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Abstract

In this thesis, we consider distributed programming from a type-theoretic, logical
perspective. We develop a calculus for distributed programming based on a constructive
modal logic. Through a Curry-Howard interpretation of proof terms as programs and
propositions as types, we show that logical necessity is connected to mobility, and
possibility to remote locality. We give an operational interpretation based on process
configurations, where each process serves as an abstract location. We then show how
to extend the calculus in various ways, raising the question of what a proper type-
theoretic notion of immobility would be. Finally, we discuss issues that arise when one
considers implementation of the calculus, both promising opportunities and practical
difficulties.

1 Summary

The enterprise of designing programming languages for distributed computation raises issues
of locality and concurrency in the execution of programs — locality, since fragments of code
and data comprising the program may be spatially dispersed, and concurrency, since it is
natural to assume spatially distributed machines or logically distributed processes are not
synchronized or coupled during execution. Historically, distributed languages have differed
greatly in the means by which disparate fragments of a program may interact, and to what
extent a programmer should be aware of the means of interaction, its semantics, and its
limitations.

From a systems-building perspective, questions of locality, mobility, and immobility can
be settled based on implementation technology. That is, the mobile entities are simply
those for which the language runtime implements marshalling, and locality is a question
of efficiency, not a semantically relevant property. Following this approach, it is quite
possible to make bad design decisions — there may be a variety of irregular conditions
or restrictions on mobility, or perhaps no way to state or enforce a fixed mobility policy.
Everyone recognizes that some values are more difficult to move between locations than
others. But there seems to be no broad agreement on why some values are marshallable
and others not, or what constitutes a correct implementation of marshalling.

In this thesis, we reconsider distributed programming from a type-theoretic, logical per-
spective. We develop a calculus for distributed programming based on a constructive modal
logic. Through a Curry-Howard interpretation of proof terms as programs and propositions
as types, we show that logical necessity is connected to mobility, and possibility to remote
locality. We give an operational interpretation based on process configurations, where each
process serves as an abstract location.
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We then show how to extend the calculus with datatypes and effectful computation,
and discuss general criteria for attributing mobility or immobility to terms under each new
extension. By considering carefully the typing rules (logical content) of each extension, we
can, in many cases, distinguish mobile and immobile values in a principled way. We also
consider the programming model induced by the calculus, which includes idioms for remote
evaluation at an arbitrary location and access to a remote resource at a particular location.

The plan for future work includes a consideration of polymorphism and abstract types.
This should further clarify the distinction between mobile and immobile values in the calcu-
lus. We speculate that abstract types ∃α .A and the hidden nature of the implementation
type α can explain immobility in a clean, type-theoretic way. Towards an implementation,
we discuss resource discovery and binding, scheduling processes to be run on concrete host
machines, implementation of synchronization, and distributed garbage collection.

1.1 Background

Distributed programming is not a new concept, people have been building languages or
language libraries for distributed computation for about 20 years. See Bal et al. [1] for a
comprehensive (though dated) survey of distributed languages. The authors view concur-
rency, communication, and handling of failures as the distinguishing features of a distributed
language, and categorize each language by how it provides such facilities. Theoretical mod-
els of distribution and mobility lagged behind, with the π-calculus [15] formalism being
introduced slightly over a decade ago. Many variants of the π-calculus have followed, based
on alterations in the form and semantics of communication. There seems to be a lot of room
for experimentation in this area, and no particular distributed programming paradigm or
theoretical formalism has achieved universal acceptance.

Thus language designers have taken many approaches in packaging distributed compu-
tation for the programmer. For example, communication is obviously required for imple-
mentation of a distributed language; without it parts of a program at different locations
cannot interact. But communication may or may not be revealed explicitly to the program-
mer. Logically shared memory and remote procedure calls, hide communication behind an
abstraction, while message passing or read/write channels reveal communication explicitly.

In the design of some languages, the ideal is to provide location transparent distributed
execution, either through marshalling the values as necessary, or through liberal use of
proxies. Implementations often make tradeoffs between runtime cost, implementation com-
plexity, and the ideal of a location transparent semantics. The essential difficulty with
this approach is that each extension of the language with new types and values may break
location-transparency in some way. Marshalling some kinds of non-portable values will trig-
ger a runtime error or may invoke an alternative mechanism such as marshalling by proxy.
Because such a language usually has no static notion of mobility or location, marshalling er-
rors are not detectable at compile time, nor can the compiler easily distinguish proxies from
local values for purposes of optimization. We note, however, that it is sometimes possible
to reconstruct partial locality information through an analysis/elaboration step [17].

Alternatively, one can add facilities for code mobility and distributed communication
to a language, giving these primitives the desired operational semantics. Agent or process
mobility and/or value communication over channels then allows interaction among remote
locations. This becomes a general backdoor through which all sorts of protocols or mobility
policies can be implemented. Given the operational semantics, one can then design a type
system to limit mobility to the cases where it makes sense, or the decision can be deferred
to the programmer. Since communication is explicit, one may assume the programmer is
aware that the receiver might be remote and is also aware of the consequences of passing
values across the channel. In these situations, it is up to the programmer to ensure that the
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communicated value is interpreted properly at the remote location.

1.1.1 The Process Calculi

The formal process calculi are based on a model of communication and passing of values on
channels. If channel names themselves can be passed (requiring a higher-order channel), this
can be interpreted as a kind of mobility, since processes can communicate with a variety of
other processes over their lifetime. This highly abstract notion of “location” leads to a kind
of unrestricted mobility, since the scope of channel names cannot be easily determined. A
structural scope-extrusion rule for names allows changing their scope as needed to account
for their actual occurrences.

A variety of alternative calculi and type systems have been proposed to reflect location
more concretly and characterize the mobility of processes, values, or names. The ambient
calculus, for example, reflects location using the ambient notation n[P ] representing a pro-
cess P situated in the ambient (location) n[ ]. Indeed, ambients replace named channels as
a means of communication. As with names in the π-calculus, untyped ambients have no
fixed locality or scope; in the absence of a specification, nested ambients may move freely
in and out of other ambients.

Though the ambient calculus itself was not logically motivated, Cardelli and Gordon
[8, 7] and Caires and Cardelli [3, 4] have developed an ambient logic with modal operators
to characterize the behavior of ambient calculus programs. In their work, accessibility is
interpreted as containment of ambients, �Ψ requires all sub-locations to satisfy Ψ, and ♦Ψ
requires the existence of some sub-location satisfying Ψ. Some typical relevant properties
are: how the shape of the ambient configuration changes over time or whether the scope of
an ambient name escapes another ambient.

Cardelli, Ghelli, and Gordon have also developed a static type system for ambients
[5, 6] which restricts ambient mobility. Ambients can be declared immobile relative to
others via name restriction (νn : AmbY Z

′
[ZT ])P , where type decorations Z ′ and Z control

objective and subjective movements of the ambient n. Since the authors view mobility as
a declared behavioral property extrinsic to the ambient names themselves, it is natural to
allow “immobile” ambients to move when contained inside mobile ones, for example. This
differs somewhat from our notions of mobility and immobility which were derived from
logical necessity and possibility. Mobility of terms in our calculus is naturally an inherited
property, in that mobile terms may only depend on other mobile terms.

An advantage (or limitation) of the constructive approach we demonstrate in this paper is
that all well-formed programs automatically obey a certain safety policy, preserving locality
of certain term values and resources encapsulated as ♦A. This safety is intrinsic in the
criteria for program well-formedness. The ambient logic approach is a flexible theoretical
tool for characterizing program behavior, but lacks some good properties of a type system,
such as decidability, and a manageable level of complexity that programmers can grasp.

The safe ambients formalism of Levi and Sangiorgi [14] is an attempt to rectify some
of the unforseen problems with the operational semantics of ambients. Their criticism of
the ambient calculus centers on “grave interferences”, in which the non-determinism of
reduction can create various unexpected outcomes and stuck states. The solution is to add
co-capabilities to the ambient calculus, such that both parties in a primitive interaction
agree. This makes it possible to analyze the behavior of programs in a more modular
fashion, since capabilities and co-capabilities fit together in a way analogous to introduction
and elimination forms for types.

There are other systems derived from the π-calculus which impose a static notion of
locality for channel names. See work on DPI by Hennessey et al. [11] and lsdπ by Ravara,
Matos, et al. [20]. These systems assign a kind of existential type, reminiscent of our type
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♦A, to names which are communicated outside of their natural, static scope. Processes may
only use channel names of this type by jumping into the scope (location) where that channel
is defined.

1.1.2 Logically Motivated Calculi

Very closely related to our work is the λrpc calculus developed independently and concur-
rently by Jia and Walker [12]. The type system of λrpc is also inspired by a spatial interpreta-
tion of modal logic, though it is an extension of S5 (not S4) with some hybrid-logic features.
The hybrid-logic aspect of the λrpc type system, which introduces explicit worlds (absolute
locations) and edge names (relative paths between locations), makes comparison to a stan-
dard modal logic difficult. Also, it would seem that the use of explicit worlds and edge
names leads to a fundamentally different programming model, in which the programmer
orchestrates the distribution of program fragments at runtime.

Borghuis [2] has also made a connection between modal logic and distributed systems.
But in Borghuis’ work, the interpretation of the modalities is quite different from ours. He
uses type �w(A → B) to represent a service running at location w which implements the
function A → B. The modality �w is a non-standard modality which has no connection
to our interpretation of �. However, Borghuis’ �w serves to distinguish remote resources,
and therefore resembles ♦ in our calculus. He does not discuss the semantics of the logic in
terms of accessibility, but seems to assume that any location is accessible from any other.

1.1.3 Real Systems

Java Remote Method Invocation (RMI) and object serialization is a typical example of the
integration of distributed computation and mobility into a programming language. As much
as possible, Java RMI hides the distinction between local and remote objects. Method calls
on remote objects are handled by marshalling parameters and result values with a generic
object serialization facility.

Local proxies for remote objects provide “stub” methods to forward these method calls to
the remote object. The proxy class implements marshalling of parameters and unmarshalling
of a return value or exception. Subtyping on classes and interfaces essentially hides the
distinction between local and remote objects. Both the real and proxy implementations
share a common interface, by casting the proxy object to that interface, a programmer can
ignore the distinction in most situations. Because indirection is inherent in Java method
calls, distinguishing proxies from ordinary local objects at runtime imposes no additional
performance cost.

The mechanisms for obtaining a proxy for a remote object, and moving values among
locations are not connected. Typically a program obtains references to remote objects by
specifying some form of external identifier for that object; the identity and location of the
remote instance depends on how the lookup operation is implemented. Movement is handled
as follows. Certain primitive values and all objects derived from classes implementing the
Serializable interface are marshallable by copying. The Java Serialization API enforces
a runtime requirement that all fields of a serializable object contain serializable objects
recursively. Such a constraint cannot be enforced statically since it is not expressible as
a subclass relationship in the Java type system. Users are allowed to override the default
object serialization methods, so it is hard to make broad statements about the properties
of serialization as a whole.
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2 Type Theory and Logical Motivation

In this proposal, we adopt a type-theoretic approach to distributed programming and mo-
bility. We will show how to interpret constructive modal logic as a calculus for distributed
computation and modal propositions as types characterizing mobility and locality of terms.
As a result, computation in the calculus is value-oriented, resembling the family of λ-calculi
more than the communication-oriented process-calculi. Mobility arises out of a natural op-
erational interpretation of introduction and elimination for �A and ♦A, not as a side-effect
of introducing message passing or communication over channels. At the same time, this
work differs from attempts to give a completely location-transparent account of distributed
computation. Though communication is not explicit, the modal type system distinguishes
mobility or locality properties of terms. This allows us to examine mobility �A and locality
♦A in the same logical, type-theoretic framework as other extensions of the calculus, such
as algebraic datatypes and effectful computation.

2.1 A Calculus of Modal Logic

In the model-theoretic presentation of modal logic, the truth value of a proposition is deter-
mined relative to a world — each world having perhaps some distinguishing characteristics.
In a proof-theoretic development, worlds are treated abstractly, but the consequences of
relativized truth remain. Essentially, modal logics have the ability to distinguish various
modes of truth for a proposition A, characterizing where A is known to be true.

The types, syntax, and static semantics of our calculus are derived from a constructive
formalization of modal logic developed by Pfenning and Davies [18]. This was chosen over
other intuitionistic formalisms, such as Simpson’s [21], since proof reduction and substitution
have simple explanations and the logic does not rely on explicit reasoning about worlds and
accessibility. The Pfenning/Davies formalism is based on three primitive judgments on A, a
proposition: A true, meaning that A is locally true “here”; A valid, meaning that A true
holds in every accessible world; and A poss, meaning that A true holds in some accessible
world. Validity (A valid) is also commonly referred to as necessary truth. These judgments
and the propositions A→ B (implication), �A (necessity), and ♦A (possibility) are defined
in relationship to one another, culminating in a natural deduction system for a modal logic
obeying axioms characteristic of constructive S4. Logical entailment is given by inference
rules for deriving the judgments ∆; Γ ` A true and ∆; Γ ` A poss, where ∆ are assumptions
A valid, and Γ are assumptions A true.

The intuition behind our application of modal logic to distributed programming is the
following: If we interpret propositions as types and proofs as programs, it is also quite
natural to interpret the logical worlds as sites for computation. Furthermore, we see that
validity corresponds to mobility or portability of terms between locations, and possibility
corresponds to locality. A more detailed discussion of the background and logical motivation
of the calculus can be found in [16].

Moving to a framework with explicit proofs, judgments A true and A poss become the
analytic judgments M : A (M proves A true) and E÷A (E proves A poss), where M and
E are proof objects. For the concrete syntax of proofs, we adopt the term assignment of
Pfenning and Davies [18]. ∆ and Γ become variable typing contexts; two sorts of variable
(x and u) are used to represent local hypotheses A true and mobile hypotheses A valid,
respectively.
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Proposition (Type) A,B ::= A→ B | �A | ♦A
Valid (Mobile) Context ∆ ::= | ∆, u :: A

True (Local) Context Γ ::= | Γ, x : A

The expressions are those objects which are proofs of A poss, whereas terms are those
which prove A true. There is no need for a separate category corresponding to A valid,
since validity is defined as deduction of A true in the absence of locally true assumptions.

Term M,N ::= x | u | λx : A .M | M N

| boxM | let box u =M inN

| diaE

Remote Expression E,F ::= {M} | let box u =M inF

| let dia x =M inF

We now explain the essential logical content of the deduction rules for proofs of truth
∆; Γ `M : A and possibility ∆; Γ ` E ÷A. Of course these can also be viewed as term and
expression typing judgments for a programming language.

∆; Γ, x : A,Γ′ ` x : A
hyp

∆; Γ, x : A `M : B
∆; Γ ` λx : A .M : A→ B

→ I

∆; Γ `M : A→ B ∆; Γ ` N : A
∆; Γ `M N : B → E

The fragment pertaining to the connective → is not unusual, following the usual def-
inition of implication (function typing). In the introduction rule → I we may conclude
A → B if, assuming A true we can prove B true. In the elimination rule → E, we can
conclude B true given A true and A → B true. The hypothesis rule hyp is similarly
straightforward. One should note that → I introduces a locally true hypothesis x : A ∈ Γ,
not a mobile, valid hypothesis.

∆;`M : A
∆; Γ ` boxM : �A �I

∆; Γ `M : �A ∆, u :: A; Γ ` N : B
∆; Γ ` let box u =M inN : B �E

∆, u :: A,∆′; Γ ` u : A
hyp∗

The rules pertaining to �A (necessarily A) are understood as follows. The introduction
form �I allows us to internalize A valid as �A true, noting that the proof term M proves
A in absence of locally true assumptions. The elimination form allows us to introduce a
new valid hypothesis u :: A given �A true, and reasoning with this new hypothesis prove
B true. The (valid) hypothesis rule hyp∗ allows us to conclude A true given A valid.
The soundness of this rule relies on reflexivity of accessibility — A valid is intended to
mean A is true at every world accessible from “this” world, so A true at “this” world. This
completes the definition of the judgment ∆; Γ `M : A.
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∆; Γ `M : A
∆; Γ ` {M} ÷A

poss ∆; Γ `M : �A ∆, u :: A; Γ ` F ÷B
∆; Γ ` let box u =M inF ÷B

�Ep

Truth and possibility are related by the rules poss and �Ep. Rule poss states that
A true at “this” world means A poss. As with hyp∗, this incorporates reflexivity of acces-
sibility since “this” world is an accessible world. Rule �Ep corresponds to �E, but allows
introduction of a hypothesis u :: A justified by �A true in the course of a deduction of
B poss.

∆; Γ ` E ÷A
∆; Γ ` diaE : ♦A ♦I

∆; Γ `M : ♦A ∆; x : A ` F ÷B
∆; Γ ` let dia x =M inF ÷B ♦E

The connective ♦A (possibly A) has an introduction rule ♦I in which we internalize
A poss as ♦A true. Intuitively, if A is true somewhere, then ♦A is true at “this” world. In
the elimination rule, given ♦A true and a proof B poss under the assumptions ∆; x : A, we
may conclude B poss. Note that the structure of proof F ÷B must be independent of any
locally true assumptions, with the sole exception of x : A. Intuitively, if we know A true
at some accessible world, and ∆; x : A ` F ÷ B, then B poss since F relies on no other
assumptions and may in some sense be sent to the world where A true.

3 Operational Interpretation

3.1 Representing Spatial Distribution

While it is possible to define natural syntactic reductions directly on proof terms M and
expressions E, this is somewhat unsatisfying and not revealing of the spatial content of
modal types. Our goal in this section is to show that the worlds of modal logic can indeed
be interpreted as sites for computation. When interpreted as a typing judgment, boxM : �A
will mean that M has type A in all accessible locations, and hence M denotes a mobile
term of type A. Similarly, diaE : ♦A will that E produces (or denotes directly) a term of
type A at some accessible location.

We wish to give an operational interpretation to the calculus which clearly reflects the
spatial distribution of program fragments. Hence processes are introduced to serve as ab-
stract locations in which terms and expressions reside. Location labels w will serve as
process identifiers; we will assume no two processes in a configuration share the same label.

Location Label w ::= r | l

Process π ::= 〈r : M〉 | 〈l : E〉
Configuration C ::= | C, π

The two varieties of location label allow us to distinguish between term and expression
processes. Configurations associate each r with a term 〈r : M〉, and each l with an expression
〈l : E〉. The linear ordering of a process configuration has no special meaning; we will assume
process configurations can be rearranged at will.

Term M,N ::= r | x | u | . . .

Remote Expression E,F ::= l | {M} | . . .

The language of terms is extended with labels r, and expressions with labels l. Intuitively,
a label w occurring in a proof term refers to some remote term or expression in process w.
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So process configurations consist of a mutually-referential collection of labeled terms or
expressions. We give a precise specification of well-formedness for process configurations in
the appendix, section 12.1, which excludes cyclic dependencies among processes. Acyclicity
of the dependency graph allows us to prove a progress theorem for the semantics, and implies
soundness and completeness with respect to the pure logical proof system [16].

3.2 Form of Values

The values of the calculus are of two kinds, corresponding to the distinction in typing
judgments V : A and V ∗ ÷A.

Term Value V ::= λx : A .M | boxM | diaE

Remote Exp. Value V ∗ ::= {V }

It is convenient in many cases to regard labels r and l as pseudo-values, though they are not
proper normal forms. We use the notation V to denote a term value or label r. Similarly,
we write V ∗, denoting an remote value or label l.

3.3 Substitution

We adopt the definitions of substitution from Pfenning and Davies [18] with some modi-
fications to account for location labels r and l. Term substitutions [[M/x]] and [M/x] are
defined in the usual compositional way. Substitutions of expressions 〈〈E/x〉〉 require an
unusual definition inductive in E, the object of substitution.

〈〈{M}/x〉〉F = [M/x]F
〈〈let dia y =M inE/x〉〉F = let dia y =M in 〈〈E/x〉〉F
〈〈let box u =M inE/x〉〉F = let box u =M in 〈〈E/x〉〉F

Location labels w of both varieties are insensitive to substitution. The intuition is that
labels denote processes containing closed terms or expressions.

[M/x]w = w [[M/u]]w = w

〈〈l/x〉〉F = let dia x = dia l inF

This definition of 〈〈l/x〉〉F is not intended to serve as an effective means of reducing let dia x = dia l inF
since 〈〈l/x〉〉F = let dia x = dia l inF . Rather, the form let dia x = dia l inF should be
regarded as a way to defer or suspend the substitution 〈〈l/x〉〉F until the expression value
denoted by l can be provided. We will provide a special reduction rule (one not based on
substitution) specifically for this form of expression.

Proposition 1 The following forms of substitution are well-defined: (1) [M/x] applied to
N or E. (2) [[M/u]] applied to N or E. (3) 〈〈E/x〉〉 applied to F . These forms of substitution
obey the properties:

∆; Γ, x : B,Γ′ ` N : A ∧ ∆; Γ `M : B =⇒ ∆; Γ,Γ′ ` [M/x]N : A
∆; Γ, x : B,Γ′ ` F ÷A ∧ ∆; Γ `M : B =⇒ ∆; Γ,Γ′ ` [M/x]F ÷A
∆, u :: B,∆′; Γ ` N : A ∧ ∆;`M : B =⇒ ∆,∆′; Γ ` [[M/u]]N : A
∆, u :: B,∆′; Γ ` F ÷A ∧ ∆;`M : B =⇒ ∆,∆′; Γ ` [[M/u]]F ÷A
∆; x : B ` F ÷A ∧ ∆; Γ ` E ÷B =⇒ ∆; Γ ` 〈〈E/x〉〉F ÷A

Proof: By a straightforward induction. See [16]. �
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3.4 Transition Rules

We use the notation of evaluation contexts to represent decomposition of terms into a redex
and surrounding context. Term contexts R are defined so that R[M ] denotes a term.
Evaluation contexts for expressions are defined so that S∗[M ] denotes a remote expression.

Term Context R ::= [ ] | R M | V R | let box u =R inN

Remote Exp. Ctxt. S∗ ::= [ ] | {R} | let dia x =R inF
| let box u =R inF

The form of term context (V R) will allow us to postpone synchronization on r in the
function position while continuing to reduce in the argument position. Expression redices
are accommodated in the empty context S∗ = [ ]

A single-step transition in the semantics is stated as C =⇒ C ′ for process configurations
C,C ′. The semantics encodes concurrency as non-deterministic choice among processes in
C, and does not address issues of scheduling or location binding for assigning processes to
host machines. Processes irrelevant to a reduction step are elided.

Term reduction rules occur in two forms, one applicable to terms R[M ], the other for
S∗[M ]. We follow a convention of naming the variants app and app∗, respectively. The
rules app and app∗ are straightforward. To reduce (λx : A .M ′1) V2, we perform substitution
of V2 for the local variable x in the function body ([V2/x]M ′1). The reduction step is purely
local: no terms move from one process to another.

V1 = λx : A .M ′1
〈r : R[V1 V2 ]〉 =⇒ 〈r : R[ [V2/x]M ′1 ]〉

app

V1 = λx : A .M ′1
〈l : S∗[V1 V2 ]〉 =⇒ 〈l : S∗[ [V2/x]M ′1 ]〉

app∗

The letbox rule and variants (letbox∗, letboxp) govern the evaluation of mobile boxed terms
of type �A. When we encounter a redex of the form (let box u = boxM in . . . ), an inde-
pendent process is spawned for evaluation of M at a fresh location r′. Term M is known to
be arbitrarily mobile by the typing rule �I which requires that M be closed with respect
to local variables Γ. The fresh label r′ is substituted for u in N . Label r′ will serve as a
placeholder for the value of M , allowing us to achieve some concurrency in evaluation.

V = boxM r′ fresh
〈r : R[ let box u =V inN ]〉

=⇒ 〈r′ : M〉, 〈r : R[ [[r′/u]]N ]〉

letbox

We have omitted letbox∗ and letboxp, which are trivial variations of the rule above.
Synchronization on a result label r′ may happen nondeterministically, but becomes nec-

essary when the structure of a value is observed. We omit the variant rule syncr∗. The safe
mobility of value V is assured because it was produced by evaluation of a closed, mobile
term. Logically speaking, this is a natural consequence of type-preserving reduction, but
special care must be taken when we integrate effects into the language.

〈r′ : V 〉, 〈l : S∗[ r′ ]〉 =⇒ 〈r′ : V 〉, 〈l : S∗[V ]〉
syncr∗

The combination of letbox, syncr, and the treatment of r as a lazy pseudo-value is rem-
iniscent of the future and touch mechanisms of Multilisp [13]. But in a pure language
we know such concurrency is harmless, since the spawned process 〈r′ : M〉 cannot access a
shared store or execute effects.
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The letdia and syncl rules define how we make use of terms of type ♦A. For redex
let dia x = diaE inF , we simply substitute the computation E for x in F using expression
substitution 〈〈E/x〉〉F . This operation rearranges the structure of the computation locally;
no actual movement between locations occurs. The restriction that E not have the form
of a label l′ is crucial because substitution of a label 〈〈l′/x〉〉F does not allow us to make
progress.

V = diaE E 6= l′

〈l : let dia x =V inF 〉 =⇒ 〈l : 〈〈E/x〉〉F 〉 letdia

Finally, one can look at syncl as a sort of dual of syncr — instead of bringing the immobile
expression E to our current location, the mobile computation F is sent to the location of
E, a pseudo-value. Mobility of F is justified by the typing rule ♦E since a well-formed F
is (nearly) closed with respect to local variables Γ, the exception being x : A which will be
provided at the destination.

V = dia l′ l′′
.= l′

〈l : let dia x =V inF 〉, 〈l′ : V ∗〉
=⇒ 〈l : l′′〉, 〈l′ : V ∗〉, 〈l′′ : 〈〈V ∗/x〉〉F 〉

syncl

Duplication of V ∗ from process 〈l′ : V ∗〉 as 〈l′′ : 〈〈V ∗/x〉〉F 〉 is needed to assure type preser-
vation in cases when more than one process might jump to l′. We choose to interpret the
creation of l′′ as a sort of aliasing, with process l′′ sharing the same concrete location as l′.
This is made more precise in the discussion of constraint formulae l′′ .= l′ in the appendix,
section 12.3.

3.5 Properties

When well-formedness for process configurations is suitably defined, the operational seman-
tics satisfies type preservation, progress, strong normalization, and confluence (modulo a
notion of equivalence accounting for lazy synchronization).

However, to properly state these theorems we need much more machinery for charac-
terizing the well-formed process configurations. For progress and strong normalization we
must restrict our attention to process configurations with an acyclic dependency structure.
To track dependencies we introduce accessibility constraints, and the operational semantics
is modified to propagate and update the set of constraints. See section 12.1 and [16] for
details.

4 Induced Programming Model

The calculus can be decomposed into several nested sub-languages organized around com-
binations of the type constructors →, � and ♦. Each of these fragments determines a pro-
gramming model, and there is a natural progression in expressivity from the sub-language
containing only → (functions and application) to the full complement of →, �, and ♦ type
constructors and their introduction and elimination forms.

4.1 → Fragment

At the core, we have a λ-calculus fragment consisting of abstraction, application, and or-
dinary, local variables x : A. If we restrict ourselves to just these constructs, we of course,
recover the programming model of the λ-calculus and our operational semantics is purely
local. When a well-formed program M is placed in process r, reduction proceeds locally
〈r : M〉 =⇒∗ 〈r : V 〉, without spawning or interaction with other processes.
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4.2 →,� Fragment

Now we proceed to consider the λ-calculus fragment (→) in conjunction with the necessity
fragment boxM and let box u =M inN . By introducing type �A, we have a way to
characterize those terms which are potentially mobile. The typing rule for �I (logical
necessitation) expresses the condition that boxM is mobile if M is Γ-closed. There is no
particular location where M must be evaluated, since it has been established that boxM :
�A. Hence we interpret the box elimination forms �E as spawning a new process at an
arbitrary location for evaluation of M .

In the combined →,� fragment we have a programming model of the λ-calculus with
a concurrent, remote evaluation mechanism. In this fragment, a well-formed program M ,
when placed in a process r, behaves as 〈r : M〉 =⇒∗ C, 〈r : V 〉. Evaluation of M proceeds
concurrently with all processes spawned (directly and indirectly) by M .

4.3 →,�,♦ Fragment

Finally, when the possibility fragment, diaE, let dia x =M inF , etc. is added, we see
the potential for self-directed mobility of programs. Introducing type ♦A allows us to refer
to remote resources of type A, and the elimination form allows jumping to that location.
However, without some primitive initial assumptions about the distributed environment, all
such values diaE : ♦A refer to trivially remote resources. If we admit ui :: ♦Ai bound
to values dia li, then programs may use these values as capabilities to jump amongst the
locations denoted by li. Evaluation of a program E in the full calculus takes the form
C0, 〈l : E〉 =⇒∗ C0, C, 〈l : V ∗〉, where C0 consists of 〈li : V ∗i 〉 representing a set of available
remote resources.1

4.4 Role of Accessibility

The notion of accessibility, imported from the realm of the semantics of modal logic, plays a
key role in determining the properties of a modal logic. Indeed, logicians have investigated a
variety of modal logics differing only in the assumed properties of this accessibility relation.
The system K is characterized by reflexivity, S4 by reflexivity and transitivity, and S5 by
the inclusion of symmetry in addition to reflexivity and transitivity.

Obviously, accessibility plays a role in the static semantics of the calculus, since it was
derived from a constructive modal logic (S4). But what effect does each of these assump-
tions have on the programming model for a distributed calculus? Reflexivity permits trivial
“local” uses of the �A and ♦A constructs of the language. For example, a value of type ♦A
does not necessarily encapsulate a remote resource, but a true remote resource must be en-
capsulated as ♦A in a local computation. Transitivity implies an abstraction of “distance”
between locations — the precise number of hops between here and an accessible location
is not particularly relevant (consider the axiom schemas �A → ��A and ♦♦A → ♦A).
Though not present in the calculus presented here, we conjecture that symmetry, by elimi-
nating the “directionality” of accessibility between locations, admits marshalling of proxies.
But in the absence of symmetry, we are required to adopt a value-copying interpretation of
marshalling, in which terms are moved in their totality.

1There is actually a slight complication; we need a primitive notion of globally accessible locations li
which are accessible from all others. This is only troublesome in that it introduces cycles and thus potential
non-termination. The calculus itself retains the character of S4 and we do not generally assume symmetric
accessibility. See section 6.2.
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5 Extension with Effects

While the calculus of modal logic suggests that intrinsically immobile things exist, it does
not tell us what they are concretely. The terms of the pure calculus are location-neutral,
in the sense that all Γ-closed terms M can be boxed as boxM : �A to produce a mobile
term. Since the expression language is based on the primitive form of expression {M} ÷A,
the encapsulation (dia {M}) : ♦A represents a sort of self-imposed immobility which is not
intrinsic to M .

We now instantiate the calculus with a class of objects for which location inherently
matters. The modal type discipline will assure us that well-formed programs remain safe,
despite the presence of location dependent terms. Effectful computations are a suitable
example of location dependence for two reasons. First, our choice of where to execute effects
may alter the observable behavior of the distributed program. Second, some primitive effects
or terms cannot be interpreted correctly when removed from the context of the local machine
state.

5.1 Primitive Effects and Typing

We will use a monadic type ©A to distinguish effectful computations producing A from
ordinary pure terms. Other, more precise type systems for effects are possible, but a simple
monadic encapsulation of effects is adequate for our purposes. One can motivate the monadic
type ©A through a discussion of lax logic [18], but such a detour is beyond the scope of
this paper.

As a simple example, we consider mutable references. References can be integrated into
the modal calculus in such a way as to ensure that reference cell values, which are addresses
pointing into a local store, never flow between locations. Secondarily, this preserves structure
sharing semantics, and makes synchronized access to shared references easier to implement,
since all operations on a cell are performed at one definite location.

We introduce a new form of expression, the effectful computation, in addition to the
remote expressions of the modal calculus. The primitive operations on reference cells are
included directly in the source language as local computations.2

Type A,B ::= . . . | ©A | refA | 1

Term M,N ::= . . . | compP | ()
Local Computation P,Q ::= [M] | let comp x =M inQ

| let box u =M inQ
| refM | !M | M :=N

Remote Computation E,F ::= l | {M} | let box u =M inF
| let dia x =M inF
| {P} | let comp x =M inF

The effectful computations P perform a sequence of primitive effects locally, without jumping
to some other location. The remote computations (previously remote expressions) E and
F , may now include effects executed here or remotely ({P} and let comp x =M inF ).

We introduce a new form of judgment P :∼ A, meaning that P is a local computation of
type A. Rule comp allows us to regard term M as a trivial computation. Note that rule©I
for typing suspended computations (compP ) requires that P be a purely local computation
(P :∼ A). Operationally, the elimination form let comp x = compP inQ corresponds to
sequential evaluation of P followed by Q, binding the result of P to local variable (x : A)

2In situations where different locations support different effects, an encoding of primitives as functions
(A1 ∗ · · · ∗Ak)→©B could be used. See section 9, for example.
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in Q. Rule �El plays a role analogous to �Ep, allowing us to spawn mobile terms for
evaluation elsewhere in the course of an effectful computation.

∆; Γ ` P :∼ A
∆; Γ ` compP :©A ©I

∆; Γ `M :©A ∆; Γ, x : A ` Q :∼ B
∆; Γ ` let comp x =M inQ :∼ B ©E

∆; Γ `M : A
∆; Γ ` [M] :∼ A

comp
∆; Γ `M : �A ∆, u :: A; Γ ` Q :∼ B

∆; Γ ` let box u =M inQ :∼ B �El

It is especially instructive to compare elimination forms for © (above) and ♦ (reproduced
below). Local computations P produce a local value, and rule ©E allows us to assume
x : A, in addition to the others in Γ. On the other hand, the rule for ♦E requires us to
discard Γ when passing from one location to the remote location where a binding x : A is
available. Local term values bound to variables in Γ are stable under effects, but not under
a jump to some other location.

∆; Γ `M : ♦A ∆; x : A ` F ÷B
∆; Γ ` let dia x =M inF ÷B ♦E

Finally, the rules poss′ and ©Ep confer the ability to execute effects remotely. That is,
we may mix freely the execution of local effects let comp x =M inF with jumps to remote
locations let dia x =M inF .

∆; Γ ` P :∼ A
∆; Γ ` {P} ÷A poss′

∆; Γ `M :©A ∆; Γ, x : A ` F ÷B
∆; Γ ` let comp x =M inF ÷B

©Ep

The logical content of these two rules is that possibility subsumes laxity. That is, the
meaning we ascribe to the judgment A poss is weakened slightly to mean “A is true some-
where (original possibility) under some additional implicit conditions (laxity).” Similarly,
the meaning of locally true hypotheses in Γ are weakened. However, this change is not
adopted arbitrarily.

The logical scope of a computation P :∼ A is limited to a single world. The ♦E rule
remains unchanged, so we are required to discard all local assumptions in Γ (perhaps intro-
duced with©Ep) which were not promoted in some way to ∆. This reflects the notion that
state, the implicit conditions underlying lax truth, cannot be carried over from one world
to another.

We extend the language with addresses aw which are the runtime values of type refA.
Superscript w emphasizes the fact that addresses are a form of localized term. In the context
of a store typing Θ associating addresses aw to types A, we can describe the typing rules for
primitive effects. Θ is omitted for clarity, except in typing rule addr. Θ does not interact
directly with the other typing rules.

Term M,N ::= . . . | aw

Store Typing Θw ::= | Θw, a
w : A

Θ = Θ1, a
w : A,Θ2

Θ; ∆; Γ ` aw : refA addr ∆; Γ ` () : 1 unit

∆; Γ `M : A
∆; Γ ` refM :∼ refA

talloc
∆; Γ `M : refA
∆; Γ ` !M :∼ A

tget

∆; Γ `M : refA ∆; Γ ` N : A
∆; Γ `M :=N :∼ 1

tset
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By limiting Θ to only those addresses bound in the local heap, we can ensure that dangling
references are not typeable. The notion of a local heap is defined in section 5.3.

In the extended system with effects, there exist coercions between the modalities �, ©,
and ♦ as follows:

` λx : �A . let box u = x in u ` λx : A . comp [x]
: �A→ A : A→©A
` λx :©A . dia {let comp y = x in [y]} ` λx : A . dia {x}
: ©A→ ♦A : A→ ♦A

So �A (a mobile term) is the strongest modality, and ♦A (a remote computation) is the
weakest. Both A (any local term) and ©A (a local computation) can be coerced to ♦A.

5.2 Substitution

We can extend the prior notion of substitution to accommodate the new syntactic forms
introduced by computations. Substitution of computations 〈P/x〉Q is also defined below,
though not for primitive effects, whose semantics are not substitution-based. We omit the
definition of 〈P/x〉F which is analogous to 〈P/x〉Q.

〈〈{P}/x〉〉F = 〈P/x〉F
〈〈let comp y =M inE/x〉〉F = let comp y =M in 〈〈E/x〉〉F

〈[M]/x〉Q = [M/x]Q
〈let comp y =M inP/x〉Q = let comp y =M in 〈P/x〉Q
〈let box u =M inP/x〉Q = let box u =M in 〈P/x〉Q

5.3 Operational Semantics of Effects

To explain the semantics of mutable references, a local store H is added to each process l.
Stores Hl are finite functions mapping addresses al to term values V . The freely mobile
terms 〈r : M〉 do not require a local store.

Store Hw ::= | Hw[aw 7→ V ]
Process π ::= 〈r : M〉 | 〈l : Hl � E〉

Evaluation contexts for expressions are defined so that S[P ] and S[M ] denote local
computations, and S∗[M ], S∗[P ], and S∗[E ] denote remote computations.

Computation Ctxt. S ::= [ ] | [R] | let comp x =R inQ
| let box u =R inQ
| refR | !R | R :=N | V :=R
| let comp x = compS inQ

Remote Comp. Ctxt. S∗ ::= [ ] | {R} | {S} | let dia x =R inF
| let box u =R inF | let comp x =R inF
| let comp x = compS inF

For the fragment of the calculus relating to effects, we have general rules for sequential
evaluation of computations, as well as some effect-specific primitives.

〈l : H � S∗[ let comp x = comp [V ] inQ ]〉 =⇒ 〈l : H � S∗[ 〈[V ]/x〉Q ]〉
seq

〈l : H � let comp x = comp [V ] inF 〉 =⇒ 〈l : H � 〈[V ]/x〉F 〉
seqp
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The definitions of contexts S and S∗ allow us to reduce let comp x = compP in (. . . ) to
let comp x = comp [V ] in (. . . ). So rules seq and seqp are operationally adequate, given
the following reduction rules for primitive effects. Now H(al) denotes lookup of the value
associated with al, and H[al 7→ V ] denotes extending or updating the store H with a binding
[al 7→ V ].

al fresh H ′ = H ⊕ [al 7→ V ]

〈l : H � S∗[ refV ]〉 =⇒ 〈l : H ′ � S∗[ [al] ]〉
alloc

H(al) = V

〈l : H � S∗[ !al ]〉 =⇒ 〈l : H � S∗[ [V ] ]〉
get

H ′ = H[al 7→ V ]

〈l : H � S∗[ al :=V ]〉 =⇒ 〈l : H ′ � S∗[ [()] ]〉
set

All reduction rules for effects are local and involve no communication. However, stores H are
identified modulo equivalence of locations (l .= l′), so updates to H will affect all processes
at the same location implicitly.

6 Extension with Recursion

We may also add recursion of various forms to the calculus, noting that such constructs are
logically unsound and represent a departure from the Curry-Howard isomorphism. First
and most obvious, we may introduce a term-level fixpoint construct. Secondly, we relax the
restriction that dependencies among processes be acyclic, by giving a kind of global scope to
some labels l denoting resources present in the environment. Such globally accessible labels
permit recursion amongst processes, but this mechanism for designating locations global is
not generally available to the programmer.

6.1 Fixpoint Constructs

We consider two natural forms of fixpoint corresponding to the distinction between variables
(u :: A) and (x : A). We refer to fixv (u :: A) .M as a valid or mobile fixpoint, and
fix (x : A) .M as local fixpoint. The operational semantics is given in the conventional way,
with substitution used to perform unrolling. See section 12.2 of appendix.

∆, u :: A;`M : A
∆; Γ ` fixv (u :: A) .M : A

fixv
∆; Γ, x : A `M : A

∆; Γ ` fix (x : A) .M : A
fix

The treatment of expression fixpoint over computations P or remote computations E is
less obvious. For reasons of conceptual economy and uniformity, we adopt an approach of
encoding such fixpoints with fixv or fix.

For example, fixv (u :: ♦A) . diaE binds a fixpoint variable (u :: ♦A) in E. The body
expression E must be Γ-closed, a consequence of introducing (u :: ♦A) rather than a local
fixpoint variable (x : ♦A). In E, the idiom let dia x = u inF represents a recursive jump
to an unrolled copy of E. When and if E terminates without making such a nested jump,
we continue with F . It seems clear that mobile fixpoint over (u :: ♦A) is a useful idiom. But
local fixpoints fix (x : ♦A) . diaE are not, since the scope of (x : ♦A) is so limited. On the
other hand, fix (x : ©A) . compP does seem useful for expressing recursion over a purely
local computation P .
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6.2 Globally Accessible Locations

Fixpoints of remote computations should allow us to jump repeatedly between distinct loca-
tions, perhaps executing some local effects at each. Such nontrivial forms of fixv (u :: ♦A) . diaE
require a set of assumptions (vi :: ♦Ai) in ∆, representing the locations amongst which a
program can jump.

In the context of this section, it is not possible to give a full account of globally accessible
labels l and why such a concept is necessary. However, we can say that they arise out of a
conflict between (1) our notion of accessibility constraints, which serve as a mechanism for
imposing acyclicity on process configurations and (2) the desire for greater computational
expressivity. Essentially, we must accommodate certain exceptional labels l that remain
“accessible” (in a logical sense) despite movement from one process to another. For details,
see the appendix, section 12.4.

7 Concrete Datatypes

Just as our extension of the calculus with effects was motivated out of a desire to explore
and explicate immobility, this extension with concrete datatypes is reveals something about
the division between mobile (or potentially mobile) values and immobile ones.

We can introduce the usual logical type constructors for products and sums in the context
of term and expression typing. All such connectives are essentially orthogonal to the notion
of necessity and possibility. One can also add recursive types µα .B assuming a positivity
restriction on α in B.

Type A,B ::= . . . | 1 | A ∗B
| 0 | A+B
| α | µα .B

Term M,N ::= . . . | () | (M,N) | fstM | sndM
| inlAM | inrAM
| caseM of inl x⇒ N1 | inr y⇒ N2

| caseM of inl x⇒ F1 | inr y⇒ F2

| rollA(M) | unroll(M)

The typing rules for product (A∗B) and sum types (A+B) are the usual ones, with unit
elements 1 and 0, respectively. For simplicity, we use the usual iso-recursive formulation of
µ-types with explicit rollA() and unroll() operations.
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∆; Γ `M : A ∆; Γ ` N : B
∆; Γ ` (M,N) : A ∗B pair

∆; Γ `M : A ∗B
∆; Γ ` fstM : A

fst

∆; Γ ` () : 1 unit
∆; Γ `M : A ∗B
∆; Γ ` sndM : B snd

∆; Γ `M : A
∆; Γ ` inlA+BM : A+B

inr
∆; Γ `M : B

∆; Γ ` inrA+BM : A+B
inl

∆; Γ `M : A+B ∆; Γ, x : A ` N1 : C ∆; Γ, y : A ` N2 : C
∆; Γ ` caseM of inl x⇒ N1 | inr y⇒ N2 : C

case

∆; Γ `M : A+B ∆; Γ, x : A ` F1 ÷ C ∆; Γ, y : A ` F2 ÷ C
∆; Γ ` caseM of inl x⇒ F1 | inr y⇒ F2 ÷ C

casep

∆; Γ `M : [µα .B/α]B
∆; Γ ` rollµα .B(M) : µα .B roll

∆; Γ `M : µα .B
∆; Γ ` unroll(M) : [µα .B/α]B unroll

Definitions for natural numbers, booleans, and user-defined datatypes can be given in
terms of products, sums, and recursive types, obviating the need to introduce such types as
primitive notions. In the following section, we use concrete datatypes to penetrate to the
center of the question of mobility, namely what distinguishes immobile values from those
which are potentially mobile?

8 Remarks on (Im)mobility

The typing rules �I and ♦E play a crucial role in the static semantics of the calculus. The
natural operational reading of these rules relates them to locality and potential mobility of
terms. It is tempting to claim that �A represents mobility (available every place), and ♦A
represents immobility (available some place). But the judgments M : A and M : ♦A do not
represent the complement of mobility, rather situations in which M is local or remote, but
not known to be mobile. Thus immobility is not a fundamental concept, but is derived as
the complement of mobility. The judgment M : A does not preclude mobility of M , since it
could also be the case that boxM : �A or there may exist a function f : A → �A defined
on the value of M . The latter case motivates the following definition:

Definition 1 (Marshalling Functions) A function term F = λx : A .M is a strong
marshalling function at type A iff ;` F : A→ �A and for all V of type A, F V →∗ boxV .
In cases when FV →∗ boxV ′ for V ≡ V ′ we say F is a marshalling function modulo the
equivalence ≡.

So mobility at type A is not strictly determined by the syntactic form boxM : �A, but
is a property of the type A and the totality of operations defined on A. We will see that
concrete, observable data types are strongly marshallable, as are values of type �A, but
A→ B and ♦A are not (generally) marshallable.3

Let us first consider the forms of value in the core calculus — those of type �A, A→ B,
and ♦A. A marshalling function for type �A, can be given as:

m�A = λx : �A . let box u = x in (box box u) : �A→ ��A
3An investigation of abstract types is ongoing and seems likely to be another source of immobility.
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This is actually one of the characteristic axioms of S4. The implementation above defines a
weak marshalling function modulo evaluation, since our semantics permits evaluation under
box . That is, boxM will be mapped to box box r where r denotes the value of M .

In general, it seems that no marshalling function exists for values of type A→ B or ♦A
for arbitrary A, B. But immobility is a slippery concept and there are exceptions for certain
finitely enumerable types. For example, a function ♦1→ �♦1 exists:

m♦A = λx : ♦1 . box dia {()} : ♦1→ �♦1

A marshalling function for (bool → bool) → �(bool → bool) is also definable, since one
can apply the function to the elements true and false, noting the results, and construct
an equivalent mobile function from this truth table representation. But for arbitrary values
A → B and ♦A, there may be no such trick we can use to observe its essential properties
programmatically, and hence no way to implement marshalling.

We note that providing marshalling as an external non-logical primitive (A → B) →
�(A → B) is problematic at best. The type A → B does not reflect the environment
in which the closure value was formed, and this environment could contain bindings of any
type. Essentially, we are then obligated to provide marshalling for all values in the language,
or admit the possibility of runtime marshalling errors.

In the case of ♦A, our means of observing such values is also quite restrictive; only
let dia permits examination of the underlying value. As with function closures, values
of type ♦A may be closed under an unknown environment, making static analysis of mar-
shalling difficult. It is interesting to note that constructive S5 includes a logical axiom
♦A → �♦A, a kind of marshalling function for ♦A. This is not at all contradictory with
our prior observation. Since S5 relies on an assumption of symmetric accessibility, we are not
required to actually marshal the closure representation of diaE : ♦A by copying. Rather
we are free to use a proxy. The proxy can be moved to any accessible world, while the
underlying value remains accessible by symmetry.

8.0.1 Marshalling for Concrete Datatypes

Definition 2 (Concrete Datatypes) Concrete types are formed from the following gram-
mar. We require that that µα .C is used in a contractive way (excluding, for example,
µα . α), and that α occur positively in C.

Concrete Type C ::= 1 | C ∗ C ′ | C + C ′ | α | µα .C

As an example, the natural numbers can be defined as a recursive datatype µα . 1 + α.

nat = µα . 1 + α
zero : nat = rollµα .1+α(inl1+α ())

succ : nat→ nat = λx : nat . rollµα .1+α(inr1+α x)

A strong marshalling function for type nat is given as:

fixv (m::nat -> �nat) . λ (x:nat) .
case (unroll x) of

inl(y) => box zero
inr(y) => let box p = m(y) in box succ(p)

We conjecture that for all concrete types C, there is a canonical implementation of a
strong marshalling function C → �C. The following mutually recursive scheme defining



9 EXAMPLES 19

mC : C → �C gives the marshalling function for values of type C. Termination depends on
the finite size of values of type C.

mµα .B = λx : µα .B . let box u =m[µα .B/α]B unroll(x) in (box rollµα .B(u))
m1 = λx : 1 . box ()

mA∗B = λx : A ∗B . let box u =mA (fst x) in let box v =mB (snd x) in box (u,v)
mA+B = λx : A+B . case x of inl y⇒ Nl | inr z⇒ Nr

where
Nl = let box u =mA y in (box inlA+B u)
Nr = let box u =mB z in (box inrA+B u)

The key property of concrete types which allows marshalling is that the introduction and
elimination forms for product, sum, and recursive types are defined globally in a location-
independent way. For example, a value inlA+B V : A + B built at one location can be
case-analyzed at another because all locations interpret inlA+B in the same way.

9 Examples

Using �A and let box u =M inN , we can spawn non-value terms for concurrent evaluation
at an arbitrary location. We consider the example of a distributed implementation of the
Fibonacci function.

let (fib:�int -> int) =
fixv f . λ bn .

let box n = bn in
if n < 2 then

n
else

let box f1 = box f (box (n-1)) in
let box f2 = box f (box (n-2)) in

f1 + f2

In this case, we must use the mobile fixpoint fixv, since the function itself must be mobile.
The code let box u = boxM in . . . is an idiom for spawning M for parallel evaluation,
similar to (let (u (future M)) . . . ) in Multilisp [13].

In the possibility (♦A) fragment, recall there is no actual movement without primitive
remote resources ♦A. In this example, each such remote resource provides a set of effect
primitives encapsulated as functions A → ©B. The effects involved are I/O operations
interacting with a network printer and the home console. Let the environment be charac-
terized by ∆0:

server :: ♦{submit : doc -> ©job, wait : job -> ©string}

home :: ♦{read doc : string -> ©doc, write : string -> ©unit}

Variable server represents a place where two primitive effects are available: submit and
wait. Variable home represents a location where we can read doc (read a document from
a file) or write messages to the console. Given bindings for these mobile variables, and
marshalling functions marshall string :
string -> �string and marshal doc : doc -> �doc, we can write the following pro-
gram which prints a document remotely.

let dia h env = home in
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let (remote print:doc -> ♦ unit) =
λ x .

dia
let box p = marshal doc x in
let dia s env = server in
let comp j = s env.submit p in
let comp s = s env.wait j in
let box sv = marshal string s in
let dia h env = home in
let comp = h env.write sv in

{()}
in

let comp d = val (h env.read doc ‘‘filename’’) in
let dia = remote print d in

{()}

The use of ♦ and/or© imposes a sequential style of programming; the function remote print
executes a sequence of effects (let comp) and jumps (let dia) causing the document d to
be printed remotely and a status message written on the home console. Marshalling functions
marshal doc and marshal string are used to make the document and the status message
portable between locations. Also note that j : job, a local handle used to refer to print
jobs, disappears from scope when we jump to home. If type job is held abstract, the value
of j cannot be removed from the location server.

10 Proposed Plan of Future Work

It seems that we have a satisfactory account of how various features from the logical realm
are reflected operationally in the calculus, and how the calculus may be extended with
effects, concrete data types, etc. There are some remaining questions on the theoretical side
relating to polymorphism and abstract types and an examination of their interaction with
mobility. Through this, we hope to shed light on the origin of immobility, showing that it
can be explained in a clean type-theoretic way.

We also plan to embark on an implementation of the calculus in the ConCert framework
for grid computing [9], culminating with a useable prototype. We believe that the program-
ming model of the calculus is suitable for grid programming since the →,� fragment of the
calculus is at the core of Hemlock, the current prototype language and compiler. We see an
opportunity to expand the programming model of Hemlock, mixing spawned computations
with access to resources at definite locations, through the use of the full spectrum of type
constructs →,�,♦ (and extensions) available in the calculus of modal logic. We concede
that parts of the language (particularly explicit marshalling) will have to be adapted to
make it more palatable.

10.1 Theoretical Issues to be Addressed

10.1.1 Abstract Types

In prior sections, we defined canonical marshalling functions for all concrete datatypes. All
such concrete values are location-neutral, and we may marshal them at any time. For
abstract types, the situation is more complicated. We must distinguish between ∃α .B (a
package or module) and the abstract implementation type hidden from clients by means of
type variable α.
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Consider the case of boxM : �∃α .B. If our interpretation of the type constructors
is to remain modular and logical, we are forced to conclude that this particular package
M : ∃α .B is mobile, since it closed and constructed solely from other mobile terms. So
it is not the case that ∃α .B is always immobile, rather, we conjecture that it is the type
abstraction over α that is the source of immobility for values of type α.

There is a very good argument why one would want such values to be immobile. Ab-
straction is a means of protecting the representation of a value from outside observation
and ensuring that clients use a certain interface to manipulate that value. This may be
important for reasons of privacy or modularity. Though the hidden type implementing α
may be known to the compiler or the runtime system, it would violate the spirit of the
abstraction to separate a value of type α from the package ∃α .B. This is why the usual
package open rule is formulated in the way it is, to ensure that nothing involving type α
escapes to the surrounding scope.

As with types A→ B and ♦A, one cannot disprove the existence of marshalling functions
for all such types. In some cases it will be possible to observe certain aspects of values of type
α programmatically and encode these properties as concrete, marshallable values of type
C. By composing encoding ∃α .B → C with marshalling C → �C, a programmer might
recreate an “equivalent” value ∃α .B elsewhere. But at the same time, there are good
arguments why no generally applicable, canonical marshalling function exists for ∃α .B. In
general, arguing equivalence for two abstract datatypes requires some external specification
of the semantics of that type, and when encoding is left up to the programmer, we cannot
make any guarantees about the behavioral properties of the encoding scheme.

We might also link the locality of effectful computation with abstraction. Essentially,
the type ©A is implicitly quantified over some representation of the machine state, and
we can think of refA as carrying a subscript refαA. There are certain primitive opera-
tions are defined on the abstract type of computations, but the internal machine state α
remains inaccessible. However, it is possible to partially observe some aspects of the state.
For example, with mutable references (without equality), it is still possible to observe the
contents of a reference. This allows one to recreate a reference anywhere, though of course
the identity and structure sharing of such a replica is not preserved. Given an equality
test on reference cells, one could implement a stronger marshalling function which preserves
structure sharing among some set of references.

10.2 Towards Implementation

In section 3, we presented an operational semantics for the calculus based on concurrent
reduction of program fragments. Process notation (〈r : M〉 and 〈l : E〉) was used to reflect
the placement of terms M or expressions E at abstract locations r or l. The internal
behavior of processes is not of much concern to us, since standard compilation strategies
for functional languages will apply. Rather the problems lie in implementing interactions
between processes. In our formulation of the semantics, these interactions occur in the
syncr, syncr∗ and syncl rules.

By design, processes 〈r : M〉 can be scheduled to run at an arbitrary location. At the
same time, processes holding references to r must be able to synchronize on the value of r
either by locating the process itself, or obtaining the result value in another way. In either
case, some means of indirection is needed. On the other hand, our operational semantics
treats processes 〈l : E〉 as resources at fixed locations. We note that the number of such
distinct locations l 6 .= l′ remains fixed over the lifetime of program execution, so the treatment
of labels l may not require the full generality of the solution for labels r.

The primary factor determining runtime performance will be communications latency,
setting aside the orthogonal issue of proof-checking transmitted code. Any reorganization of
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the semantics should seek to reduce latency of operations, insure that the method is scalable
to large graphs of processes, and increase robustness in the presence of failures.

We propose to deepen and, to an extent, reorganize the semantics to make implementa-
tion feasible. Some experimentation might be required in exploring the design space since
there are many strategies for handling synchronization more efficiently and allowing garbage
collection of processes. Essentially we would like to maintain as much as possible a local
picture of those aspects of the global state with which a process interacts.

The main defect of the abstract semantics is the handling of synchronization on the
result values of processes r. For simplicity, we used processes 〈r : V 〉 to represent a sort of
distributed environment mapping labels r to values V , not specifying any means to delete
processes or memoize result values near the locations they might be accessed. Furthermore,
the mechanism for assigning processes to a machine and looking up the assigned location
of a process is omitted. Finally, the abstract semantics assumes that processes persist
indefinitely in order to represent the “binding” of r to V as 〈r : V 〉. Preserving processes
r at a remote locations is not efficient or realistic given the high latency of communication
and the possibility of node failure.

10.2.1 Resource Binding and Discovery

As hinted earlier, we may interpret values of type ♦A as denoting resources present in the
distributed environment. Specifically, a value dia li : ♦A represents a resource of type A
at a location li. One can envision a variety of mechanisms for binding to such resources,
including explicit resolution of resources by their name (lookupA :: resource name→ ♦A),
or an implicit linking phase in which unbound variables u :: ♦A are bound automatically to
a set of locations.

For some applications, the identity of location li will be relevant and resolution by name
should be used. For example, a programmer might want to access a particular dataset stored
at a remote site. By providing a name or address, the programmer designates which dataset
or location is intended. In other cases, the binding mechanism may choose arbitrarily among
some set of locations in the distributed environment providing a resource of type A. This
form of binding might be used to locate host machines willing to play a certain generic role
or provide some service during a computation. One could envision a small set of generic
service types such as ♦CONSOLE, providing interaction with the user who submitted the
program for execution, or ♦FILE IO, providing an interface to scratch storage space.

Such generic resources could be advertised and the discovery process piggybacked onto
the protocol by which worker nodes are discovered. The ConCert conductor software will
have to be modified to accept input from the owner of the host machine as to which set of
libraries or services to advertise. Interestingly, the implementation of a service or resource
may or may not be provably safe under the safety policy, though perhaps it is trusted by
the machine owner. If the owner chooses to run potentially unsafe code to provide a service,
this has no impact on the broader “trustless” security model of ConCert.

10.2.2 Labels and Concrete Locations

The current formulation of the semantics presents some difficulties for efficient implemen-
tation. Firstly, we must consider the abstract locations w and their mapping to concrete
network nodes. The rules concerning interaction between processes (syncr, syncr∗, and
syncl) assume that we are able to locate an arbitrary process w at will. For example, syncr
assumes that we can locate the process 〈r′ : V 〉 in order to retrieve the value V (or wait for
a value V to become available). There are a variety of solutions:
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• Static: Replace labels w with concrete addresses. This avoids any bottlenecks asso-
ciated with indirect lookup. It is not immediately compatible with a work-stealing
model, in which process creation is decoupled from assignment to a concrete network
node.

• Centralized lookup: A table mapping each w to a concrete location is maintained at
some distinguished “home” process, probably at the location where the program was
submitted for execution.

• Distributed lookup: Each process or location maintains a partial table, and these
mappings are used to shortcut lookup in the remote table(s) managed by ancestors.
In the average case, this should be better than centralized lookup. If process mobility
or rebinding of abstract locations is allowed, then naturally an update or invalidation
protocol is also required.

The two kinds of label r and l could be managed in the same way, or differently. For
example, we may want to use indirect lookup for r, but direct addressing for l. This would be
the case if processes r are assigned locations by work-stealing, but processes l are bound to
fixed locations during a linking phase. But note that the notions of a “parent” for locations l
and r differ. The parent of a process r is a process r′ or l′ such that r/r′ or r/l′. The parent
of a process l is a process l′ such that l′ / l. In a process r we need to resolve references to
r′, and in a process l we need to resolve both r′ and l′. In both cases, a distributed lookup
scheme will function correctly if we look to the parent to resolve w, assuming the table at
the “home” location is populated with mappings for known l at the beginning of execution.
However, the performance characteristics of this scheme are unclear.

10.2.3 Lazy or Eager Synchronization

In the abstract operational semantics, the reduction rules syncr and syncr′ imply a some-
what wasteful model of synchronization. Communication occurs between r′ and w every
time we synchronize on the value of r′ from location w. It is clear that many synchro-
nizations between remote processes could be avoided by memoization. Beyond this obvious
optimization, there are some more radical reorganizations of the operational semantics we
can consider.

Essentially, the form of the abstract operational semantics was motivated by a desire
to delay synchronization as long as possible, permitting the maximum degree of concurrent
evaluation. Thus there is no explicit construct forcing synchronization, and we allow spawn-
ing dependent processes before their dependencies are fully resolved (new processes may be
open with respect to labels r). Lazy synchronization allows more concurrency, but creates
problems in resolving addresses and managing communication among a larger number of
nodes.

The current ConCert runtime implements a strict synchronization model, in which cords
(analogous to processes) are not spawned before all their dependencies are filled with values.
All cords which are dependent on a result will be created in an inactive state, waiting for the
result to become available. Since dependent cords stay fixed at a known location, it makes
sense to assign a destination for the result value of each cord. Such a fixed assignment is
only tenable because of a prohibition on marshalling or returning values of type α task.

By comparing the two evaluation models, we see that the ConCert model is more con-
strained with respect to concurrent evaluation. However, there are some advantages to these
constraints. Strictness allows more efficient execution of purely local code since one does
not need runtime checks to distinguish labels from ordinary values. Furthermore, strict
spawning allows one to designate a single destination for the result of each cord, simplifying
the implementation of synchronization considerably.
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10.2.4 Process Garbage Collection

The abstract operational semantics makes no provision for the deletion of a process r, since
at any time we may be required to synchronize on r. It is unrealistic to assume that processes
persist indefinitely, since a node may fail or choose to leave the grid at any time. Hence
we need some means of capturing the result value of such processes and allowing them to
disappear upon completion.

We conjecture that it is possible to avoid most of the complexity of distributed garbage
collection by reference counting. Because accessibility between processes w /w′ is generally
acyclic, we know that the only form of cycle present in a process configuration involves
at least one persistent, globally accessible label l. Since spawning a process might require
incrementing counts for a large number of references r, we could use a scheme based on
“indirect reference counting” (IRC) to avoid excessive communication. Indirect reference
counting is attributed to Piquer [19].

In a sense, garbage collection is a red herring, since we could instead redesign the oper-
ational semantics of synchronization to avoid dependencies between arbitrary locations and
the obligation to maintain 〈r′ : V 〉 indefinitely. For example, we could adopt the point of
view that each process r′ has a single destination (its parent w), and that all other processes
dependent on r′ make requests for its value indirectly through parent w. The process r′

eagerly forwards its result value (and those of its children) to the parent upon completion.
Under this simple scheme, we may delete r′ when it both terminates and its number of
active children reaches zero.

By using indirection to lookup result values, there is of course the potential to create a
bottleneck at some processes in the graph. However, with memoization, the burden could
be reduced so that requests for the value bound to r are not duplicated. In any scheme
that decouples spawning processes from their scheduling on a concrete node, it seems that
some amount of indirection is inevitable. Even in an implementation where two processes
can synchronize directly, the parent would be required to serve as a clearinghouse to resolve
addresses for its children, since the children could have scheduled in an order not compatible
with their dependency structure. Servicing requests for addresses might present less of a
bandwidth burden, but the number of requests would be the same.

10.2.5 Implementation of Marshalling

Assume we replace the substitution-based semantics with a classic environment-based one.
Let σ denote an environment corresponding to variable context ∆ and η denote the analogue
for Γ. In the most straightforward presentation, bindings in σ are all of the form u 7→ r.
So we can think of σ as determining some subset of the global environment of processes
〈r : M〉. The form values for types A→ B, �A, ♦A, and ©A will be closures {σ; η;V } for
V of the proper form.

Under this kind of semantics, it becomes clear that we will have to implement marshalling
for certain forms of closure values as well as the more primitive value types. Marshalling
comes into play when we synchronize on the value of a process (syncr, syncr∗), spawn a
boxed term with let box u =M inF scheduling it to be run remotely (letboxp and variants),
and jump to the location of some resource using let dia x =M inF (syncl).

Rule Redex Marshalled
letboxp 〈l : let box u = {σ; η; boxM} inF 〉 {σ; •;M}
syncl 〈l : let dia x = {σ; η; dia l′} inF 〉, 〈l′ : {σ′; η′;V ∗}〉 {σ; x : A 7→ •;F}
syncr∗ 〈r : {σ; η;V }〉, 〈l : S∗[ r ]〉 {σ; η;V }
syncr∗(prim) 〈r : V 〉, 〈l : S∗[ r ]〉 V
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When marshalling a closure {σ; η;V }, the component V will be some static, compile-time
entity λx : A .M , boxM , etc. We assume such fragments of code can be compiled to a
portable representation, handling marshalling in a static way. But the bindings in σ and η
are known only at runtime, and must be marshalled dynamically.

In the case of letboxp, note that the set of local bindings η may be discarded since M
is statically known to be Γ-closed. For syncl we deviate slightly from the ordinary notion
of closures to permit {σ; x 7→ •;F}, a special sort of closure with one free local variable
x : A 7→ •. Though {σ; x 7→ •;F} is not closed during transit, it will become closed upon
arrival at the destination l′.

Finally, for syncr we may be required to marshal the closure {σ; η;V }, including local
bindings in η. Marshalling of η could pose a problem but for the fact that processes r
originate with boxM : �A and are limited to pure computations, hence it should always
be possible to crawl over the representation of η at runtime to marshal these values. We
note that the static component V could be represented as a code pointer, provided that the
receiving location has access to that portion of the compiled program (which will be the
case when the receiving location spawned the process r originally).

11 Summary and Plan

In summary, we have presented a calculus for distributed computation derived from con-
structive modal logic. The type system has its origins in a constructive formalization of
S4 [18], and the operational semantics was inspired by an interpretation of logical worlds
as sites for computation. Consistent with this logical heritage, the calculus satisfies type
preservation and progress properties, and the core calculus (without fixpoints or effects) is
known to enjoy strong normalization and confluence4 [16].

We also showed that the core calculus is extensible and useful, in the sense that the
modal type system captures mobility and locality of program terms. The extension to
effectful computations (type ©A) demonstrated how the modal type discipline preserves
locality of certain inherently immobile term values — in our case, store addresses denoting
mutable reference cells. The extension to concrete datatypes further illuminated the nature
of the boundary between mobility and immobility. It seems clear that values of concrete type
C are naturally location-neutral since the introduction and elimination forms for concrete,
observable types allow one to implement marshalling (C → �C) programmatically.

Above, we discussed some plans for further investigation into the type theory of mobility
by extending the language with polymorphism and abstract types. The plan is to pursue
this line of inquiry in order to better characterize immobility in type-theoretic terms. It
is hypothesized that type abstraction and perhaps statefulness is the fundamental source
of immobility, though perhaps the latter be viewed as an instance of abstraction over the
representation of state. From the preliminary discussions above, we see that there are two as-
pects to this problem. First, we must choose a formalism for polymorphism and/or abstract
types, which should be relatively easy since they have been widely studied. Secondly, we will
explore various characterizations of marshalling functions, of which the class of strong mar-
shalling functions are but one example. Obviously, mobility, immobility, and our definition
of marshalling interact, with weaker notions of marshalling allowing us to claim more types
as “mobile”. This portion of the investigation should take only a few months; judgment calls
will be required as to what notions of weak marshalling are valuable to pursue, since there

4The interested reader should see the appendix, section 12.1, and perhaps [16] for an explanation of
the formal mechanisms used to represent locations and accessibility and to describe well-formed process
configurations. These mechanisms play a crucial role in some of the proofs, but are not needed for a basic
understanding of the calculus.
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might be an unbounded number of such criteria. Generally, we plan to limit the inquiry by
avoiding any application-specific notions of equivalence between abstract datatypes.

As a proof-of-concept, we plan an implementation of a compiler for the calculus generat-
ing certified Typed Assembly Language (TAL) [10] code for execution under ConCert [9], a
grid infrastructure for distributed programming in development at CMU. ConCert assumes
a collection of worker nodes which are organized in a peer-to-peer overlay network. These
worker nodes volunteer to execute fragments of closed code (closures) that are statically
certified to be safe. It seems clear that the compilation of boxM and let dia x =M inF
will produce such arbitrarily mobile closures over the code M and F . Though other clo-
sure values will be present at runtime, these forms will serve as the basic units of code
certification and distribution.

As discussed earlier, there are many issues to be addressed in adapting the abstract
specification of the semantics for realistic distributed execution. We plan to defer these
issues initially, developing a parser and typechecker for the language first. In this phase, some
alterations to the language should be considered to make it more palatable to a programmer,
we have in mind ML-style polymorphism and datatypes. As time allows, or in response to
pressing needs, we could consider other extensions.

Secondly, we will proceed to develop a simulator back-end for the language. The sim-
ulator will allow experimentation with a variety of strategies for scheduling processes and
managing synchronization, without the larger engineering effort of generating TAL output
or changing the ConCert runtime system. As a first attempt, we plan to implement a
fixed-destination semantics similar to the existing ConCert runtime, but permitting a more
uniform, higher-order treatment of spawned tasks. The simulator will also be useful for
exploring replication and failure-handling strategies, if time allows.

In the final stage of implementation, we plan to implement compilation to TAL, so that
programs can be executed in a “trustless” fashion under the ConCert runtime system. The
choice of TAL as a target for the compiler is orthogonal to our investigation of the type
theory of mobility and locality, but TAL’s type safety property is the primary means of
providing a static safety guarantee for code distributed to grid participants. We anticipate
compilation to TAL will not be significantly more difficult than compilation to untyped
assembly language.

We also propose to extend the basic ConCert execution model to support dynamic bind-
ing to remote resources. Worker nodes will become distinguishable based on the resources
they provide, and the ConCert runtime system will be modified to propagate resource ad-
vertisements in addition to work-available notices. Initially, we plan to support some trivial
form of remote resources or services as a proof-of-concept, adding additional ones as time
allows. We believe the value in achieving real distributed execution under ConCert lies
in exploring how the simple, clear programming model of the S4 calculus reduces the re-
quired level of runtime support, simplifying marshalling, garbage collection of processes,
and perhaps the handling of failures.
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12 Appendix

12.1 Well-Formed Process Configurations

To give a distributed operational interpretation to the calculus, we introduced labels w
and a process notation 〈w : . . .〉. An explanation of their static semantics was omitted in
earlier sections in order to quickly establish an informal connection between the logical and
operational readings of proof terms of the calculus. We will now extend our notion of typing
in order to account for these new entities.

Location labels play a role similar to variables, but denote spatially remote terms or
expressions residing in some other process. Labels r denote remote terms 〈r : M〉, and
labels l denote remote expressions 〈l : E〉. Thus we treat r as a kind of hypothesis of
validity, similar to u :: A. Labels l will behave as a new kind of hypothesis of possibility.
Runtime contexts Λ consist of a mixed collection of r :: A and l ÷ B, representing the
distributed context in which we judge a term or expression to be well-formed.

Runtime Context Λ ::= | Λ, r :: A | Λ, l ÷A

However, we must consider when, or more precisely from what locations we may make
use of assumptions r :: A or l÷B. In a distributed setting, the scope of labels is not lexically
determined, rather it should be governed by a notion of accessibility between locations. This
observation motivates the introduction of constraints ψ and judgment indices J .

Constraint φ, ψ ::= > | w / w′ | w
.= w′ | φ ∧ ψ

Location Index J ::= w | J/

The notation Λ\ψ is read as “Λ subject to ψ”. Constraints ψ will determine which
hypotheses in Λ are accessible from J , regarded as a location. Indices J specify either a
particular location (J = w), or a kind of quantification over locations accessible from w
(J = w/). We regard w / / as equivalent to w/ by definition, so repetitions of / are not
significant.

The extended typing judgments are as follows: Λ\ψ; ∆; Γ `J M : A is understood to
mean that M is a term having type A at location J , under the assumptions Λ\ψ; ∆; Γ.
Similarly, Λ\ψ; ∆; Γ `J E÷A means that expression E has type A at location J . Whenever
J = w/, the relevant judgment holds at all locations accessible from w. Thus logical validity
is now associated with the form of judgment `w/ in the presence of hypotheses Λ.

We first give the typing rules for labels w. The auxiliary judgment ψ `a w / w′ means
that w′ is accessible from w under constraints ψ. Constraint entailment φ `a ψ, presented in
section 12.3 of the appendix, defines a small theory of accessibility (w /w′) and equivalence
(w .= w′) of locations.

Λ = Λ1, r
′ :: A,Λ2 ψ `a r′ / w

Λ\ψ; ∆; Γ `w r′ : A
res

Λ = Λ1, r
′ :: A,Λ2 ψ `a r′ / w

Λ\ψ; ∆; Γ `w/ r′ : A
ures

Λ = Λ1, l
′ ÷A,Λ2 ψ `a w / l′

Λ\ψ; ∆; Γ `w l′ ÷A
loc

Rule ures incorporates an assumption of transitive accessibility, since if r′ : A at w then it
must also be well-formed at all locations accessible from w. An analogue of ures for labels
l′ would not be logically sound without symmetric accessibility.

Below we abbreviate Λ\ψ; ∆; Γ `J M : A as ∆; Γ `J M : A assuming a constant Λ\ψ
available throughout. For the most part, indices J are propagated between premises and
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conclusion unchanged. But note that in �I and ♦E, we use the quantified form of judgment
`J/ associated with logical validity (and thus mobility).

Core modal calculus:

∆; Γ, x : A,Γ′ `J x : A
hyp

∆; Γ, x : A `J M : B
∆; Γ `J λx : A .M : A→ B

→ I

∆, u :: A,∆′; Γ `J u : A
hyp∗

∆; Γ `J M : A→ B ∆; Γ `J N : A
∆; Γ `J M N : B → E

∆;`J/ M : A
∆; Γ `J boxM : �A �I

∆; Γ `J M : �A ∆, u :: A; Γ `J N : B
∆; Γ `J let box u =M inN : B �E

∆; Γ `J M : A
∆; Γ `J {M} ÷A

poss ∆; Γ `J M : ♦A ∆; x : A `J/ F ÷B
∆; Γ `J let dia x =M inF ÷B ♦E

∆; Γ `J E ÷A
∆; Γ `J diaE : ♦A ♦I

∆; Γ `J M : �A ∆, u :: A; Γ `J F ÷B
∆; Γ `J let box u =M inF ÷B

�Ep

Generic effects:

∆; Γ `J P :∼ A
∆; Γ `J compP :©A ©I

∆; Γ `J M :©A ∆; Γ, x : A `J Q :∼ B
∆; Γ `J let comp x =M inQ :∼ B ©E

∆; Γ `J M : A
∆; Γ `J [M] :∼ A

comp
∆; Γ `J M : �A ∆, u :: A; Γ `J Q :∼ B

∆; Γ `J let box u =M inQ :∼ B �El

∆; Γ `J P :∼ A
∆; Γ `J {P} ÷A

poss′
∆; Γ `J M :©A ∆; Γ, x : A `J F ÷B

∆; Γ `J let comp x =M inF ÷B
©Ep

Primitive effects:

Θ = Θ1, a
w : A,Θ2

Θ; ∆; Γ `w aw : refA addr
∆; Γ `J M : A

∆; Γ `J refM :∼ refA
talloc

∆; Γ `J M : refA
∆; Γ `J !M :∼ A

tget
∆; Γ `J M : refA ∆; Γ `J N : A

∆; Γ `J M :=N :∼ 1
tset
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Datatypes:

∆; Γ `J M : A ∆; Γ `J N : B
∆; Γ `J (M,N) : A ∗B pair

∆; Γ `J M : A ∗B
∆; Γ `J fstM : A

fst

∆; Γ `J () : 1 unit
∆; Γ `J M : A ∗B
∆; Γ `J sndM : B snd

∆; Γ `J M : A
∆; Γ `J inlA+BM : A+B

inr
∆; Γ `J M : B

∆; Γ `J inrA+BM : A+B
inl

∆; Γ `J M : A+B ∆; Γ, x : A `J N1 : C ∆; Γ, y : A `J N2 : C
∆; Γ `J caseM of inl x⇒ N1 | inr y⇒ N2 : C

case

∆; Γ `J M : A+B ∆; Γ, x : A `J F1 ÷ C ∆; Γ, y : A `J F2 ÷ C
∆; Γ `J caseM of inl x⇒ F1 | inr y⇒ F2 ÷ C

casep

∆; Γ `J M : [µα .B/α]B
∆; Γ `J rollµα .B(M) : µα .B roll

∆; Γ `J M : µα .B
∆; Γ `J unroll(M) : [µα .B/α]B unroll

We can now define the set of well-formed process configurations. The judgment ψ `c
C : Λ means that C establishes Λ under constraints ψ. We define an auxiliary store typing
judgment Λ\ψ `sw H : Θ (store H has type Θ) in the usual way.

Λ\ψ `sw H : Θ ⇐⇒ Dom(H) = Dom(Θ)

∧ ∀ [aw 7→ V ] ∈ H . Θ; Λ\ψ; ;`w V : Θ(aw)

ψ `c C : Λ ⇐⇒ Dom(C) = Dom(Λ)
∧ ∀〈r : M〉 ∈ C . [ ; Λ\ψ; ;`r/ M : Λ(r)]
∧ ∀〈l : H � E〉 ∈ C . [Λ\ψ `sl H : Θ ∧ Θ; Λ\ψ; ;`l E ÷ Λ(l)]

The definition of configuration typing requires that every hypothesis in Λ be realized by a
process of the correct form, and every process in C has the type assigned by Λ. Processes
are required to be closed with respect to ∆ and Γ, but may refer to local store addresses in
Θ or labels r :: A or l ÷A in Λ subject to accessibility constraints ψ.

12.2 Augmented Transition Rules

The transition rules of the semantics are now reformulated in such a way as to carry (and
update) a set of constraints ψ. That is, a single step in the operational semantics becomes
C \ ψ =⇒ C ′ \ ψ′. We take the point of view that constraints ψ are informative assertions
about the structure of the running program. As additional processes are created, the set
of constraints ψ will grow, but we are required to preserve soundness (acyclicity) of ψ and
well-formedness of C with respect to ψ (ψ `c C : Λ).
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Term Context R ::= [ ] | R M | V R | let box u =R inN
| (R,M) | (V ,R) | fstR | sndR
| inlA+BR | inrA+BR
| caseR of inl x⇒ N1 | inr y⇒ N2

| rollA(R) | unroll(R)

Computation Ctxt. S ::= [ ] | [R] | let comp x =R inQ
| let box u =R inQ
| refR | !R | R :=N | V :=R
| let comp x = compS inQ

Remote Comp. Ctxt. S∗ ::= [ ] | {R} | {S} | let dia x =R inF
| let box u =R inF | let comp x =R inF
| let comp x = compS inF

The rules are presented in groups, according to structural commonalities.

Local 〈r : M〉 \ ψ =⇒ 〈r : M ′〉 \ ψ
Rule M M ′

app R[ (λx : A .M ′1) V2 ] =⇒ R[ [V2/x]M ′1 ]
fst R[ fst (V1,V2) ] =⇒ R[V1 ]
snd R[ snd (V1,V2) ] =⇒ R[V2 ]
unroll R[ unroll(rollA(V )) ] =⇒ R[V ]
caseL R[ case (inlA+B V ) of inl x⇒ N1 | inr y⇒ N2 ] =⇒ R[ [V /x]N1 ]
caseR R[ case (inrA+B V ) of inl x⇒ N1 | inr y⇒ N2 ] =⇒ R[ [V /y]N2 ]
fixptv R[ fixv (u :: A) .M ] =⇒ R[ [[fixv (u :: A) .M/u]]M ]
fixpt R[ fix (x : A) .M ] =⇒ R[ [fix (x : A) .M/x]M ]

Local∗ 〈l : H � E〉 \ ψ =⇒ 〈l : H � E′〉 \ ψ
Rule E E′

app∗ S∗[ (λx : A .M ′1) V2 ] =⇒ S∗[ [V2/x]M ′1 ]
fst∗ S∗[ fst (V1,V2) ] =⇒ S∗[V1 ]
snd∗ S∗[ snd (V1,V2) ] =⇒ S∗[V2 ]
unroll∗ S∗[ unroll(rollA(V )) ] =⇒ S∗[V ]
caseL∗ S∗[ case (inlA+B V ) of inl x⇒ N1 | inr y⇒ N2 ] =⇒ S∗[ [V /x]N1 ]
caseR∗ S∗[ case (inrA+B V ) of inl x⇒ N1 | inr y⇒ N2 ] =⇒ S∗[ [V /y]N2 ]
letdia∗ let dia x = diaE inF (where E 6= l′) =⇒ 〈〈E/x〉〉F
caseLp case (inlA+B V ) of inl x⇒ F1 | inr y⇒ F2 =⇒ [V /x]F1

caseRp case (inrA+B V ) of inl x⇒ F1 | inr y⇒ F2 =⇒ [V /y]F2

fixpt∗v S∗[ fixv (u :: A) .M ] =⇒ S∗[ [[fixv (u :: A) .M/u]]M ]
fixpt∗ S∗[ fix (x : A) .M ] =⇒ S∗[ [fix (x : A) .M/x]M ]
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Interact C \ ψ =⇒ C ′ \ ψ′

Rule (C,C ′, ψ′)
letbox 〈r : R[ let box u = boxM inN ]〉 =⇒ 〈r′ : M〉, 〈r : R[ [[r′/u]]N ]〉

where ψ′ = ψ ∧ (r′ / r) ∧ (
∧
i{ri / r′ | ψ `a ri / r})

letbox∗ 〈l : H � S∗[ let box u = boxM inN ]〉 =⇒ 〈r′ : M〉, 〈l : H � S∗[ [[r′/u]]N ]〉
letboxl 〈l : H � S∗[ let box u = boxM inQ ]〉 =⇒ 〈r′ : M〉, 〈l : H � S∗[ [[r′/u]]Q ]〉
letboxp 〈l : H � let box u = boxM inF 〉 =⇒ 〈r′ : M〉, 〈l : H � [[r′/u]]F 〉

where ψ′ = ψ ∧ (r′ / l) ∧ (
∧
i{ri / r′ | ψ `a ri / l})

syncr 〈r′ : V 〉, 〈r : R[ r′ ]〉 =⇒ 〈r′ : V 〉, 〈r : R[V ]〉
syncr∗ 〈r′ : V 〉, 〈l : H � S∗[ r′ ]〉 =⇒ 〈r′ : V 〉, 〈l : H � S∗[V ]〉

where ψ′ = ψ

syncl 〈l : H � let dia x = dia l′ inF 〉, 〈l′ : H ′ � V ∗〉
=⇒ 〈l : H � l′′〉, 〈l′ : H ′ � V ∗〉, 〈l′′ : H ′ � 〈〈V ∗/x〉〉F 〉
where ψ′ = ψ ∧ (l′ .= l′′)

Note that only syncl and letbox (and variants) introduce new processes and hence must
impose additional constraints (ψ′ = ψ ∧ . . . ). In these cases we are essentially defining the
location of the new process relative to existing processes.

Effects 〈l : H � E〉 \ ψ =⇒ 〈l : H ′ � E′〉 \ ψ
Rule H E H ′ E′

seq H S∗[ let comp x = comp [V ] inQ ] =⇒ H S∗[ 〈[V ]/x〉Q ]
seqp H let comp x = comp [V ] inF =⇒ H 〈[V ]/x〉F
alloc H S∗[ refV ] =⇒ H ⊕ [al 7→ V ] S∗[ [al] ]
get H S∗[ !al ] =⇒ H S∗[ [H(al)] ]
set H S∗[ al :=V ] =⇒ H[al 7→ V ] S∗[ [()] ]

Each distinct location 〈l : H � E〉 is assumed to have its own store H. However, the identity
of stores [H]ψ is determined modulo the location equivalence induced by ψ. If ψ `a l .= l′

then 〈l : H � E〉 and 〈l′ : H ′ � E〉 share one store [H]ψ = [H ′]ψ.

12.3 Theory of Locations

Accessibility and equivalence of locations determines the permissible dependencies between
processes in a configuration C. Recall that w denotes a location (process label) r or l. We
will think about such labels as abstract locations or worlds in a Kripke semantics of modal
logic.

Constraint φ, ψ ::= > | w / w′ | w
.= w′ | φ ∧ ψ

A primitive constraint (w / w′) asserts that accessibility holds between w and w′. The
constraint w .= w′ asserts the equivalence of w and w′ under accessibility. That is, both
have the same accessibility properties with respect to all other worlds, so in a sense they
represent (or share) the same location. Compound constraints are conjunctions of such
primitive constraints, or the unit element >. When convenient, we may regard a formula φ
as a set of primitive constraints, joined implicitly by conjunction.

Equivalence (w .= w′) obeys reflexivity, symmetry, and transitivity, but does not entail
w /w′ or w′ /w directly. Our notion of accessibility w /w′ obeys transitivity (from S4) and
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respects congruence classes of worlds (as defined by .=). The S4 assumption of reflexivity
(w / w) is not made explicit in the theory of locations, but is present in the term and
expression typing rules. Constraints ψ govern the accessibility of remote terms (r) and
expressions (l); appeals to reflexive accessibility are made via typing rules hyp∗ (`J u : A)
and poss (`J {M} ÷A). In fact, including a reflexivity axiom ψ `a w / w would have the
undesirable effect of allowing recursive processes such as 〈r : r〉.

The judgment Γ `a ψ, capturing entailment for constraints, is defined as follows. In this
context, Γ denotes a set of constraints φ1, φ2, . . . , φn.

Γ, ψ `a ψ
Γ, φ1, φ2 `a ψ

Γ, (φ1 ∧ φ2) `a ψ

Γ `a w .= w
Γ `a w .= w′

Γ `a w′ .= w
Γ `a w .= w′ Γ `a w′ .= w′′

Γ `a w .= w′′

Γ `a w .= w1 Γ `a w1 / w2 Γ `a w2
.= w′

Γ `a w / w′
Γ `a w / w′ Γ `a w′ / w′′

Γ `a w / w′′

The specification above is only intended to be complete for derivation of primitive conclu-
sions w / w′ or w .= w′, not an arbitrary formula ψ.

12.4 Extension to Globally Accessible Locations

Globally accessible locations l are permitted if we modify the theory of locations determined
by constraint entailment Γ `a ψ. We introduce a new form of constraint, ∀w . w / l with the
intuitive meaning that l is accessible from anywhere. We also add the dual constraint for
labels r, those from which every other location is accessible.

Constraint φ, ψ ::= . . . | ∀w . w / l | ∀w . r / w

Γ `a ∀w . w / l
Γ `a w / l [w] Γ `a ∀w . r / w

Γ `a r / w [w]

The two inference rules are schematic in w allowing us to instantiate the quantifier with
any world w. By design, there is no introduction form for ∀w . w / l. The constraint ∀w . w / l
is a primitive assertion about l which must be introduced explicitly.

Given the new form of constraint ∀w . w / l, we can now express a new typing rule for
labels l.

Λ = Λ1, l
′ ÷A,Λ2 ψ `a ∀w . w / l′

Λ\ψ; ∆; Γ `w/ l′ ÷A
uloc

The rule permits typing of l in the context of a mobile term or expression, where such
occurrences were not typeable before. For example, we may now conclude Λ\ψ; ∆;`w/
dia l : ♦A, which allows us to realize assumptions u :: ♦A in ∆.

12.5 Properties

Constraints ψ were introduced in section 12.1 and and entailment in 12.3 to describe the
allowed dependencies between locations. We say that constraints ψ are sound if there are
no cycles in accessibility constraints (ψ 6`a w / w).

Definition 3 A constraint formula ψ is sound (ψ sound) iff 6 ∃w . ψ `a w / w.
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Our type preservation theorem states that the transition rules preserve types for pro-
cesses and soundness of constraints.

Theorem 2 (Type Preservation) If ψ is sound (accessibility is acyclic), process config-
uration C is well-formed (ψ ` C : Λ), and a reduction step C \ ψ =⇒ C ′ \ ψ′ is made, then
ψ′ remains sound and ψ′ `c C ′ : Λ′, where Λ′ extends Λ.

Proof: By cases on the C \ ψ =⇒ C ′ \ ψ′ judgment. A few cases crucial to safety and
preservation of locality (syncr′, letbox′, and syncl) are presented. See also [16].

Case:

〈r′ : V 〉, 〈l : H � S∗[ r′ ]〉 \ ψ =⇒ 〈r′ : V 〉, 〈l : H � S∗[V ]〉 \ ψ
syncr∗

Λ\ψ `sl H : Θ Assumption, Definition
Θ; Λ\ψ; ;`l S∗[ r′ ]÷A Assumption, Definition
Θ; Λ\ψ; ;`l r′ : B Typing Inv. Lemma
; Λ\ψ; ;`r′/ V : B Assumption, Definition
ψ `a r′ / l Inversion (res)
; Λ\ψ; ;`l V : B Natural Mobility
Θ; Λ\ψ; ;`l V : B Weakening
Θ; Λ\ψ; ;`l S∗[V ]÷A Ev. Context Typing
ψ′ = ψ and ψ′ sound Assumption
Λ′ = Λ Directly

Case:

V = boxM r′ fresh
ψ′ = ψ ∧ (r′ / l) ∧ (

∧
i{ri / r′ | ψ `a ri / l})

〈l : H � S∗[ let box u =V inN ]〉 \ ψ
=⇒ 〈r′ : M〉, 〈l : H � S∗[ [[r′/u]]N ]〉 \ ψ′

letbox∗

Λ\ψ `sl H : Θ Assumption, Definition
Θ; Λ\ψ; ;`l S∗[ let box u =V inN ]÷ C Assumption, Definition
Θ; Λ\ψ; ;`l let box u =V inN : B Typing Inv. Lemma
Θ; Λ\ψ; u :: A;`l N : B Inversion (�E)
Θ; Λ\ψ; ;`l boxM : �A Assumption, Inversion (�E)
; Λ\ψ; ;`l/ M : A Inversion (�I)
Let Λ′ = Λ, r′ :: A
ψ′ = ψ ∧ (r′ / l) ∧ (

∧
i{ri / r′ | ψ `w ri / l}) Assumption

ψ `a φ =⇒ ψ′ `a φ Entailment `a
ψ′ `a ri / l =⇒ ψ′ `a ri / r′ Entailment `a
ψ′ `a r′ / l Entailment `a
; Λ′\ψ′; ;`r′/ M : A Mobility Against Accessibility
Θ; Λ′\ψ′; ;`l/ r′ : A Typing (ures)
Θ; Λ′\ψ′; ;`l [[r′/u]]N : B Weakening, Substitution
Θ; Λ′\ψ′; ;`l S∗[ [[r′/u]]N ]÷ C Weakening, Ev. Context Typing
Λ′\ψ′ `sl H : Θ Weakening

r′ fresh Assumption
∃w,w′ . ψ′ `a w / w′ contradicts ψ sound Entailment `a
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ψ′ sound By Contradiction
Λ′ ⊇ Λ Directly

Case:

V = dia l′ l′′ fresh ψ′ = ψ ∧ (l′ .= l′′)

〈l : H � let dia x =V inF 〉, 〈l′ : H ′ � V ∗〉 \ ψ
=⇒ 〈l : H � l′′〉, 〈l′ : H ′ � V ∗〉, 〈l′′ : H ′ � 〈〈V ∗/x〉〉F 〉 \ ψ′

syncl

Λ\ψ `sl H : Θ Assumption, Definition
Λ\ψ `sl′ H ′ : Θ′ Assumption, Definition
Θ; Λ\ψ; ;`l let dia x =V inF ÷B Assumption, Definition
Θ; Λ\ψ; ;`l′ V ∗ ÷A Assumption, Definition
; Λ\ψ; ; x : A `l/ F ÷B Inversion (♦E)
Θ; Λ\ψ; ;`l dia l′ : ♦A Assumption, Inversion (♦E)
ψ `a l / l′ Inversion (loc)
Let Λ′ = Λ, l′′ ÷B
ψ′ = ψ ∧ (l′ .= l′′) Assumption
ψ `a φ =⇒ ψ′ `a φ Entailment `a
ψ′ `a l′ .= l′′ Entailment `a
ψ′ `a l / l′′ Entailment `a (cong)
Θ′; Λ′\ψ′; ;`l′′ V ∗ ÷A Weakening, Eq. Worlds (l′ .= l′′)
Θ′; Λ′\ψ′; ; x : A `l′′/ F ÷B Weakening, Natural Mobility
Θ′; Λ′\ψ′; ;`l′′ 〈〈V ∗/x〉〉F ÷B Substitution
Θ; Λ′\ψ′; ;`l l′′ ÷B Typing (loc)
Λ′\ψ′ `sl′′ H ′ : Θ′ Weakening, Eq. Worlds (l′ .= l′′)

l′′ fresh Assumption
∃w,w′ . ψ′ `a w / w′ contradicts ψ sound Form of ψ′, Entailment `a
ψ′ sound By Contradiction
Λ′ ⊇ Λ Directly

�

The progress theorem states that a well-formed process configuration is either terminal
or is reducible with some transition rule. Note that soundness (acyclicity) is critical because
it rules out deadlocks such as 〈r : r′ V 〉, 〈r′ : r V ′〉. Thus we must exclude globally accessible
labels, though term-level fixpoints are compatible with progress.

Theorem 3 (Progress) Assume ψ is sound (accessibility is acyclic). If ψ `c C : Λ, then
either C is terminal (all processes contain values) or C \ ψ =⇒ C ′ \ ψ′.

Proof: Consider an arbitrary process 〈r : M〉 or 〈l : H � E〉 in C. We reformulate the
progress theorem as follows, separating M or E from the rest of the configuration C.

ψ sound ∧ ψ `c C : Λ ∧ ; Λ\ψ; ;`J M : A (where J = r/)
=⇒ M = V ∨ ∃C ′,M ′ . C, 〈r : M〉 \ ψ =⇒ C ′, 〈r : M ′〉 \ ψ′

ψ sound ∧ ψ `c C : Λ ∧ Λ\ψ `sl H : Θ
∧ Θ; Λ\ψ; ;`J E ÷A (where J = l or J = l/)

=⇒ E = V ∗ ∨ ∃C ′, E′ . C, 〈l : H � E〉 \ ψ =⇒ C ′, 〈l : H ′ � E′〉 \ ψ′
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The proof then proceeds by induction on the order of location indices J imposed by acces-
sibility constraints ψ, with nested induction on the structure of typing derivations for M
and E. Indices J are compared by their root labels w ignoring quantifier symbols. We first
prove the property for judgments of the form J/, in which case our induction hypothesis is
that progress holds for prior J ′ (J ′ / J). Then unquantified J can be considered under the
hypothesis that progress holds for subsequent J ′ (J / J ′). For details of a proof for the core
calculus see [16]. The same strategy extends to the fragment with effects.

The operational semantics we have presented is non-deterministic in that there is often a
choice of which process to reduce and, within a process, a choice of when to perform optional
synchronization steps. However, in [16], we establish that the core calculus (without effects
or recursion) satisfies strong normalization and confluence (modulo deferred synchronization
steps).


