
Optimizing Array Locality via Memory Layout
Reorganization

Xuezhi Wang (xuezhiw@cs.cmu.edu), Junchen Jiang (junchenj@cs.cmu.edu)

May 1, 2013

1 Introduction

1.1 Problem

When optimizing array locality for cache performance in a loop, a conventional ap-
proach is tiling which keeps the current memory layout of array but change execution
order of instructions so that cached content will be reused for future execution before
they are replaced. However, this scheme may fail when the execution reordering is
unavailable due to data dependency or other constraints.

1.2 Our approach

In this project, we propose an alternative approach for optimizing array locality through
reorganizing memory layout of arrays. The main idea is that by analyzing the access
pattern of array elements, we can reorganize the array memory layout such that the
new memory layout can achieve a better locality even with no changes on execution
order or prefetching (though it can potentially be used together with tiling to further
improve the performance).
A simple example of using the new method is the following:

for(int i=0; i<n; i++){

A[i][1] += 1;

A[i][0] += 2;

}

In this program, assuming cache can hold 2 elements, a naive execution (no tiling) will
cause cache miss on every access. In our method, we can reorganize the 2d array A[n][2]
into 1-d array B[2n] such that B[0]=A[0][1], B[1]=A[0][0], B[2]=A[1][1], B[3]=A[1][0],
and the cache miss rate will be reduced to half (100% to 50%) of that in a naive
execution with no change on the order of execution.
In case there are multiple access patterns (e.g., multiple loops for the same array), we

1

consider the following two options:
(1) For each access pattern, create a suitable memory layout and keep this newest
layout(s) (keep multiple copies only when necessary, e.g. for branches);
(2) Find the most suitable memory layout for all access patterns, and hopefully it
should be better than the original layout (which does not take access patterns into
consideration). It is even possible that which option is better is dynamically decided
by the access patterns in the code.
The key difference between tiling and our method is, tiling changes the execution order
of instructions, but our method changes the memory layout and can also be used in
the case that instruction order should be fixed during program execution. Certainly
our method can be used in the cases where tiling is used. Another example where
our method might be more useful would be, in a program involving regular expression
matching, if we use an automaton to store the transition states, the order of state
transition in actual execution cannot be changed (i.e., tiling is not applicable), but we
can reorganize the order of state storage by analyzing the degree/transition relations
of each state.

1.3 Related Work

Starting from [1], many related works have been published on tiling optimization for
loops. Recent developments mainly focus on tiling size selection (e.g., [3, 4]) and
specific hardware support for blocked optimization (e.g., [2]). There are also works
on optimization of loop performance using hardware support without tiling (e.g., [5]).
Another paradigm is through exploiting array and loop parallelism through dynamic
analysis (e.g., [6]) and speculative execution(e.g., [7]).

1.4 Contribution

• We present a general framework for optimizing array locality by memory layout
reorganization.

• We propose a novel algorithm to determine a better memory layout based on
access pattern analysis.

• We extend our algorithm to handle multiple access patterns.

• We use cache simulators (PIN tools) to measure the cache performance before
and after applying our algorithm. Experimental results have shown that our
algorithm can achieve significant improvement on cache performance.

2

2 Approach

2.1 Framework

First we present a general framework for memory layout reorganization as demon-
strated by the figure below:

The core concept of the framework is access pattern. For each array in the program, let
each use of the array (including load and store) be an access. An access is a wrapped
class that describes the location (including the instruction and basic block), dimension
information (e.g., number of dimension, size of each dimension) index formulation (i.e.,
relationship to each indection variable), and loop information (e.g., number of itera-
tion) of the access. Then the access pattern of an array is defined to be a class to serve
two purposes:

• Summarize the useful information of all accesses on the array, and

• Provide functionalities to make layout reorganization decision.

The most critical functionalities of an access pattern is to summarize each access as an
induction variable matrix (H), and to calculate the new layout decision represented by
a transfer matrix (P) between old layout and the new one.
Our optimization system is comprised of four steps that take as input an original C
code and generate an optimized LLVM object code. We now present the design and
implementation.

• Step 1 makes a pass on the original code to get access information for each array.
The program goes through each instruction and identify the initialization of an
array by checking its class and analyze it to find the dimension information and
data type that it allocates for. For each array found, an access pattern class will
be created to store all accesses. The program will then be scanned again to find
all access location and information.

• Step 2 summarizes the raw information of multiple access for each access pattern.
The key results include induction variable matrix (H) and the weight of each ac-
cess. Each row of the induction variable matrix consists of the coefficients of
each induction variable to calculate one index value of the access. For example,

3

each access to a two-dimensional array within a three level nested loop can be
represented by an induction variable matrix with two rows and three columns.
The weight for each access is a rough estimation on the number of access. For
now, it simply multiplies the range of all induction variables and does not involve
dynamic analysis for conditional branches that may change number of access in
runtime. It provides a way to balance between multiple accesses.

• Step 3 calculates a reorganization for each array based on the access patterns.
The reorganization is essentially a linear transformation (through a transfer ma-
trix P) between index of original array and that of the new array. Through the
transfer matrix P , the access on the original array layout will be mapped to the
new array layout in hope that the access for the innermost loop can be within the
same dimension and with less stride on the element. We will formally defined it as
a linear optimization problem in the next section. Due to the inherant difficulty
of the problem, it is not guaranteed to find a feasible solution for the transfer
matrix. In case a transfer matrix is not found, we will back-off to original layout
(i.e., an identical matrix). Besides the transfer matrix, this step also generate
the new size of each dimension of the new layout, so that when accessing index
on the new array, it will not go out of bound.

• Step 4 generates the optimized code by initializing a new array with new size for
each old array and replacing all accesses to the old array to the corresponding new
array with index calculated by the transfer matrix. To redirect all use of an array
to its new layout, we first add replace all accesses with new access and remove
the initialization of the old array for safety. Finally, a dead-code-elimination pass
is performed to clean up all use and def of the old arrays.

2.2 Core algorithm

The key part in this framework is how to determine a better memory layout based
on the information gathered thtough access pattern analysis. We propose a novel
algorithm as follows:
Consider an array A with m dimension used in a n-level nested loop (induction variable
i1, ..., in from outmost loop to innermost loop), and [x1 ... xm]> = H[i1 ...in]>, where
H is an m×n induction variable transform matrix (given by the analysis on the access
patterns). For a new array B with dimension d, where the correspondence between
A[x1]...[xm] and B[x′1]...[x

′
d] is given by:

[x′1 ... x
′
d]
> = P [x1 ... xm]> = PH[i1 ... in]>

where P is denoted as the TransferMatrix with size d×m.
If each induction variable xi increments by δi, we have the corresponding transforma-

4

tion:
[x′1 + δ′1 ... x

′
d + δ′d]

> = PH[i1 + δ1 ... in + δn]>

which gives:
[δ′1 ... δ

′
d]
> = PH[δ1 ... δn]> (1)

Hence the key idea of our algorithm is:
Find a TransferMatrix P to achieve: when each induction variable xi increments by
δi, if we access the corresponding elements in B rather than A, we could have much
better locality, i.e., those δ′1, ..., δ

′
d given by Eq. 1 satisfy:

|δ′1|+ ...|δ′d| ≤ C(|δ1|+ ...+ |δn|)

In other words, when the induction variables have a small change, even it does not
necessarily result in a small change in the indices accessed in the original array, it
should result in a relatively small change in the indices accessed in the reorganized
array.
In practical, given that the innermost loop is the most costly one, we can set δ1, ..., δn−1
and δ′1, ..., δ

′
n−1 to zero and further simplify the condition as:

|δ′d| ≤ C|δn|

or in a more formal way: when the innermost induction variable increments by δn, find
the matrix P that satisfy:

min
P

δ′d subject to

[0 ... δ′d]
> = PH[0 ... δn]>

We can solve this equation using integer programming methods, and use the resulting
P matrix to transform the original code.

2.3 Boundary Issues

• Size of the new Array B. When we apply the above algorithm for array
transformation, we need to assign new sizes to the new array. The new sizes
should satisfy the constraint that when we visit the new indices we will not run
out of bound, and also they are not too large since we do not want to put high
pressure on memory allocation. During the process of analyzing access patterns,
we record the upper and lower bound of the accessed indices, which we used with
transformation matrix to compute the new upper/lower bound of indices.

• Uniqueness of mapping. When we transform the array we are effectively
computing a mapping from old array to the new array. we should avoid the
case that two new indices point to the same location while the old point ones
point to different locations. To ensure the uniqueness of mapping we contrain
the transformation matrix P to have full rank.

5

2.4 Illustrative example

Suppose we want to optimize the following code by memory layout reorganization:

for(int i=0; i<100; i++){

for(int j=0; j<100; j++)

OldArray[i+2*j][3*j] = 5;

}

We can get the H matrix by directly analyzing the code and solve for P matrix by
finding a feasible integer solution of the linear equations (the solution P results in
δ′n = 1):

H =

[
1 2
0 3

]
, P =

[
3 −2
5 −3

]
, and PH =

[
3 0
5 1

]
The IR code (just the part involving array indices) generated by the original code:

%2 = load i32* %j, align 4

%mul = mul nsw i32 3, %2

%3 = load i32* %i, align 4

%4 = load i32* %j, align 4

%mul4 = mul nsw i32 2, %4

%add = add nsw i32 %3, %mul4

%arrayidx = getelementptr inbounds [500 x [500 x i32]]*

%oldArray, i32 0, i32 %add

%arrayidx5 = getelementptr inbounds [500 x i32]*

%arrayidx, i32 0, i32 %mul

store i32 5, i32* %arrayidx5, align 4

br label %for.inc

Using the framework we proposed and the solution P matrix, the corresponding IR
code is transformed to the following:

%2 = load i32* %j, align 4

%mul = mul nsw i32 3, %2

%3 = load i32* %i, align 4

%4 = load i32* %j, align 4

%mul4 = mul nsw i32 2, %4

%add = add nsw i32 %3, %mul4

%TMP = mul i32 %mul, -3

%TMP1 = mul i32 %add, 5

%TMP2 = add i32 %TMP, %TMP1

%TMP3 = mul i32 %mul, -2

%TMP4 = mul i32 %add, 3

%TMP5 = add i32 %TMP3, %TMP4

%NewIndex = getelementptr inbounds [600 x [600 x i32]]*

6

%NewArray, i32 0, i32 %TMP5

%NewIndex6 = getelementptr inbounds [600 x i32]*

%NewIndex, i32 0, i32 %TMP2

store i32 5, i32* %NewIndex6, align 4

br label %for.inc

which is effectively equivalent to the following C code:

for(int i=0; i<100; i++){

for(int j=0; j<100; j++)

NewArray[3*i][5*i+j] = 5;

}

From the code we can see it results in better locality of the inner loop.

2.5 Dealing with multiple access patterns

When there are multiple access patterns (e.g., multiple loops for the same array), if we
apply our proposed algorithm naively, we can create a corresponding memory layout
and keep this newest layout(s) (keep multiple copies only when necessary, e.g. for
branches) for each access pattern. However in real experiments we found that it is too
costly to create new arrays each time and update the correspondence. Hence we adopt
the second approach, i.e., find the most suitable memory layout for all access patterns.
We extend our algorithm to handle multiple access patterns as the following:
Denote the multiple access patterns in the code as M1, ...,Mr indexed by k = 1, ..., r.
When the innermost induction variable of access pattern Mk increments by δn,k, find
the matrix P that satisfy:

min
P

∑
k

wkδ
′
d,k subject to

[0 ... δ′d,k]> = PH[0 ... δn,k]>,∀k
δ′d,k ≥ 0,∀k

where wk represents the weight given by access pattern Mk. In the experiments we use
the number of iterations executed by access pattern Mk as wk. Intuitively, the larger
the number of iterations executed by a certain access pattern, the higher weight we
should impose on the objective function. Notice we add the nonnegative constraint
δ′d,k ≥ 0 since we assume cache works in a look-ahead way. Again we can use integer
programming methods to solve the system of linear equations with constraints.

3 Experimental Setup

We use llvm on the Ubuntu image for generating IR code and also for transforming
IR code by running function/loop passes. To measure the cache performance of the

7

transformed code, we use PIN tools (<www.pintool.org>) as the cache simulators and
compare the following metrics:
(1) Load-Hits/Load-Misses/Load-Accesses,
(2) Store-Hits/Store-Misses/Store-Accesses,
(3) Total-Hits/Total-Misses/Total-Accesses.

To assess the performance of the proposed algorithm, we automatically generate
a microbenchmark that represents different dimension array access, different levels of
nested loop, and multiple access patterns. Parameters that are tunnable in generating
a microbenchmark includes dimension of the array, loop depth, and induction variable
matrix for each access. To test different access patterns more thoroughly, we explore
all possible induction variable matrix with coefficient within 0-3, which means 256
combinations for 2-dimension with 2-level loops. We compare the performance under
each configuration to evaluation the strength and weakness of our algorithm.

4 Experimental Evaluation

4.1 Results on the simple example

As an example, we run cache simulators on the test example. The cache performance
results generated by PIN tools are as the following:

8

<www.pintool.org>

In the simple example we only have store instructions that rely on array locality.
Hence the key metric we need to compare here is the second one: Store-Hits/Store-
Misses/Store-Accesses. As we can see, the Store-Hits rate has been improved from
88.24% to 95.42%, which effectively demonstrates the resulting better locality by using
our framework.

4.2 Results on microbenchmarks

To scale up the evaluation and test the performance in a more systematic way, we
generated a microbenchmark as described in last section.
Figure 2 shows the results of Load/Store Hit Rate when dimension=2 and looplevel=2.
First, in both figures, though our algorithm does not improve performance in about
half the code, it can be seen that our algorithm improves the performance with more
than 2% in cache hit rate for about 40% of the test code, and in best case, we can
improve the performance by about 8% for Load Hit and 25% for Store Hit. Also the
improvement is with discrete values which shows caching effect is not continuous. It
also shows for a few number of code (about 5%), our algorithm actually reduces the
cache hit rate. We attempted to dig in the reason for that, but it is challenging since
PIN simulator we use works as a black box, and we believe such degradation is due to

9

0"

1"

2"

3"

4"

5"

6"

Load_2/2" Store_2/2" Load_2/3" Store_2/3" Load_3/2" Store_3/2"

Figure 1: Bar chart of average improvements - A/B: A dimension, B loop depth.

0 50 100 150 200 250 300
−4

−2

0

2

4

6

8

10

Load Hit Rate Improvement

rank

i
m
p
r
o
v
e
m
e
n
t

(
%
)

0 50 100 150 200 250 300
−10

−5

0

5

10

15

20

25

Store Hit Rate Improvement

rank

i
m
p
r
o
v
e
m
e
n
t

(
%
)

Figure 2: Load/Store Hit Rate when dimension=2 and looplevel=2

the real caching replacement policy that is more complicated than we expected.
Figure 3 shows the results of with three level loops. Firest, the result looks similar

to that of Figure 2, which shows our robustness when increasing loop levels. In fact, the
performance improvement in Store Hit can be much higher than Store Hit in two-level
loops in its best cases, achieving about 50% improvement. We believe it is because
the nested loop reduces the performance of original but our algorithm still can find the
best results.

Figure 4 shows the results of with three dimension array. The improvement is much
less significant in this case, but we still manage to improve for most of the code by
more than 1% improvement.

Figure 5 shows the results of multiple access patterns. We compare if the two
accesses are with different weight. The two accesses in the left one has equal weights
(both 10K iterations), and the two accesses in the right one has very different weights
(10K and 100 iterations). It shows that the improvement with two different weighted
accesses has slightly higher improvement than two with equal weights. This means

10

0 50 100 150 200 250 300
−4

−2

0

2

4

6

8

10

Load Hit Rate Improvement

rank

i
m
p
r
o
v
e
m
e
n
t

(
%
)

0 50 100 150 200 250 300
−20

−10

0

10

20

30

40

50

Store Hit Rate Improvement

rank

i
m
p
r
o
v
e
m
e
n
t

(
%
)

Figure 3: Load/Store Hit Rate when dimension=2 and looplevel=3

0 50 100 150 200 250 300
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Load Hit Rate Improvement

rank

i
m
p
r
o
v
e
m
e
n
t

(
%
)

0 50 100 150 200 250 300
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Store Hit Rate Improvement

rank

i
m
p
r
o
v
e
m
e
n
t

(
%
)

Figure 4: Load/Store Hit Rate when dimension=3 and looplevel=2

11

0 50 100 150 200 250 300
−15

−10

−5

0

5

10

15

20

25

Store Hit Rate Improvement

rank

i
m
p
r
o
v
e
m
e
n
t

(
%
)

0 50 100 150 200 250 300
−15

−10

−5

0

5

10

15

20

25

30

Store Hit Rate Improvement

rank

i
m
p
r
o
v
e
m
e
n
t

(
%
)

Figure 5: Store Hit Rate of two different accesses. Dimension=2 and looplevel=2.
The two accesses in the left one has equal weights (both 10K iterations), and the two
accesses in the right one has very different weights (10K and 100 iterations)

our algorithm can still strike a good balance even when compromising one access for
another.

5 Surprises and Lessons Learned

1. When reorganizing the memory layout by solving linear equations, we find that the
solutions do not necessarily make the transformed indices nonnegative. Currently we
add an offset (can be computed by the size of the array) to the transformed array so
that the transformed indices are guaranteed to be nonnegative.

2. When solving the linear equations for more than three variables, we find it is gener-
ally hard to get integer solutions. For two variables we can use the extended Euclidean
algorithm, and for three variables we can further extend the algorithm by finding a par-
ticular solution of one variable first. However there does not exist general algorithms
for more than three variables. Currently we are using integer programming method
(searching solutions over a relatively small range), which is able to solve equations
involving any number of variables. But it would be relatively slow when the searching
range increases or when the number of variables is large.

6 Conclusion and Future Work

In this project we implemented memory layout reorganization in order to achieve array
locality optimization. In contrast to tiling methods, we are able to optimize the code
under the constraint that instruction orders should be fixed. We present a general

12

framework to reorganize memory layout, and propose a novel algorithm to find a bet-
ter layout based on the access patterns we have analyzed. Moreover we extend our
algorithm to handle the case when there are multiple access patterns in the code. Ex-
periments on the benchmark show that our algorithm did improve cache performance.

For future work discussion, as now we only consider integer arrays in this project since
it is easier to analyze and reorganize, in the future we may consider more complicated
type of arrays, such as struct arrays. Moreover, we only did static analysis on the
code, another possibility in the future can be dynamic analysis so that more com-
plicated access patterns (indices not determined until execution) can be utilized for
memory layout reorganization.

Distribution of Total Credit
The design of algorithms and the experiments are evenly distributed among group
members, so we think the distribution of total credit should be 50%-50%.

7 References

[1] M. J. Wolfe. More iteration space tiling.
[2] A Compiler Framework for Optimization of Afne Loop Nests for GPGPUs, L Zuck,
A Pnueli, B Goldberg, C Barrett, Y Fang
[3] Automatic Creation of Tile Size Selection Models, Tomofumi Yuki, Lakshminarayanan
Renganarayanan, Sanjay Rajopadhye, Charles Anderson, Alexandre Eichenberger and
Kevin O’Brien.
[4] Parameterized Tiling Revisited, Muthu Manikandan Baskaran, Albert Hartono,
Sanket Tavarageri, Tom Henretty, J Ramanujam, and P Sadayappan
[5] Optimization Principles and Application Performance Evaluation of a Multithreaded
GPU Using CUDA. S Ryoo, CI Rodrigues, SS Baghsorkhi
[6] Logical inference techniques for loop parallelization. Cosmin E. Oancea and Lawrence
Rauchwerger.
[7] Speculative separation for privatization and reductions. Nick P. Johnson, Hanjun
Kim, Prakash Prabhu, Ayal Zaks, and David I. August.

13

	Introduction
	Problem
	Our approach
	Related Work
	Contribution

	Approach
	Framework
	Core algorithm
	Boundary Issues
	Illustrative example
	Dealing with multiple access patterns

	Experimental Setup
	Experimental Evaluation
	Results on the simple example
	Results on microbenchmarks

	Surprises and Lessons Learned
	Conclusion and Future Work
	References

