ex-
ample, final in Java expresses that a particular reference
cannot be reassigned to point to a different object, but the
referenced object can still change its contents. Though one
can write a class with no setters and all private fields, there is
no way to express immutability directly. In C++, const can
be used to express that state cannot change, but const data
can still refer to non-const data, which can then be changed.
Furthermore, const provides no guarantees regarding other
references to the same object. This means that in addition to
not providing the expected benefits of immutability to pro-
grammers, such as thread safety and simple state manage-
ment, these annotations also do not provide the guarantees
that would be needed for compiler optimizations, which re-
quire that the transitive state be immutable.

Immutability annotations can express either transitive
immutability, in which immutable objects can only refer-
ence other immutable objects, or non-transitive immutabil-
ity: when a reference is specified to be immutable, the object
referenced can still reference mutable structures, but it can-
not have its contents changed directly. By providing guaran-
tees of transitive immutability, programmers and compilers
can make much stronger assumptions about state. For ex-
ample, if a method is invoked on an immutable object in a
loop, the compiler might be able to optimize the code by
lifting the invocation out of the loop, but this optimization
is unsafe if the object is not transitively immutable. Like-
wise, a transitively immutable object can be shared safely
among threads without locks, but the same is not necessarily
true of a non-transitively immutable object. In a pragmatic
sense, a non-transitively immutable object is, in fact, muta-
ble. Note the distinction with read-only restrictions, which
specify that data cannot be changed through a particular ref-
erence, but say nothing about whether any other references
might exist through which the data could be changed.

Some researchers have proposed language features for
transitive immutability. IGJ [3] extends Java’s typesystem
to include statically-checked immutability annotations. 1GJ

supports parametric immutability, in which immutability an-
notations can be specified to match the containing object’s
immutability annotation. For example, a programmer can
specify that a field in an object should have the same im-
mutability annotation as the object itself. We call this ad hoc
transitive immutability: ad hoc in the sense that transitivity
only occurs when the programmer specifies that it should,
and only to the specified extent. Another approach is taken
by Pechtchanski and Sarkar’s system, which splits the analy-
sis into static and dynamic stages in order to ensure safety of
dynamically-loaded code [5]. In contrast, Microsoft’s Freez-
able class defines an interface for objects that can have a state
in which they are immutable, and verification happens only
at runtime [6]. Enforcement of Freezable is implementation-
dependent, since the author of a Freezable class must add
calls to specific APIs before and after modifying state of
Freezable objects, and whether the immutability is transitive
depends on the locations of those calls.

Despite the benefits of transitive immutability, these guar-
antees may come at increased cost as programmers must an-
notate and make immutable larger parts of programs. In ad-
dition, using APIs that are transitively immutable may re-
quire users to bear additional cost. For example, Stylos and
Clarke found users prefer and are more effective at instan-
tiating mutable classes [7]. One would expect that transitive
immutability would result in more immutable objects, mak-
ing the disadvantages more pervasive. Though some authors,
such as Zibin et al. [3] evaluated their work by using their
annotation systems on large systems, we have not found any
work that uses programmers other than the designers of the
systems to compare immutability approaches.

Most systems in widespread use today, such as Java and
C++, do not support any kind of transitivity. One exception is
Rust [8], which makes mutability (as opposed to immutabil-
ity) explicit and has an ownership system that restricts which
mutable references can exist. However, because of the inte-
gration of immutability with the ownership system, it is dif-
ficult to evaluate transitive immutability as an independent
design decision in Rust.

2. [Evaluating Transitivity and
Non-transitivity

This overall lack of adoption in practice in contrast to the
widespread discussion in the literature motivates us to ask:
how useful and usable is transitive immutability? Is it so
burdensome despite the guarantees it provides that it is in-
feasible to use, or are there some cases in which its strong
guarantees are worth the cost? In what situations do an-
notations that enforce transitive immutability benefit pro-
grammers more than those that enforce non-transitive im-
mutability, and how should transitive immutability annota-
tion systems be designed? Are there mitigations, either in
the language or tooling, that can increase the usability of
immutability?

48

We have started investigating the design of transitive im-
mutability annotation systems by prototyping a modification
of IGJ that reflects transitive immutability: if an object has
a constructor that is annotated @Immutable, then the ob-
ject’s class cannot transitively contain any fields not marked
@Immutable. We have started conducting user studies eval-
uating this design and comparing it to a subset of IGJ that
is restricted to non-transitive immutability: that is, without
the immutability parameter that facilitates ad hoc transitive
immutability. Our own experimentation, including pilot user
studies, suggests that the full set of features required to en-
able all the possible kinds of immutability (non-transitive,
ad hoc transitive, and transitive immutability; read-only ref-
erences; and class-based immutability) is too complicated
for users to understand easily. Instead, we hope to identify
which combination of features would offer the best tradeoff
for most users. We hypothesize that transitive immutability
better matches people’s expectations of what immutability
should mean, and if used in software, will prevent bugs.

Acknowledgments

We appreciate help from Michael Ernst and Werner Dietl
in helping us understand IGJ and feedback from Jonathan
Aldrich. This material is supported in part by NSA lablet
contract #H98230-14-C-0140, by SEI contract FA8721-05-
C-0003 with CMU, and by NSF grant CNS-1423054. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect those of any of the sponsors.

References

[1] Bloch, J. Effective Java, Second Edition. Mountain View, CA
Sun Microsystems, 2008.

[2] Oracle Corp. Secure Coding Guidelines for the Java SE, version
4.0. http://www.oracle.com/technetwork/java/seccodeguide-
139067.html#6

[3] Zibin, Y., Potanin, A., Ali, M., Artzi, S., Kie, A. un, and
Ernst, M. D. (2007). Object and Reference Immutability
Using Java Generics. In Proceedings of the 11th European
Software Engineering Conference and the 15th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (pp.
7584). New York, NY, USA: ACM.

[5] Pechtchanski, I., and Sarkar, V. (2002). Immutability speci-
fication and its applications. In Proceedings of the 2002 Joint
ACM-ISCOPE conference on Java Grande - JGI *02 (pp. 202-
211). New York, NY, USA: ACM Press.

[6] Microsoft, Inc. Freezable Objects
Overview. https://msdn.microsoft.com/en-
us/library/vstudio/ms750509(v=vs.100).aspx.

[7] Stylos, J. and Clarke, S. Usability Implications of Requiring
Parameters in Objects’ Constructors. In International Confer-
ence on Software Engineering (ICSE’2007). Minneapolis, MN:
pp- 529-539.

[8] The Rust Programming Language. Mozilla Research.
https://www.rust-lang.org.

