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Abstract. We show that a constructive modal logic with propositions
OA (necessity) and QA (possibility) can be interpreted as a type sys-
tem for a distributed programming language via a Curry-Howard iso-
morphism. The type [JA describes mobile terms, whose meaning and
well-formedness are location independent, and QA describes immobile
terms which might not have a well-defined meaning outside of a particu-
lar location. The programming model assumes no knowledge of concrete
locations present in the distributed environment. We give an operational
semantics based on processes and an abstract notion of locality. To show
how modal types preserve soundness in the presence of localized terms,
we extend the core calculus with effects and a monadic type of computa-
tions (OA. The modal type system ensures that localized values do not
escape the location where they are well-defined, and that all effects are
executed in some definite location. We also show how to extend the cal-
culus with fixpoints and globally accessible locations, which are needed
to express various kinds of recursive computation.

1 A Calculus of Modal Logic

In the model-theoretic presentation of modal logic, truth values for all propo-
sitions are determined relative to a “world” with some distinguishing charac-
teristics. In a proof-theoretic development, worlds are treated abstractly, but
the consequences of relativized truth remain. Essentially, modal logics have the
ability to distinguish various modes of truth for a proposition A, characterizing
where A is known to be true.

The types, syntax, and static semantics of our calculus are derived from
a constructive formalization of modal logic developed by Pfenning and Davies
[13]. This was chosen over other intuitionistic formalisms, such as Simpson’s
[15], since proof reduction and substitution have simple explanations and the
logic does not rely on explicit reasoning about worlds and accessibility. The
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Pfenning/Davies formalism is based on three primitive judgments: A valid,
meaning that A is true in every accessible world; A true, meaning that A is
locally true “here”; and A poss, meaning that A holds in some accessible world.
Note that validity (A valid) is also commonly referred to as necessary truth.
These judgments and the propositions A — B (implication), A (necessity),
and QA (possibility) are defined in relationship to one another, culminating in
a natural deduction system for a modal logic obeying axioms characteristic of
constructive S4. Logical entailment is given by inference rules for deriving the
judgments A; I' - A true and A; I' - A poss, where A are assumptions A valid,
and I' are assumptions A true. The intuition behind our application of modal
logic to distributed programming is the following: If we interpret propositions
as types and proofs as programs, it is also quite natural to interpret the logical
worlds as sites for computation. Furthermore, we see that validity corresponds to
mobility or portability of terms between locations, and possibility corresponds to
immobility or locality. A more detailed discussion of the background and logical
motivation of the calculus can be found in [11].

For the concrete syntax of our calculus, we adopt the term assignment of
Pfenning and Davies [13] with a few extensions. Two sorts of variable (x and
u) are used to represent local hypotheses A true and mobile hypotheses A valid,
respectively. The remote expressions are those objects which are proofs of A poss,
whereas terms are those which prove A true. There is no need for a separate cat-
egory corresponding to A valid, since validity is defined as deduction of A true
in the absence of locally true assumptions.

Location Label w == r | [
Term M,N z=r | x | v | Xx:AM | MN
| boxM | let boxu=MinN
| diaFE
I | {M} | 1let boxu=M inF
| let diax=MinF

Remote Expression E, F :

Location labels r and [ are used to represent spatial distribution of proof terms
and expressions during computation, and are not present in the source language.
Label r will play a role similar to a hypothesis A valid, and [ the role of a
hypothesis A poss.

Type A,B == A—-B | OA | 04

Runtime Context A == - | A,r=zA | Al+A
Mobile Context A == - | Ayu: A
Local Context I' := | IN'x:A
Constraint ¢, == T | w<aw' | w=w | ¢AY
Location Index J == w | J<

Contexts A and I' give types for mobile and local variables, respectively. The
runtime context A assigns types to labels w, characterizing the distributed en-



vironment in which we regard M or E. The notation A\ is read as “A subject
to 9”. Constraints 1) will determine which hypotheses in A are accessible from
location J. Finally, J is an index specifying either a particular location (J = w),
or a kind of quantification over locations accessible from w (J = w<). We regard
w <4< as equivalent to w< by definition, so repetitions of < are not significant.

Our typing judgments are as follows: A\¢Y; A;I" F; M : A is understood to
mean that M is a term of type A at location J, under the assumptions A\y; A; I'.
Similarly, A\¢; A; ' by E + A means that expression E has type A at location
J. Whenever J = w<, the judgment A\Y; A; I Fypyq M : A means that M is
well-formed at all locations accessible from w.

Ounly label typing interacts with assumptions A\, hence we abbreviate
MNY; ATy M 2 Aas A;T Fyp M ;A assuming a constant A\ available
throughout. The fragment related to A — B and local computation consists
of the usual typing rules for local variables (x : A), lambda abstraction, and
application.

h ANx: Ay M: B I
AN x:ATMFyjx: A P A;FI‘JAXZA.MZA—)B%

ATF, M:A—»B A;T'H;N:A
AT’y M N:B

- F

The necessity (0A) fragment describes the properties of mobile terms. Oper-
ationally speaking, let boxu=box M in N will spawn M for evaluation at an
arbitrary location. The variable u :: A gives us access to the value of M in the re-
mainder of the program. Mobility for M is authorized by rule 007, which requires
M be I'-closed and well-formed at all locations accessible from .J.

As-bga M A ar Ay M:OA Au:zA;T'-5;N:B
A;T'Fybox M :OA A;T'Fjy let boxu=M inN : B

OF

*

Auz A A T'Fyu: A hyp
The possibility (¢A) fragment characterizes computations making use of im-
mobile resources. Conceptually, let diax=dia Ein F’, sends F' to the location
where the value of E, bound to (x : A), resides. In cases when E = [, F' will move
to a remote location I, but when E = {M} no actual movement of F' is required.
Mobility of F' is authorized by OFE, which requires that F' be nearly I'-closed
(only the local variable x : A is permitted), and well-formed at all locations
accessible from J. Note that mobile variables (u :: A) in A remain available in
F', despite the shift in location.

ATF; M- A poss ARy M: QA A;X:A"J<1F+B<>E
ATHy{M}+ A A;T'Fjylet diax=M inF = B
A TH;E+A oI ATy M:OA Auw:s: A;T'-; F+B OE,

A;IM'FydiaFE: QA A;I'Fj let boxu=M inF + B



The remaining rules characterize location labels r and [/, governing which remote
locations are available relative to location J. The auxiliary judgment 9 +* w<w’
means that w' is accessible from w under constraints ¢. Constraint entailment
¢ 2% 1, presented in section 7.4 of the appendix, defines a small theory of
accessibility (w <w') and equivalence (w = w') of locations.

A=Ay, r" A A Y EO Y quw res A=A, A A Y EO Y quw
MNY; ATy r' o A MNY; AT '+ A

ures

A=Al = A Ay pFGwal
MNp; AT, U+ A

loc

The operational intuition behind accessibility and label typing at w is that we
may synchronize or pull result values from 7' if ' <w. Dually, we may jump
to a location I" if w <l'. In this light, rule res and loc are obvious. Rule ures
incorporates an assumption of transitive accessibility, since if ' : A at w then it
must also be well-formed at all locations accessible from w. Note that an analogue
of ures for I' would not be logically sound without symmetric accessibility.

2 Extension with Effects

While the calculus of modal logic suggests that intrinsically immobile things
exist, it does not tell us what they are concretely. The terms of the pure calculus
are location-neutral, in the sense that all I'-closed terms M can be boxed as
box M : OA to produce a mobile term. Since the expression language is based
on the primitive form of expression {M} + A, the encapsulation (dia {M}): 0 A
represents a sort of self-imposed immobility which is not intrinsic to M.

We now instantiate the calculus with a class of objects for which location
inherently matters. The modal type discipline will assure us that well-formed
programs remain safe, despite the presence of location dependent terms. Effectful
computations are a suitable example of location dependence for two reasons.
First, our choice of where to execute effects may alter the observable behavior
of the distributed program. Second, some primitive effects or terms cannot be
interpreted correctly when removed from the context of the local machine state.

2.1 Primitive Effects and Typing

We will use a monadic type (A to distinguish effectful computations produc-
ing A from ordinary pure terms. Other, more precise type systems for effects
are possible, but a simple monadic encapsulation of effects is adequate for our
purposes. One can motivate the monadic type QA through a discussion of lax
logic [13], but such a detour is beyond the scope of this paper.

As a simple example, we consider mutable references. References can be inte-
grated into the modal calculus in such a way as to ensure that reference cell val-
ues, which are addresses pointing into a local store, never flow between locations.



Secondarily, this preserves structure sharing semantics, and makes synchronized
access to shared references easier to implement, since all operations on a cell are
performed at one definite location.

We introduce a new form of expression, the effectful computation, in addition
to the remote expressions of the modal calculus. The reference cell primitives
are included directly in the source language as local computations.!

Type A,B =z= ... | unit | refd

Term M,N:=:= ... | O | a¥ | compP
Local Computation P,Q == [M] | let compx=MinQ
| let boxu=M inQ
| refM | 'M | M:=N
Remote Computation E,F :=1 | {M} | let boxu=M inF
| let diax=MinF
| {P} | 1let compx=MinF

The effectful computations P perform a sequence of primitive effects locally,
without jumping to some other location. The remote computations (previously
remote expressions) E and F', may now include effects executed here or remotely
({P} and let compx=M inF).

We introduce a new form of judgment P ~ A, meaning that P is a local
computation of type A. Rule comp allows us to regard term M as a trivial
computation. Note that rule (I for typing suspended computations (comp P)
requires that P be a purely local computation (P~ A). Operationally, the elimi-
nation form let compx=comp P in () corresponds to sequential evaluation of P
followed by @, binding the result of P to local variable (x : A) in ). Rule OE;
plays a role analogous to OE,, allowing us to spawn mobile terms for evaluation
elsewhere in the course of an effectful computation.

A;T'Fy P A oI A TFgM:QA A TNx:AF;Q+ B OF
A;TEycompP: (A A;TMbjylet compx=M in@Q~ B
ATy M A ATy M:OA Au=:A;T'-;Q~ B
comp OE;

ARy [M1s A A; Tty let boxu=M inQ@Q~ B

It is especially instructive to compare elimination forms for (O (above) and ¢
(reproduced below). Local computations P produce a local value, and rule OF
allows us to assume x : A, in addition to the others in I'. On the other hand,
the rule for QO F requires us to discard I" when passing from one location to the
remote location where a binding x : A is available. Local term values bound
to variables in I" are stable under effects, but not under a jump to some other
location.

ATy M:0A Asx: AR F+B
A;I'kjylet diax=M inF + B

! In situations where different locations support different effects, an encoding of prim-
itives as functions (Aq *---* Ax) = (OB could be used. See section 7.1, for example.

OF



Finally, the rules poss’ and QE, confer the ability to execute effects remotely.
That is, we may mix freely the execution of local effects let compx=M inF
with jumps to remote locations let diax=M inF.

ARy P A , AN TR M:QA ANx:AR; F+B
A;T &y {P}+Aposs A;T'bFjlet compx=M inF + B

OFL,

In the context of a store typing © mapping addresses a¥ to types A, we can
describe the typing rules for primitive effects. © and A\ are omitted for clarity,
except in typing rule addr. © does not interact with the other typing rules.

Store Typing O, == - | Oy,a": A
@:Ql,awlA,@z dd .
O; N\Y; A; Ty a® s ref A aadr A; 'y O tunit unit
A;THy MG A A;T'Fy M :ref A

A;T'Fyjref M~ ref A talloc A;TFy M~ A tget

A;T'FyM:refA A;TH;N:A
A;I'Fy M :=N~ unit

tset

The values of type ref A are store addresses a®. We use superscript w to em-
phasize the fact that addresses are a form of localized term. The typing rule
addr only permits us to regard addresses local to w as having type ref A at the
definite location (J = w).

In the extended system, there exist coercions between the modalities O, O,
and ¢ as follows:

F; Ax:0OA.let boxu=xinu FjAx: A.comp [z]
04— A : A QA

F;jAx:(QA.dia{let compy=xinl[yl} FjsAx:A.dia{x}
OA - QA : A= QA

So OA (a mobile term) is the strongest modality, and ¢ A (a remote computation)
is the weakest. Both A (any local term) and (QA (a local computation) can be
coerced to QA.

3 Operational Semantics

3.1 Preliminary Definitions

The values of the calculus are of three kinds, corresponding to the distinction in
typing judgments V : A, Vt~ A, and V* + A.

Term Value V == Xx:A.M | boxM | compP
| diaE | O | a¥
Comp. Value V+t = [V]
Remote Value V* == {V} | {Vt}



It is convenient in many cases to regard labels r and [ as pseudo-values, though
they are not proper normal forms. We use the notation V' to denote a term value
or label r. Similarly, we write V*, denoting a remote value or label I.

We wish to give an operational interpretation to the calculus which clearly
reflects the spatial distribution of program fragments. Location labels w will
serve as process identifiers; we will assume no two processes in a configuration
share the same label. To explain the semantics of mutable references, a store H
is added to each process I. Stores H; are finite functions mapping addresses a'
to term values V. Note that the freely mobile terms (r : M) do not require a
local store.

Store H, == - | Hyla¥ — V]
Process n == (r: M) | (l:H EE)
Configuration C == - | C,«w

Configurations associate each r with a term, and each [ with a remote expres-
sion/computation E. The linear ordering of a process configuration has no special
meaning; we will assume process configurations can be rearranged at will.

While one could permit arbitrary recursion among processes through the use
of labels, we delay the introduction of such logically unsound, but computation-
ally useful features until section 4. Constraints ¢ were introduced in section 1
to describe the allowed dependencies between locations. We say that constraints
¢ are sound if there are no cycles in accessibility constraints (¢ F/* w <w). An
equivalence constraint w = w' means that w and w' are identical locations. See
section 7.4 for definitions and further discussion of constraints.

Note that labeled processes serve as an abstract notion of location; we are not
committed to any particular scheduling or location binding mechanism assigning
processes to host machines. However, such a binding mechanism must respect
constraints w = w' governing collocation of processes. Each distinct location
(l: H F E) is assumed to have its own store H. However, the identity of stores
[H],, is determined modulo the location equivalence induced by ¢. If ¢ F* I =17’
then (I : H F E) and (I' : H' F E) share one store [H],, = [H'],,.

We can now define the set of well-formed process configurations. The judg-
ment 3 F¢ C' : A means that C establishes A under constraints ¢. We define
an auxiliary store typing judgment A\¢ 3 H : © (store H has type ©) in the
usual way.

Ay +H, H:0 < Dom(H)=Dom(O)
AV[a¥ = V] e H .O;A\Y; -ty V:O(a®)
Y C: A < Dom(C)=Dom(A)
AV{r: M) e C .[5A\; Frg M : A(r)]
AV(I:HEE)eC .[A\YpF H:0 AN O;A\¢;-;-F E + A(l)]

The definition of configuration typing requires that every hypothesis in A be
realized by a process of the correct form, and every process in C has the type



assigned by A. Processes are required to be closed with respect to A and I', but
may refer to local store addresses in © or labels r :: A or [ + A in A subject to
accessibility constraints 1.

3.2 Substitution

We adopt the definitions of substitution from Pfenning and Davies [13] with
some modifications to account for location labels r and ! and the new syntactic
forms arising from the integration of local and remote effectful computations.

Proposition 1 The following forms of substitution are well-defined: (1) [M/x]
applied to N,P,or E. (2) [M/u] applied to N,P,or E. (3) {(P/x) applied to Q
or E. (excluding primitive computations P of the forms ref M, !M, M :=N).
(4) {E/x)) applied to F. These forms of substitution obey the properties:

ANx:B,I"FyN:A NA TRy M:B = A LLI'Fj [M/x]N - A
ANx:BI'"FjF+A NA TRy M:B = AL Fy [M/3]F+ A
ANx:BI't;j Qe A NA; TRy M:B = A; LI Hy [M/x]Qs A
Aun:B,ASTHIN:ANA; FjgM:B = AA TRy [M/u]N: A
Aunu:B AT F+ANA; FjgM:B = AA; T'EHy; [M/W]F + A
Au:B, AT R Qe ANA FjgM:B = AA TRy [M/u]Q~ A
AsNx: Bl Qe A NAT'F; P+ B = ATy (P/x)Q~ A
A;x: By F+ A ANAT'k; P B = A; TRy (P/x)F+ A
A;x:BlFjo F+ A ANATH;E+B = A; TRy (Efx)F+ A

Term substitutions [M/x] and [M/x] are defined in the usual compositional
way. Substitutions of computations {(P/x) and {(E/x)) require an unusual defi-
nition inductive in P or E, the object of substitution.

{({M}/x)F = [M/x]F
({P}/x)F = (P/x)F
{let diay=M inE/x)F = let diay=M in (E/x)F
{1et compy=M in E/x)F = let compy=M in{E/x)F
{let boxu=M in E/x)F = let boxu=M in {E/x)F

(IM1/x)Q = [M/x]Q
(let compy=M in P/x)() = let compy=M in(P/x)(Q)
(let boxu=M in P/x)Q) = let boxu=M in(P/x)Q
We omit a definition of (P/x)F, which is similar to (P/x)@. Omission of clauses
for (ref M/x), (! M/x),and (M := N/x) is not problematic, since the operational
semantics will reduce primitive effects to [V'] before substitution.
Location labels w of both varieties are insensitive to substitution. The intu-
ition is that labels denote processes containing closed terms or expressions.
M/xlw=w [M/u]w=w
{l/x)F = let diax=dialinF



This definition of ({I/x))F is not intended to serve as an effective means of re-
ducing let diax=dialin F'since {{/x))F = let diax=dialin F. Rather, the
form let diax=dialin F should be regarded as a way to defer or suspend the
substitution ((I/x))F until the expression value denoted by ! can be provided. We
will provide a special reduction rule (one not based on substitution) specifically
for this form of expression.

3.3 Transition Rules

We use the notation of evaluation contexts to represent decomposition of terms
into a redex and surrounding context. Term contexts R are defined so that R[ M ]
denotes a term.

Term Context R == [] | RM | VR | let boxu=RinN

The form of term context (V' R) allows us to postpone synchronization on r in
the function position while continuing to reduce in the argument position. Eval-
uation contexts for expressions are defined so that S[ P] and S[ M ] denote local
computations, and S*[ M ], S*[ P], and S*[ E] denote remote computations.

Computation Ctxt. & == [] | [R]1 | let compx=RinQ
| let boxu=RinQ
| refR | 'R | R:=N | V:=R
| let compx=compSin(@Q)

Remote Comp. Ctxt. S* == [] | {R} | {S} | 1let diax=RinF
| let boxu=RinF | let compx=RinF
| let compx=compSinF

A single-step transition in the semantics is stated as C \ v = C' \ ¢’ for
constraints 1,4’ and process configurations C,C’'. We take the point of view
that constraints ¢ are informative assertions about the structure of the running
program. As additional processes are created, the set of constraints ¢ will grow,
but we are required to preserve soundness (acyclicity) of ¢ and well-formedness
of C with respect to ¢ (¢ ¢ C : A).

Term reduction rules occur in two forms, one applicable to terms R[ M ], the
other for S*[ M ]. We follow a convention of naming the variants app and app*,
respectively. Processes irrelevant to a reduction step are elided. The rule app*
is straightforward. In a process I, When we encounter a redex (Ax : A. M]) V,
where V5 is a term pseudo-value (a value or the label ), we perform substitution
of V5 for the local variable x in the function body ([Va/x]M]). The reduction
step is purely local: no terms move from one process to another, and constraints
¢ are unchanged. The variant form app is similar, though it occurs in a context

Vi=Xx:A.M]
(:HES* Vi o))\ ¢ = (I: HES*[[Va/x]M{]) \ ¢

app*
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The letboz* rule and variants (letbox, letbox;, letbox,)? govern the evalua-
tion of mobile boxed terms of type JA. When we reach a redex of the form
let boxu=box M in ..., an independent process is spawned for evaluation of
M at a fresh location r'. Movement of M from [ to r' is justified by the typing
rule O, since well-formed M is closed and cannot refer to labels I’ or local store
addresses a'. The result label ' is substituted for u in N. Label r' will serve
as a placeholder for the value of M, allowing us to achieve some concurrency in
evaluation.

V =boxM ' fresh
o= A (r'al) A (Ndri<ar [P FCral})
(I: HE S*[1let boxu=VinN]) \ ¢
= (' M), {: HES*[[r'/u]N]) \ ¢

letbox*

Note that when (r’ : M) is created, we add certain constraints to ¢ characterizing
its relationship to other processes. The original process I becomes dependent on
r' (r' «l). And since term M may depend on other mobile terms r;, we assert
r; <r! for all r; such that r; <1.

Synchronization on a result label r' may happen nondeterministically, but
becomes necessary when the structure of a value is observed. In rule syncr*,
notice that the process (r' : V) has no local store, hence V must be a pure,
location-neutral term which may be moved safely to I.

— — — syner*
V), {:HES*[r'D\v=(":V), {:HES*[V])) \ ¢

The combination of letbox™, syncr*, and the treatment of r as a lazy pseudo-
value is reminiscent of the future and touch mechanisms of Multilisp [10]. But
in a statically typed framework we can guarantee such concurrency is harmless,
since the spawned (r' : M) cannot execute effects and has no access to a shared
store.

For the fragment of the calculus relating to effects, we have a general rule for
sequential evaluation of computations, as well as some effect-specific primitives.
We omit the variant rule seg, for reducing let compx=M inF.

(I: HE S8*[let compx=comp [V]1inQ]) \ v = (I: H ES*[{[V1/x)Q]) \ ¥

Effects are never executed in a context R[], only in contexts S*[]. The def-
initions of contexts S and S* allow us to reduce let compx=compPin(...)
to let compx=comp [V]in(...). So rules seq and seg, are operationally ade-
quate, given the following reduction rules for primitive effects. Now H(a') de-
notes lookup of the value associated with a!, and H[a! ~ V] denotes extending

% letbox is identical to letbox™ except it applies in a context R[ ]. letbox; and letbox,
apply to redices let boxu=box M in(Q and let boxu=box M in F' respectively.

seq
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or updating the store H with a binding [a' = V].

a' fresh H' = Hla' = V]
(l:HES* [ret V) \ v = ({: H ES*[[a']]) \

alloc
(]

H@)=V ot
CHEST@D\ ¢ = (HES[OA)\ v °

H' = H[d' — V]
(HES[a :=V))\ = (: HES[LOIY\ ¥

et

All reduction rules for effects are local and involve no communication. But recall
that stores H are identified modulo ¢ F* [ = [I’, so updates to H will affect all
processes at the same location implicitly.

Finally, the letdia and syncl rules define the behavior of terms of type ¢ A.
For redex let diax=dia E in F, we simply substitute the computation E for
x in F using expression substitution {F/x)F. This operation rearranges the
structure of the computation locally; no actual movement between locations
occurs. The restriction E # I is crucial because substitution of a label {I'/x)F
does not allow us to make progress.

V=diaE E#I
(I:1let diax=VinF) \ v = ({: (E/x)F) \ ¢

letdia

One can look at syncl as a sort of dual of syncr — instead of bringing the
immobile expression E to our current location, the mobile computation F' is
sent to the location of E, a pseudo-value. Mobility of F' is justified by the typing
rule O F since a well-formed F is closed (with the exception of x : A) and cannot

refer to labels I or local store addresses a'.

V =dial’ " fresh ¢' = ¢ A (I'=1")

(I: HE let diax=VinF), (I': H' EV*) \ ¢
W HEV), B RV, W E (V)R \ ¥

syncl

Duplication of V* from process (I' : H' E V*) as (I" : H' £ (V*/x)F) is needed
to assure type preservation in cases when more than one process might jump to
I'. We add the assertion I' = " to « indicating that I’ and I" share the same
location and store H'. So the creation of process I and duplication of V'* is
purely local, not requiring any movement.

3.4 Properties

Theorem 2 (Type Preservation) If) is sound (accessibility is acyclic), pro-
cess configuration C is well-formed (i - C : A), and a reduction step C \ v =
C' \ ¢' is made, then ¢' remains sound and ' F¢ C' : A’, where A' extends A.
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Proof: By cases on the C' \ ¢ = C' \ ¢’ judgment. A few cases crucial to
safety and preservation of locality (syncr’, letbox', and syncl) are presented in
the appendix, section 7.2. See also [11].

Theorem 3 (Progress) Assume ) is sound (accessibility is acyclic). If Y ¢ C :

then either C is terminal (all processes contain values) or C \ ¢y = C" \ 9.

Proof: Consider an arbitrary process (r : M) or (I : H F E) in C. We
reformulate the progress theorem as follows, separating M or E from the rest of
the configuration C'.

Ysound A YFCC:A AN 5A\Y; 5y M: A (where J =1rq)
= M=V v I, M .C{r: M)\ Y= C",{r: M)\ ¢

¢psound A pFC:A N A\YH H:0
ANO;AN\Y;5-Fr E+ A (where J =1or J=Iq)
= E=V*V 3IC,E' .C,{:HEEY\v=C",{{:H' EE"Y\ ¢

The proof then proceeds by induction on the order of location indices J imposed
by accessibility constraints v, with nested induction on the structure of typing
derivations for M and E. Indices J are compared by their root labels w ignoring
quantifier symbols. We first prove the property for judgments of the form J«, in
which case our induction hypothesis is that progress holds for prior J' (J' < J).
Then unquantified J can be considered under the hypothesis that progress holds
for subsequent J' (J < J'). For details of a proof for the core calculus see [11].
The same strategy extends to the fragment with effects.

4 Extension with Recursion

4.1 Fixpoint Constructs

We consider two natural forms of fixpoint corresponding to the distinction be-
tween variables (u :: A) and (x : A). We refer to fixv(u:: A). M as a valid or
mobile fixpoint, and fix (x : A). M as local fixpoint. The operational semantics
is given in the conventional way, with substitution used to perform unrolling.
See section 4 of appendix.

Aus A by M- A fi ANx: Ay M: A
A;Tbyfixv(u A). M : A o MNY; ATy fix(x: A).M: A

fix

The treatment of expression fixpoint over computations P or remote computa-
tions E is less obvious. For reasons of conceptual economy and uniformity, we
adopt an approach of encoding such fixpoints with fiz, or fix.

For example, fixv (u :: ¢A).dia E binds a fixpoint variable (u :: ¢ A) in E.
In the body F, the idiom let diax=uin F represents a recursive jump to an
unrolled copy of E. When and if E terminates without making such a nested
jump, we continue with F. Note that the expression E must be I'-closed, a
consequence of using (u :: QA) rather than a local fixpoint variable (x : Q. A).
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It seems clear that mobile fixpoint over (u :: Q. A) is a useful idiom. But local
fixpoints fix (x : QA) .dia F are not, since the scope of (x : Q0.A) is so limited. On
the other hand, fix (x : QA). comp P does seems useful for expressing recursion
over a purely local computation P.

4.2 Globally Accessible Locations

Fixpoints of remote computations should allow us to jump repeatedly between
distinct locations, perhaps executing some local effects at each. Such nontrivial
forms of fixv(u:: QA).diaFE require a set of assumptions (v; :: Q0A;) in A,
representing the locations amongst which a program can jump. But how can
such mobile assumptions of type Q0 A; be realized? Essentially, the difficulty is
that we can conclude A\ F,, dial: QA, but not A\Y F,qdial: QA. To make
the latter conclusion sound, we must know that [ is accessible from any other
location.

In prior development, we imposed a condition that accessibility (¢ F* w<w')
be acyclic so that recursion among processes could not arise. We now make
an exception to this condition for a class of globally accessible locations. We
introduce new forms of accessibility constraint as follows. These formulae have
the obvious meanings under constraint entailment.

Constraint ¢,¢ == ... | Vw.w<al | Vw.r<dw

Accessibility may now be cyclic, permitting recursion among processes. But it is
intended that this feature be used judiciously to represent the initial distributed
environment in which a program runs. For example, such locations / could hold
bindings for global resources (v; :: 0 A;). Programmers cannot create cyclic con-
figurations, since none of the rules of the operational semantics introduce this
form of constraint. We also extend typing with a rule uloc for labels [, allowing
us to conclude k4 I' + A. For details see the appendix, section 7.5.

5 Related Work

The most closely related work is the A, calculus developed independently and
concurrently by Jia and Walker [9]. The type system of A\pcis inspired by a
spatial interpretation of modal logic, though it is an extension of S5 (not S4)
with some hybrid-logic features. They show that the semantics is type sound
in the presence of reference cells (store addresses). But to ensure that locality
of addresses is preserved, Jia and Walker do not permit evaluation of e under
close(Ap.e) (their form of O introduction). We can allow concurrent evaluation
under box M because the monadic type () A and judgment P~ A isolate effectful
computations from pure terms.

The hybrid-logic aspect of the Ao type system, which introduces explicit
worlds (absolute locations) and edge names (relative paths between locations),
makes comparison to a standard modal logic difficult. Also, we believe the in-
troduction of explicit worlds and names into the calculus has consequences for
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portability. Arpc reveals the network topology and permits one to implement
more efficient algorithms specialized to that topology, but such programs are
less portable.

The ambient logic and ambient calculus are also related to our work. Though
the ambient calculus itself was not logically motivated, Cardelli and Gordon [6,
5] and Caires and Cardelli [1,2] have developed an ambient logic with modal
operators to characterize the behavior of ambient calculus programs. In their
work, accessibility is interpreted as containment of ambients, O¥ requires all
sub-locations satisfy ¥, and Q¥ requires the existence of some sub-location sat-
isfying ¥. Some typical relevant properties are: how the shape of the ambient
configuration changes over time or whether the scope of an ambient name es-
capes another ambient. As with names in the Pi-calculus, untyped ambients have
no fixed locality or scope; in the absence of a specification, nested ambients may
move freely in and out of other ambients.

Cardelli, Ghelli, and Gordon have also developed a static type system for
ambients [3,4] which restricts ambient mobility. Ambients can be declared im-
mobile relative to others via name restriction (vn : Amb¥ Z' [ZT]) P, where type
decorations Z' and Z control objective and subjective movements of the ambient
n. Since the authors view mobility as a declared behavioral property extrinsic
to the ambient names themselves, it is natural to allow “immobile” ambients
to move when contained inside mobile ones, for example. This differs somewhat
from our notions of mobility and immobility which were derived from logical ne-
cessity and possibility. Mobility of terms in our calculus is naturally an inherited
property, in that mobile terms may only depend on other mobile terms.

An advantage (or limitation) of the constructive approach we demonstrate in
this paper is that all well-formed programs automatically obey a certain safety
policy, preserving locality of certain term values and resources encapsulated as
QA. This safety is intrinsic in the criteria for program well-formedness. The
ambient logic approach is a flexible theoretical tool for characterizing program
behavior, but lacks some good properties of a type system, such as decidability,
and a manageable level of complexity that programmers can grasp.

Finally, there are systems derived from the Pi-calculus and ML which have no
intrinsic notion of locality. Typically, the Pi-calculus imposes no restrictions on
the scope (mobility) of names, but some researchers have pursued type systems
which give names a static scope tied to a particular location. Names commu-
nicated outside of this natural scope are tracked by the type system. See work
on DPI by Hennessey et al. [8] and Isdm by Ravara, Matos, et al. [14]. In his
PhD thesis [12] Moreira explores a type inference framework for a distributed
ML which analyzes the locality of references. Rather than ruling out mobility of
references in all cases, Moreira’s goal is to eliminate proxies and synchronization
when it can be established that a reference is local.
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6 Conclusions

We have presented a calculus for distributed computation based on constructive
S4 modal logic. The modal propositions [JA and ¢ A can quite naturally be re-
garded as types describing mobile and immobile elements of the language. We
gave a concrete example of what these immobile elements might be by extending
the calculus with effects and a monadic type () A characterizing effectful compu-
tations. Effects are a natural example to use, since machine state is quite difficult
to move or replicate at runtime. The modal type discipline provides a safe way
to mix mobility with effects and localized terms in a distributed computation.
The spatial modalities O and ¢ interact with () to determine where effects are
executed and restrict the mobility of localized terms.

Applications of this work to ConCert [7], a grid-programming environment
based on code certification via safety proofs, are particularly important to us.
The ConCert system assumes a peer-to-peer overlay network with unreliable
participants, so long-running stateful computations are to be discouraged. We
speculate that the absence of axiom ¢ A — OO A (characteristic of S5) is benefi-
cial in such a setting. It corresponds to creation of a mobile proxy for a value of
any type A; managing these proxies and handling failures could become a bur-
den on the runtime system. Furthermore, modal logics and calculi based on an
explicit-worlds formalism lead to a more explicit programming model and strong
assumptions about the network topology. But in an ad-hoc peer-to-peer network,
these assumptions are not helpful to the programmer; the overlay may emulate
the assumed topology, but the emulation will likely bear no resemblance to the
performance characteristics of the physical network. Such assumptions might,
however, play a useful role in limiting communication or other resources used by
a program.

Researchers are meeting with success in applying modal logic to distributed
computation, but just as there are many modal logics, there are now a grow-
ing number of distributed calculi. The goal of capturing (im)mobility properties
is shared among researchers, and can be achieved with a modal type system.
But some open questions remain. The choice to base the calculus directly on
proof terms of a logic, and S4 modal logic in particular, affects the programming
model a great deal. Though we have developed a few examples, not much is
known about the practicality of programming in this setting as opposed to a
calculus derived from another logic, or one of the process calculus formalisms
(typed mobile ambients, DPI, etc.). Besides these issues of usability and expres-
sive power, choice of one formalism over another may require different implemen-
tation strategies, or raise issues of feasibility which we have not yet explored. But
in any case, it seems clear that modal logic is a powerful conceptual framework
in which we may think about the design of distributed programming languages.

Acknowledgments Thanks go to Frank Pfenning for many discussions and
guidance on this topic, and to Joshua Dunfield for comments on a draft of this

paper.
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7 Appendix

7.1 Examples

A marshalling function A — A can be implemented for any observable type A.
However, such a function may be very large and/or inefficient. Some primitive
marshalling functions on integers, floating point, and string values can be pro-
vided without changing the logical character of the system. They preserve type
safety since the structure of most simple term values does not permit any depen-
dency on other values or local machine state. The following example shows how
to lift a primitive function marshall_int::int -> O int to operate on lists of
integers.

let box (marshal_int_list::int list -> O (int list)) =
box
fix marshall . A\ 1lst .
case lst of

nil => box nil
| cons(x,tl) =>

let box vx = marshall_int x in

let box vtl = marshall tl in
box cons(vx,vtl)

In cases such as this, when the boxed term is already a value, it would be highly
desirable to inline the operation let boxu=boxV in(...). By this we mean
simply performing the substitution [V/u] without generating an intermediate
process. This is consistent with the intuition that (A captures mobility — the
value V may move, but is not forced to move to some remote location. Since a¥ is
abstract, in the sense that there is no language mechanism to observe its internal
structure, a programmer cannot construct ref A — O(ref A). Nor would we
want to provide a primitive coercion ref A — Oref A to make reference cells
portable.

Marshalling functions establish (logically) the mobility of a value but perform
no useful work. Using [JA, we can also spawn non-value terms for concurrent
evaluation at an arbitrary location. We consider the example of a distributed
implementation of the Fibonacci function.

let (fib:0int -> int) =
fixv £ . A bn .
let box n = bn in
if n < 2 then

n

else
let box f1 = box f (box (n-1)) in
let box f2 = box f (box (n-2)) in

f1 + £2
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Note that in this case, we must use the mobile fixpoint fixv, since the func-
tion itself must be mobile. The code let boxu=box M in ... is an idiom for
spawning M for parallel evaluation, similar to (let (u (future M)) ...)in
Multilisp [10].

In the possibility (0A) fragment, recall there is no actual movement without
primitive remote resources QA. In this example, each such remote resource pro-
vides a set of effect primitives encapsulated as functions A — (OB. The effects
involved are I/O operations interacting with a network printer and the home
console. Let the environment be characterized by Ag:

server :: Q{submit : doc -> (Qjob, wait : job -> (Ostring}
home :: {{read doc : string -> (Odoc, write : string -> Qunit}

Variable server represents a place where two primitive effects are available:
submit and wait. Variable home represents a location where we can read _doc
(read a document from a file) or write messages to the console. Given bindings
for these mobile variables, and marshalling functions marshall string :
string -> Ostring and marshal doc : doc -> [Odoc, we can write the fol-
lowing program which prints a document remotely.

let dia h_env = home in

let (remoteprint:doc -> { unit) =
Ax .

dia
let box p = marshal doc x in
let dia s_env = server in
let comp j = s_env.submit p in
let comp s = s_env.wait j in
let box sv = marshal_string s in
let dia h_env = home in
let comp - = henv.write sv in

{O}

in

let comp d = val (h_env.read doc ‘‘filename’’) in
let dia _ = remote_print d in

{O}

Note that the use of ¢ and/or O imposes a sequential style of programming.
The function remote_print executes a sequence of effects (Let comp) and jumps
(let dia) causing the document d to be printed remotely and a status message

written on the home console. Marshalling functions marshal doc and marshal_string

are used to make the document and the status message portable between loca-
tions. Also note that j : job, a local handle used to refer to print jobs, disap-
pears from scope when we jump to home. If type job is held abstract, the value
of j cannot be removed from the location server.
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7.2 Type Preservation (selected cases)

Case:

syncr*

(r" V), I:HES* [P\ = (r": V), I: HES*[V]) \ ¢

ANYFH H:0 Assumption, Definition
O; A\ ;- S*[r' ]+ A Assumption, Definition
O; A\;-5-+ ' : B Typing Inv. Lemma
s A\Y; 5 Fug VB Assumption, Definition
Yl Inversion (res)
s A\Y; - VB Natural Mobility
O;A\Y;-+ V:B Weakening
O; A\; ;- H S*[V]+ A Ev. Context Typing
' =) and ¢’ sound Assumption
A=A Directly
Case:
V =boxM 7' fresh
W= A e A (Ndrar [oberat)
E HFS*[let boxu=VinN]) \ ¢ etbox
= (r': M), (I: HES*[[r'/u]N]) \ ¢'

ANAYFH H:0 Assumption, Definition
O; A\¢; ;- F; S*[1let boxu=VinN]+C Assumption, Definition
O; A\¢; ;- F; let boxu=V inN: B Typing Inv. Lemma,
O;AN\¢;u:: A;-H N : B Inversion (OF)
O; A\; ;- Fybox M : OA Assumption, Inversion (OF)
MY Fe M A Inversion (OI)
Let A= A7t A

P =Y A Q) AN {riar | Yy ri<l}) Assumption
Y ¢ = Y F* ¢ Entailment +®
PR Al = R ar! Entailment F°
P el Entailment F°
S A\Y s b MDA Mobility Against Accessibility
;AN\ Fgr' T A Typing (ures)
O; A\Y's ;- F [r'/u]N : B Weakening, Substitution
O; A\Y's - S*[[r' /Ju]N]+ C Weakening, Ev. Context Typing
A\Y' P H : 0 Weakening
r' fresh Assumption
Jw,w' . ' F* w<w' contradicts 1) sound Entailment +®
1! sound By Contradiction

A DA Directly
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syncl

Case:
V =dial" 1" fresh ' = ¢ A (' =1")
(1: HFlet diax=VinF), (I': H' FV*) \ ¢
e (HED, (U HOE VR, (0 HYE (VR/)F) \ o
Ay H:O

MY +5 H 0

O; A\¢;-;-F; let diax=V inF + B

@;A\@b;-;-l—ll W—A

s MNY;x: AR F+ B

O; A\;-;- Fy dial’ : QA
Y2 Ial

Let A'=Al" + B
V=A< 1)

bEeg — gk g

¢I '_a llil”

¥R lal

O AN\ b V* - A

O MY x: Abpg F+ B
O AN\Y'; - (V*/x)F + B
O; A\ - 1"+ B

A\Y' 5, H' - 6

l" fresh

Jw,w' . ' F* w<w' contradicts 1 sound

1! sound

ADA

7.3 Fixpoint Semantics

Assumption, Definition
Assumption, Definition
Assumption, Definition
Assumption, Definition
Inversion (QF)
Assumption, Inversion (QFE)
Inversion (loc)

Assumption

Entailment -2

Entailment -2

Entailment F* (cong)
Weakening, Eq. Worlds (I' =1")
Weakening, Natural Mobility
Substitution

Typing (loc)

Weakening, Eq. Worlds (I' =1")

Assumption

Form of ¢/, Entailment -2
By Contradiction

Directly

The typing rules and operational semantics of the term fixpoints are as follows:

Aus A Fj g M A

A;Nx:AFg M A

ANy fixv(u: A). M : A

fizy

ATy fix(x:A).M: A

unroll?*

(l:HES*[fixv(u= A).M]) \ ¢

v

fix

= (l: HES*[fixv(u:: A). M/u]JM]) \ ¢

unroll*

(:HES*[fix(x: A).M]) \ ¢
= (. HES*[[fix(x: A).M/x]M]) \ ¥

Of course, variant rules unroll, and unroll exist for reduction of fixpoints in a
term context R[ ]. Note that substitution [fixv (u :: A).M/u]M is type sound
because we stipulate A u :: A;-Fj 4 M : A in the typing rule fiz,.
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Though it might seem that fixv(u :: A).M could be encoded as a local
fixpoint fix (x : JA).let boxu=x in(box M), this encoding does not have the
desired operational behavior. Regardless of the form of M, such a representation
unrolls forever without termination.

7.4 Theory of Locations

Accessibility and equivalence of locations determines the permissible dependen-
cies between processes in a configuration C. Recall that w denotes a location
(process label) r or I. We will think about such labels as abstract locations or
worlds in a Kripke semantics of modal logic.

Constraint ¢,¢p == T | w<aw' | w=w' | ¢#AY

A primitive constraint (w<w') asserts that accessibility holds between w and w'.
The constraint w = w' asserts the equivalence of w and w' under accessibility.
That is, both have the same accessibility properties with respect to all other
worlds, so in a sense they represent (or share) the same location. Compound
constraints are conjunctions of such primitive constraints, or the unit element
T. When convenient, we may regard a formula ¢ as a set of primitive constraints,
joined implicitly by conjunction.

Equivalence (w = w') obeys reflexivity, symmetry, and transitivity, but does
not entail w<w' or w' qw directly. Our notion of accessibility w<w' obeys transi-
tivity (from S4) and respects congruence classes of worlds (as defined by =). The
S4 assumption of reflexivity (w<w) is not made explicit in the theory of locations,
but is present in the term and expression typing rules. Constraints 1 govern the
accessibility of remote terms (r) and expressions (1); appeals to reflexive acces-
sibility are made via typing rules hyp* (Fyu: A) and poss (Fj {M} + A). In
fact, including a reflexivity axiom v F® w < w would have the undesirable effect
of allowing recursive processes such as (r : r).

The judgment I' F* 1, capturing entailment for constraints, is defined as

follows. In this context, I" denotes a set of constraints ¢, ¢s, ... , Py
Fa ¢17 ¢2 Fe ¢
L I (fr A 2) 24
't w=uw 'r*w=w TI'kt*w =w"
I'rew=w 'rew =w 'rew=uw"

I''r*w=w TI'F'wi<wry IT'Fwy=w NFewaw T w' <w”
' waw' I'F*waw"

The specification above is only intended to be complete for derivation of primitive
conclusions w < w' or w = w', not an arbitrary formula .
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7.5 Extension to Globally Accessible Locations

Globally accessible locations [ are permitted if we modify the theory of locations
determined by constraint entailment I' F® 1. We introduce a new form of con-
straint, Vw . w<al with the intuitive meaning that [ is accessible from anywhere. We
also add the dual constraint for labels r, those from which every other location
is accessible.

Constraint ¢,¢ == ... | Vw.wal | Vw.raw

I'F*Vw.wal ['U]] I'F*Vw.raw ['U)]
I'F*wal I'H*raw

The two inference rules are parametric in w allowing us to instantiate the
quantifier with any world w. Note that there is no introduction form for Vw.w<l.
This is by design; the constraint Vw.w <l is a primitive assertion about I that
must be introduced explicitly.

Given the new form of constraint Vw.w<l, we can now express a new typing
rule for labels [.

A=A+ A Ay Y Vu.wal
MNp; AT Eyq I + A

uloc

The rule permits typing of [ in the context of a mobile term or expression, where
such occurrences were not typeable before. For example, we may now conclude
A\Y; A; - Fyq dial - QA, which allows us to realize assumptions u :: QA in A.



