
Distributed Scalable Content Discovery
Based on Rendezvous Points

Jun Gao

Ph.D. Thesis Proposal

Computer Science Department
Carnegie Mellon University

May 20th, 2002



Jun Gao Carnegie Mellon University 2

Outline

ÿ Content Discovery System (CDS)
ÿ Thesis statement
ÿ Related work
ÿ Proposed CDS system
ÿ Research plan
ÿ Time line
ÿ Expected contributions



Jun Gao Carnegie Mellon University 3

Content Discovery System (CDS)

ÿ Distributed system that allows
the discovery of contents
ÿ Three logical entities

ÿ “content name” discovery
ÿ Broad definition of “content”

ÿ Example CDS systems
ÿ Service discovery

ÿ Peer-to-peer object sharing

ÿ Pub/sub systems

ÿ Separation of content
discovery and content delivery

R
R

S

C

S S

C
C

S: content providers (servers)
C: content consumers(clients)
R: content resolvers

R

R R R

?
?

?



Jun Gao Carnegie Mellon University 4

Example: A Highway Monitoring Service

ÿ Allows users to discover traffic status
observed by cameras and sensors
ÿ What is the speed around Fort Pitt

tunnel?

ÿ Are there any accidents on I-279?
ÿ What sections around Pittsburgh are

congested?

ÿ Characteristics of this service
ÿ Support large number of devices

ÿ Devices must update frequently
ÿ Support high query rate

Snapshot from: Traffic.com



Jun Gao Carnegie Mellon University 5

Thesis Statement

In this thesis, I propose a distributed and scalable
approach to content discovery that supports flexible and
efficient search of dynamic contents.



Jun Gao Carnegie Mellon University 6

CDS Properties

ÿ Contents must be searchable
ÿ Find contents without knowing the exact names
ÿ Contents can be dynamic
ÿ Content names are not hierarchical

ÿ Scalability
ÿ System performance remains as load increases

ÿ Distributed and robust infrastructure
ÿ No centralized administration

ÿ Generic software layer
ÿ Building block for high level applications



Jun Gao Carnegie Mellon University 7

Related Work

ÿ Existing systems have difficulties in achieving both
scalability and rich functionality

ÿ Centralized solution
ÿ Central resolver(s) stores all the contents
ÿ Supports flexible search
ÿ Load concentration at the central site
ÿ Single point-of-failure.

ÿ Distributed solution
ÿ Graph-based schemes
ÿ Tree-based schemes
ÿ Hash-based schemes



Jun Gao Carnegie Mellon University 8

Distributed Solutions

ÿ Graph-based systems
ÿ Resolvers organized into a

general graph
� Registration flooding

scheme

� Query broadcasting
scheme

ÿ Not scalable

ÿ Robust infrastructure

ÿ Tree-based systems
ÿ Resolvers organized into a

tree

ÿ Scale well for hierarchical
names
� E.g., DNS
� Hard to apply to non-

hierarchical names

ÿ Robustness concern

ÿ Load concentration close to
the root



Jun Gao Carnegie Mellon University 9

Hash-based Lookup Systems

ÿ Resolvers form an overlay network based on hashing
ÿ E.g., Chord, CAN, Pastry, Tapestry

ÿ Provide a simple name lookup mechanism
ÿ Associating content names with resolver nodes

� No flooding or broadcasting

ÿ Do not support search
ÿ Clients must know the exact name of the content

ÿ Our system utilizes the hash-based lookup algorithms



Jun Gao Carnegie Mellon University 10

Proposed CDS system

ÿ Basic system design
ÿ Naming scheme
ÿ Resolver network
ÿ Rendezvous Point (RP) based scheme

ÿ System with load balancing
ÿ Load concentration problem
ÿ Load Balancing Matrices (LBM)



Jun Gao Carnegie Mellon University 11

Attribute-Value Based Naming Scheme

ÿ Content names and queries are
represented with AV-pairs
ÿ Attributes may be dynamic

ÿ One attribute may depend on another
attribute

ÿ Searchable
ÿ Query is a subset of the matched name

ÿ 2n – 1 matched queries for a name that
has n AV-pairs

ÿ Example queries
ÿ find out the speed at I-279, exit 4, in

Pittsburgh

ÿ find the highway sections in Pittsburgh
that speed is 45mph

Camera number = 5562
Camera type = q-cam
Highway = I-279

Exit = 4
City = pittsburgh
Speed = 45mph
Road condition = dry

Highway = I-279
Exit = 4

City = pittsburgh

City = pittsburgh
Speed = 45mph

Service description (SD)

Query 1:

Query 2:



Jun Gao Carnegie Mellon University 12

Hash-based Resolver Network

ÿ Resolvers form a hash-based
overlay network
ÿ Use Chord-like mechanisms

ÿ Node ID computed based on a
hash function H

ÿ Node ID based forwarding
within the overlay
� Path length is O(log Nc)

ÿ CDS is decoupled from
underlying overlay mechanism
ÿ We use this layer for content

distribution and discovery

IP

Hash-based
Overlay

CDS

Applications

R

R

R
R

RR

Overlay links



Jun Gao Carnegie Mellon University 13

Rendezvous Point (RP) -based Approach

ÿ Distribute each content
name to a set of resolver
nodes, known as RPs
ÿ Queries are sent to proper

RPs for resolution

ÿ Guidelines
ÿ The set should be small

ÿ Use different set for different
names

ÿ Ensure that a name can be
found by all possible
matched queries

SD1

RP1

SD2

RP2

Q



Jun Gao Carnegie Mellon University 14

Registration with RP nodes

ÿ Hash each AV-pair individually
to get a RP node ID
ÿ Ensures correctness for

queries

ÿ RP set size is n for a name
with n AV-pairs

ÿ Full name is sent to each node
in the RP set
ÿ Replicated at n places

ÿ Registration cost
ÿ O(n) messages to n nodes

N3
N5

SD1

RP1

N4 N6

SD2

RP2

SD1: {a1=v1, a2=v2, a3=v3, a4=v4)
SD2: {a1=v1, a2=v2, a5=v5, a6=v6)

N2

H(a1=v1) = N1, H(a2=v2) = N2

N1



Jun Gao Carnegie Mellon University 15

Resolver Node Database

ÿ A node becomes the
specialized resolver for the AV-
pairs mapped onto it
ÿ Each node receives equal

number of AV-pairs
� k = Nd / Nc

ÿ Size of the name database is
determined by the number of
names contain each of the k
AV-pair

ÿ Contain the complete AV-pair
list for each name
ÿ Can resolve received query

completely

N1:
(a1=v1)
SD1: a1=v1, a2=v2, a3=v3, a4=v4
SD2: a1=v1, a2=v2, a5=v5, a6=v6
SD3: a1=v1, …
…
(a7=v7)
…

N2:
(a2=v2)
SD1: a2=v2, a1=v1, a3=v3, a4=v4
SD2: a2=v2, a1=v1, a5=v5, a6=v6
SD4: a2=v2, …
…

Nd: Number of different AV-pairs
Nc: Number of Resolver nodes
Navi: Number of names that contain avi

ÿ
=

=
k

i

aviNt
1



Jun Gao Carnegie Mellon University 16

Query Resolution

ÿ Client applies the same hash
function to m AV-pairs in the
query to get the IDs of
resolver nodes
ÿ Query can be resolved by

any of these nodes

ÿ Query optimization algorithm
ÿ Client selects a node that

has the best performance
� E.g., probe the database

size on each node

ÿ Query cost
ÿ O(1) query message

ÿ O(m) probe messages

SD1

RP1

SD2

RP2

N2N1

Q:{a1=v1, a2=v2}

H(a1=v1) = N1, H(a2=v2) = N2

?



Jun Gao Carnegie Mellon University 17

Load Concentration Problem

ÿ Basic system performs well under balanced load
ÿ Registrations and queries processed efficiently

ÿ However, one node may be overloaded before others
ÿ May receive more names than others

� Corresponds to common AV-pairs in names

ÿ May be overloaded by registration messages
ÿ May be overloaded by query messages

� Corresponds to popular AV-pairs in queries



Jun Gao Carnegie Mellon University 18

Example: Zipf distribution of AV-pairs

ÿ Observation: some AV-pairs are
very popular, and many are
uncommon
ÿ E.g. speed=45mph vs.

speed=90mph

ÿ Suppose the popularity
distribution of AV-pairs in
names follow a Zipf distribution

ÿ Example:
ÿ 100,000 names have the most

popular AV-pair
� Will be mapped onto one node!

ÿ Each AV-pair ranked from 1000
to 10000 is contained in less
than 100 names 10

100

1000

10000

100000

1 10 100 1000 10000 AV-pair
rank

#of names Ns=100,000, Nd=10,000,
k=1, α=1

αi
kNN savi

1⋅⋅=

Ns: total number of names
Nd: number of different AV-pairs
i: AV-pair rank(from 1 to Nd)
k: constant
α: constant near 1



Jun Gao Carnegie Mellon University 19

CDS with Load Balancing

ÿ Intuition
ÿ Use a set of nodes for a

popular AV-pair

ÿ Mechanisms
ÿ Partition when registration

load reaches threshold
ÿ Replicate when query load

reaches threshold

ÿ Guideline
ÿ Must ensure registrations

and queries can still find RP
nodes efficiently

Thresholds maintained on each node

TSD : Maximum number of content names can host
Treg : Maximum sustainable registration rate
Tq : Maximum sustainable query rate



Jun Gao Carnegie Mellon University 20

Load Balancing Matrix (LBM)

ÿ Use a matrix of nodes to
store all names that contain
one AV-pair
ÿ RP Node � RP Matrix

ÿ Columns are used to share
registration load

ÿ Rows are used to share
query load

ÿ Matrix expands and
contracts automatically
based on the current load
ÿ Self-adaptive

ÿ No centralized control

1,1

1,2

2,1

2,2

1,3

3,1

3,2

2,3 3,3

Partitions

Replicas

N1
(p,r) = H(av1, p, r)

0,0

Head node

Head node: N1
(0,0)=H(av1, 0, 0),

stores the size of the matrix (p, r)

Nodes are indexed

Matrix for av1



Jun Gao Carnegie Mellon University 21

Registration

ÿ New partitions are introduced
when the last column reaches
threshold
ÿ Increase the p value by 1
ÿ Accept new registrations

ÿ Discover the matrix size (p, r)
for each AV-pair
ÿ Retrieve from head node N1

(0,0)

ÿ Binary search to discover
ÿ Use previously cached value

ÿ Send registration to nodes in
the last column
ÿ Replicas

ÿ Each column is a subset of the
names that contain av1

1,1

1,2

2,1

2,2

1,3 2,3

SD1:{av1, av2, av3}

0,0

p=?

p=3

Matrix for av1

3,1

3,2

3,3

p++



Jun Gao Carnegie Mellon University 22

Query

ÿ Select a matrix with the fewest
columns
ÿ Small p � few partitions

ÿ Sent to one node in each
column
ÿ To get all the matched contents

ÿ Within each column, sent to a
random node
ÿ Distribute query load evenly

ÿ New replicas are created when
the query load on a node
reaches threshold
ÿ Increase r value by 1
ÿ Duplicate its content at node

N1
(p,r+1)

ÿ Future queries will be shared by
r+1 nodes in the column

1,1

1,2

2,1

2,2

1,3

3,1

3,2

2,3 3,3

Q:{av1, av2}

Matrix for av1

Matrix for av2



Jun Gao Carnegie Mellon University 23

Matrix Compaction

ÿ Smaller matrix is more efficient
for registrations and queries

ÿ Matrix compaction along P
dimension
ÿ When earlier nodes in each row

have available space
� Push
� Pull

ÿ Decrease p value by 1

ÿ Matrix compaction along R
dimension
ÿ When observed query rate

goes below threshold
ÿ Decrease r value by 1

ÿ Must maintain consistency

1,1

1,2

2,1

2,2

1,3

3,1

3,2

2,3 3,3

P

R

0,0

Matrix for av1



Jun Gao Carnegie Mellon University 24

System Properties

ÿ From a resolver node point
of view
ÿ Load observed is upper

bounded by thresholds

ÿ From whole system point of
view
ÿ Load is spread across all

resolvers
ÿ System does not reject

registrations or queries until
all resolvers reach
thresholds

ÿ Registration cost for one AV-
pair
ÿ O(ri) registration messages,

where ri is the number of
rows in the LBM

ÿ Query cost for one AV-pair
ÿ O(pi) query messages,

where pi is the number of
columns in the LBM

q

av
i

T

Q
r

i=

),max(
reg

av

SD

av
i

T

R

T

N
p

ii=



Jun Gao Carnegie Mellon University 25

Matrix Effects on Registration and Query

ÿ Matrix grows as registration and query load increase
ÿ Number of resolver nodes in one matrix

� mi= ri pi

ÿ Matrices tend not to be big along both dimensions
ÿ Matrix with many partitions gets less queries

� Query optimization algorithm
� Large p � small r

ÿ Matrix with fewer partitions gets more queries
� Small p � large r
� Replication cost small

ÿ Will study the effects in comprehensive system
evaluation



Jun Gao Carnegie Mellon University 26

Roadmap

ÿ Content Discovery System (CDS)
ÿ Thesis statement
ÿ Related work
ÿ Proposed CDS system
ÿ Research plan
ÿ Time line
ÿ Expected contributions



Jun Gao Carnegie Mellon University 27

Implementation Plan

ÿ Simulator implementation
ÿ For evaluation under controlled environment
ÿ Plan to use Chord simulator as a starting point

ÿ Actual implementation
ÿ Implement CDS as a generic software module
ÿ Deploy on the Internet for evaluation
ÿ Implement real applications on top of CDS



Jun Gao Carnegie Mellon University 28

Evaluation Plan

ÿ Work load generation
ÿ Synthetic load

� Use known distributions to model AV-pair distribution in names and
queries

ÿ Benchmarks
� Take benchmarks used in other applications, e.g., databases

ÿ Collect traces
� Modify open source applications to obtain real traces

ÿ Performance metrics
ÿ Registration and query response time

ÿ Success/blocking rate
ÿ System utilization



Jun Gao Carnegie Mellon University 29

System Improvements

ÿ Performance
ÿ Specialized resolvers

� Combine AV-pairs

ÿ Search within a matrix

ÿ Functionality
ÿ Range search

� Auxiliary data structure to index the RP nodes

ÿ Database operations
� E.g., “project”, “select”, etc.



Jun Gao Carnegie Mellon University 30

Specialized Resolvers

ÿ Problem
ÿ All the RP matrices corresponding

to a query are large, but the
number of matched contents is
small
� Q:{device=camera,

location=weh7110}

ÿ Idea
ÿ Deploy resolvers that correspond

to the AV-pair combination

ÿ Mechanism
ÿ First level resolver monitors query

rate on subsequent AV-pair
ÿ Spawn new node when reaches

threshold
ÿ Forward registration to it

N1
N12

C

S SD:{av1, av2}

H(av1)
H(av1,av2)

Register

Re-register

Reply

Query

Q:{av1, av2}



Jun Gao Carnegie Mellon University 31

Improve Search Performance within LBM

ÿ For a query, the selected
matrix may have many
partitions
ÿ Reply implosion

ÿ Organize the columns into
logical trees
ÿ Propagate query from root to

leaves
ÿ Collect results at each level

� Can exercise “early termination”

N1

C

(1,r)

N1
(2,r)

N1
(3,r)

N1
(4,r)

N1
(5,r)

N1
(6,r)

N1
(7,r)

Query

Reply



Jun Gao Carnegie Mellon University 32

Support for Range Search

ÿ Hash makes range search
difficult
ÿ No node corresponds to a1>26

ÿ Nodes do not know each other
even if share attribute

ÿ Mechanism
ÿ Use an auxiliary data structure to

store the related nodes
� E.g., B-tree stored on N=H(a1)

ÿ Registration and query go
through this data structure to
collect the list of nodes to be
visited

10 20

4 8 12 17 26 30

a1=4 a1=8 a1=12 a1=17 a1=30a1=26

Q:{ 8 < a1 < 30}

N



Jun Gao Carnegie Mellon University 33

Time Line

Tasks Summer’02 Summer’03Fall’02 Spring’03 Fall’03

Basic CDS simulator
implementation

Incorporate load
balancing mechanisms

Synthetic load and
Benchmark evaluation

Actual implementation

Collect traces and
comprehensive evaluation

System improvement

Internet evaluation

Writing



Jun Gao Carnegie Mellon University 34

Expected Contributions

ÿ System
ÿ Demonstrate the proposed CDS provides a scalable solution

to the content discovery problem

ÿ Architecture
ÿ Show content discovery is a critical layer in building a wide

range of distributed applications

ÿ Software
ÿ Contribute the CDS software to the research community and

general public


