Modal Logic as a Basis
for Distributed Computation
(DRAFT)

Jonathan W. Moody
jwmoody@cs.cmu.edu

August 28, 2003

1 Introduction

In this report, we give a computational interpretation of modal logic in which the
modalities necessity ((OA) and possibility (0A) describe locality in a distributed
computation. This interpretation is quite natural, given the usual “possible
worlds” semantics underlying modal logic. In our case, the worlds we consider
are processes in a spatially distributed configuration. Necessity describes a term
that is well-typed anywhere and possibility a term that is well-typed somewhere.
Thus typing determines the permissible degree of mobility for terms, in some
cases allowing us to create new processes or move terms between existing pro-
cesses, and in others forbidding mobility.

Type Locality Interpretation

A type A here

OA type A any (accessible) place
QA type A some (accessible) place

In addition to the purely logical motivations, we present some examples demon-
strating how the calculus of modal logic proof terms can be used to write dis-
tributed, concurrent programs while preserving safe access to and manipulation
of localized resources. This work is supported by the NSF GRFP!, as well as
the CMU ConCert? project.

1«This material is based upon work supported under a National Science Foundation Grad-
uate Research Fellowship.”

2The ConCert Project is supported by the National Science Foundation under grant num-
ber 0121633: “ITR/SY+SI: Language Technology for Trustless Software Dissemination”.

2 Modal Logic

Modal logic comes in many varieties; this work is based on an intuitionistic
logic of necessity and possibility developed by Pfenning and Davies [11]. This
logic resembles S4, in that axioms corresponding to reflexivity and transitivity
of accessibility (in the classical setting) are derivable. In later sections of [11],
the authors provide a language of proof terms, which can be interpreted as
programs via the Curry-Howard isomorphism. We adopt their notation of proof
terms for this work as well.

Though Pfenning and Davies gave the outlines of an operational semantics
for these proof terms in the form of logically sound local reductions, no particu-
lar interpretation of the “worlds” was assumed. Though previous work focused
on showing that proof terms of the logic expressed deductions in S4 and lax logic
(related to monadic programs), this work will show concretely how proof terms
express distributed computations. We first extend the notion of a well-formed
proof term to a distributed setting in which worlds are reflected concretely as
locations (processes) where terms reside. We then give an operational interpre-
tation of such terms in which mobility is logically justified.

Of course, details of the evaluation strategy are not precisely determined
given only the logical properties of the language. However, by working from both
the logical and the engineering ends of the problem, we show that modal logic
proof terms can serve as a sort of calculus for distributed programming. Our
results represent one interpretation that we judged best under various practical
constraints and desiderata.

2.1 Proof Language

The following term assignment for modal logic is reproduced from [11]. The
development of Pfenning and Davies was based on three forms of primitive
judgment A valid, A true and A poss, representing the three senses in which
we can “know” proposition A holds. Informally these are: A is true in every
accessible world (necessity), A is true “here”, or A is true in some accessible
world (possibility). However, only A true and A poss are needed to explain the
typing rules for the proof language, because A valid is defined as deduction of
A true from no (locally) true assumptions.

Term M,N == x | u | Xx:A.M | MN
| boxM | 1let boxu=MinN
| diaFE

Expression E, F'

M let boxu=M in F
{
| let diax=MinF

Two sorts of variable (x and u) are used to represent hypotheses A true and
A valid, respectively. The distinction between terms and expressions is also
logically derived. The expressions are simply those objects which are proofs of
A poss, whereas terms are those which prove A true. The inclusion of terms in

the category of expressions (as {M}) reflects a logical inclusion between truth
and possibility. That is, A true entails A poss in the trivial sense that here is
somewhere.

The form of the typing judgment for terms will be A;T'F M : A, where A
and I' are variable typing contexts corresponding to wvalid and true hypothe-
ses, respectively. Implicitly, both hypotheses and conclusion are interpreted as
statements about an unspecified current location. The hypotheses in A, rep-
resenting assumptions of A valid (here), are available in all accessible worlds.
The hypotheses in I, corresponding to assumptions of A true (here), are only
available locally. Since it is not logically sound to permit proofs of A valid to
depend on local assumptions A true, it will be the case that variables x in I’
have a more restricted scope than u in A. The notation u :: A will be used to
distinguish valid hypotheses from those which are only locally true. Note that
the unconventional expression typing judgement A;T + E + A is a notation
meaning “expression E proves A poss”.

Types A,B == A—-B | OA4 | 04
Valid Context A = | AU=A
True Context I' == - | [LX:A
A;F,X:A,F'I—X:Ahyp A,u::A,A’;F}—u:Ahyp
A;Tx:A+-M:B 7 ATFM:A—-B A;TEN:A
ATF x:AM:A—>B ATFMN:B
AFM:A I A THFM:OA Auw: A, THN:B B
A;TFboxM :0OA - A;TF let boxu=MinN : B -
ATHFM:A ATHFM:OA Auw:=: A THF+B
2 " poss OF
ATH{M}+A A;T F let boxu=M inF =+ B P
ATHE+A ATEM:0A A;jx:AFF+B
J OI) O 7x OE

A;TFdiaE: QA A;T'Flet diax=M inF + B

Note that in rule — I, we treat the new bound variable x as a “locally true”
hypothesis. It will be the case that this non-modal fragment of the logic cor-
responds to purely local computations expressed in the A-calculus. The modal
fragment, which allows us to make statements about other worlds with A
and QA, will allow us to express distributed computations. The typing rules
O7 and QF deserve special attention, because they impose logically motivated
restrictions on hypotheses x : A of the ordinary, locally true variety.

2.2 Origins of Mobility

Though the language of proof terms and the judgements A;T'F M : A and
A;T + E + A make no explicit mention of worlds (representing locations), one

can gain an intuition for the behavior and mobility of the various terms and
expressions through a careful reading of the typing rules. Consider the unusual
form of some of the principles of deduction in modal logic, namely OO0 and QE.
We will argue that the restrictions they impose on the form of I' (the locally
true hypotheses) provide the logical justification we need to make parts of a
program mobile.

AFM:A A;TEFM:OA4 Auw: A THEN:B
A;TFbox M :0OA oI A;T'Flet boxu=M inN : B

OFr

A THFM:OA Auw: A;THE+B
A;T'F let boxu=MinF + B

OFE,

In the case of OI, reading the rule from the bottom up, if we have a term box M
proving [JA, we must have a term M of type A, which is closed with respect
to I' and hence well-formed at any accessible world. Since M depends on no
locally true assumptions in I'; it makes sense to treat M as being mobile. This
observation will permit us to spawn M for evaluation at an arbitrary world.
Under the elimination rules OF and OFE,, we see that given box M of type OA,
we may rely on the hypothesis u :: A throughout the remainder of the program.
Since M establishes A true in the absence of local assumptions, we can move M
(or its value) to any accessible world, validating the assumption u :: A wherever
it occurs. This is the intuition behind the behavior of necessity.

ATHFE+A 7 ATHFM:0A A;x:AFF+B
A;TFdiaFE: QA 0 A;TF let diax=MinF + B

Now in the case of ¢I, reading the rule from the bottom up, forming a term
dia E of type QA requires that we have an expression A;T' + E + A. That is,
from a perspective where we know hypotheses in A and I' are true, E proves
A, at some accessible world. The particular world is not made clear at this
level of abstraction, but the important thing to note is that E is fized to that
location — we cannot assume that it is mobile. For the elimination form QF,
reading from top to bottom, we will have a term dia E with type ¢0A and an
expression F' such that A;x: A+ F + B. As remarked above, we have in mind
some particular fixed location where E proves A. Furthermore, we know F' + B
under the assumption x : A. Because the judgement A;x : A+ F + B depends
only on a single true hypothesis x : A, it makes sense to claim that F' is mobile
in a restricted sense; that is, we may send F' to the particular accessible world
where E proves A, validating the assumption x : A. By doing so we will have
established B poss as required. This is the intuition behind the behavior of
possibility.

OF

3 Representing Locality

To this point, we have been speaking abstractly about such things as knowing
A true in one location and A poss in another. We should now develop a nota-
tion which reflects such concepts concretely, in the same way that the language

of proof terms represents deductions of A true or A poss relative to an single
implicitly defined “current” world. The notation for processes, introduced be-
low, will provide such a mechanism to place proof terms in distinct locations
relative to one another.

A single process containing a term in isolation would have no more expres-
sive power than the original calculus of proof terms. It is clear we will need
some new form of hypothesis allowing a proof to refer to results established
elsewhere (in another process). Process labels are introduced to serve as con-
crete manifestations of such hypotheses. We distinguish between strong labels
(r) corresponding to hypotheses of validity, which we call “result labels” and
weak “location labels” (I) corresponding to hypotheses of possibility. Oper-
ationally, result labels will allow us to receive the result value of a process,
whereas location labels allow us to jump to the location of a remote resource.

Process Label w == r | I

Processes are labeled by either a result label (r) or location label (I). Labels will
serve as process identifiers; we will assume no two processes in a configuration
share the same label.

Process P == {(r: M) | (I:E)
Configuration C == - | C,P

Process configurations are essentially a labeled collection of terms and expres-
sions. The linear ordering of a process configuration has no special meaning,
and we will assume process configurations can be rearranged at will.

Finally, the language of terms is extended to include result labels, and the
language of expressions to include location labels.

Term M,N == r | x | u |
Expression E,FF == 1| | {M} |

In the context of a proof, a label will serve as a new kind of “remote” hypothesis.
We discuss the logical properties of such hypotheses in the following section.

4 Logical Characterization of Processes

Though we defined some notation for process configurations, there is no assur-
ance (as of yet) that such a notation has a well-defined logical meaning. Syntac-
tically a process configuration C' is a labeled collection of interdependent proof
terms and expressions. We must now provide a definition of well-formedness,
which allows us to judge when such a configuration respects the semantics of
validity, truth, and possibility in modal logic.

Assuming processes are closed with respect to A and ', that is, -;- - M : A
for a process (r : M), then it would seem natural to regard the label r as a sort of
valid hypothesis, treating it similarly to u. However, there is a subtle distinction

to be made between a label r and variable u. In the judgement A;T F M : A,
u :: A denotes the hypothesis that A valid is known here (implicitly), whereas
r refers to a proof of A valid located somewhere else. In order to remain true
to the meaning of A valid, we should conclude - r : A at a location only if
that location is accessible from r. A similar line of reasoning applies to labels
I. Such labels represent the hypothesis that A poss is known, not here, but
at some other world. To respect the meaning of A poss, we should conclude
F 1+ A at the current location only if [is accessible from our current location.
Note that the direction of the required accessibility relationship is reversed when
passing between r (logically valid) and [(logically possible) hypotheses.

To accommodate these new kinds of hypotheses in the typing judgement, we
introduce a new form of deduction context A consisting of a mixed collection of
hypotheses r :: A and | + A.

Remote Hypotheses A | ArA | AL+ A

The notion that A valid known elsewhere can lead to the conclusion A true
here, and that A poss known elsewhere can lead to the conclusion A poss here
is entirely consistent with the meaning ascribed to these judgements. However,
each such case must be justified by some assumption about accessibility between
locations (processes). Rather than requiring all such assumptions be mentioned
explicitly, it is convenient to represent assumptions about accessibility with a
system constraints and entailment on those constraints.?

Constraint ¢, == T | waw' | w=w'" | ¢AY

Recall that w denotes a process label r or I. We will treat labels, as abstract
locations or worlds in a Kripke semantics of modal logic. A primitive constraint
(w < w') asserts that accessibility holds between w and w'. The constraint
w = w' asserts the equivalence of w and w' under accessibility. That is, both
have the same accessibility properties with respect to all other worlds, so in
a sense they represent (or share) the “same” location. Compound constraints
are conjunctions of such primitive constraints, or the unit element T. When
convenient, we may regard a formula ¢ as a set of primitive constraints, joined
implicitly by conjunction.

Equivalence (w = w') obeys reflexivity, symmetry, and transitivity, but does
not entail w <w' or w' <w directly. Accessibility w <w' obeys transitivity and
respects congruence classes of worlds (as defined by =). The judgement ¢ F* 1,

31t is possible to introduce hypotheses about worlds and accessibility explicitly into the
language of proofs, but programs become very rigid in the sense that their layout at runtime
is statically determined by typing.

capturing entailment for constraints, is defined as follows:

b1,¢2 F* ¢

T vy @1 A2 I ¥
oF*w=w pF*w=w" JoF*w =w"

Frw=w oF*w =w pF*w=w"

oF*w=w ¢F*wi<wy oF*we=w Pr*w<w PF*w <w"
o+ waw o waw"

Now if we are to make use of hypotheses in A, new forms of hypothetical
judgement A\t); A;T F; M : A and A\Y; A;T F; E + A are needed. These
judgements can be understood as a generalization of term and expression typing
to a setting in which the relative locations of M (or E) and the hypotheses in
A are taken into account. The notation A\ is read as A subject to v, since
constraints 1 will determine which hypotheses in A are available at a given
location. The entire judgement is made relative to a location index J, specifying
either a particular location w, or a range of locations, for example w<, meaning
all locations accessible from w. The relevant forms of index J are:

Location Index J == w | J«

Though indices J with repetitions of the quantifier < are possible (w<<...) we
consider all such repetitions equivalent to a single one (w<). That is, w<< = w<
by definition. Hence any J is equivalent to one of the cannonical forms r, I, r<,
or l«.
The key rules defining well-formed terms and expressions relative to J are
those governing the use of hypotheses in A.
A=Ay AN YFO TP quw A=Ay, AN YR quw

ANY; ATy 't A res AMY; AT Fyqr' = A ures

A=Al + ANy Y FCwal
A AT, '+ A

ocC

The rules res and loc are semantically justified by the following observations: If
we assume that A valid holds in some world 7’ from which the current location
w is accessible, then we can safely conclude A true at w. When A poss holds
in some other world I’ accessible from w, the conclusion A poss at w is justified.
Note that there is no rule corresponding to ures for hypotheses I’. Reasoning
semantically, we should not assume I’ remains available to us at all worlds
accessible from w.* This has the effect of disallowing occurrences of I in the
context of the judgement Fq.

4Hypotheses of possibility I can only be permitted under k4 if we assume [denotes
a globally accessible location (Vw . w<l). We choose not to introduce such assertions of
accessibility at this time, since they lead to cycles in accessibility and disrupt the logical
reading of process configurations.

We now proceed to extend the typing judgement to the all other forms of
term and expression. These rules do not interact with hypotheses A\, hence
we abbreviate A\¢; A;T F; M : A as A;T By M @ A assuming a constant
A\t available throughout. The interesting cases are O and QFE, where we
introduce quantification in the location index (I ;4) for typing certain subterms
and subexpressions.

h hyp*
AT, x: AT Fyx: A P Au:zAATH;ju: A 9P
ATyx: Ay M : B 7 AT, M:A—-B A;TH;N:A 5
ATF, \2:A.M:A>B ATrH, M N:B -
Aj-bFjqM:A I ATH; M:OA Au: A TH;N:B E
A;TFHybox M :OA - A;T'F; let boxu=MinN: B -
A;THyM:A poss A;TH; M:OA A,u::A;FI—JF+BDE
ATH{MY+ A A;T'Fjlet boxu=MinF + B P
ATH;E+ A 7 AT, M:0A Ajx: A, F+B B
A;T'FjydiaE : QA 0 A;T'F; let diax=M inF + B 0

In the case of OI and O FE we require M and F' remain well-formed proofs at
any world accessible from J (Fj4). We must do this in the case of O, because
the boxed proof term M could be required at all accessible worlds. For O E, the
body of a letbox expression F' must be well-formed at the particular location
x : A (a proof of A true) is realized. The particular world is unknown to us,
hence the requirement that F' remain well-formed at any accessible world.

By definition, judgements of the form F,4q are equivalent to k4. It is also
the case that judgements F,,4 and ,, are related:

Lemma 4.1 (Typing Inclusion) If A\¢; A;T Fyq M 2 A then A\; A;T Fy,
M : A. Similarly, if A\); A;T bFyq E + A then A\¢; A;T -, E+ A

Proof: by straightforward induction on typing derivations, making use of the
equivalence (w < < = w<) when necessary. O

Given this notion of well-formedness of terms and expressions, we can now
define well-formed process configurations. The judgement ¢ F¢ C : A means
that C establishes A under the the assumptions ¢ governing accessibility. We
define ¢ ¢ C' : A as follows:

Y C: A =
Dom(C) = Dom(A)
AV{r:M)yeC . A\Y; ;- brq M : A1)
AY(:E)yeC . A\yY;;-H E+A(l)

The definition requires that every hypothesis in A be realized by a process of
the correct form, and every process in C' has the type assigned by A. Processes

are required to be closed with respect to A and I'. Note that ¢ determines the
“scope” of hypotheses r and [in A.

4.1 Accessibility and Soundness

Finally, in light of the role ¢ plays in governing the scope of labels, we must
reconsider the form of v, distinguishing between sound and unsound sets of
constraints.

Cyclic constraints wg <w; < ... <wg can be interpreted as equivalence of
wp, W1, - -- in the sense that the labels w; all share the same accessibility rela-
tionships to other locations. However, we consider such cycles unsound, since
they could permit logically ill-founded process configurations such as (r : r)
(W =rar)or {l:U'),{l':1) (¢ =1<l'Al'al). We define soundness of constraints
as the absence of cycles in accessibility.

1) csound <= Pw .Y, waw

Explicit equivalence constraints (w = w') are perfectly compatible with this
notion of soundness. Here a clear separation between w < w' and w = w' is
crucial. The constraint w = w' alone cannot permit a cyclic dependency be-
tween processes w and w', because the rules for constraint entailment do not
define w = w' as w<w' Aw' <w. By consideration of the typing rules for located
hypotheses, we see a true material dependency is only possible if w<w' is known
(for equivalence classes of labels w,w'). The intuition is that w = w' equates
the locations w and w' of two otherwise independent terms or expressions. Qur
notion of soundness validates this intuition that w<w’ and w = w' are mutually
exclusive. If there were labels w, w' related by both equivalence (¢ F* w = w')
and accessibility (1) F* w <w'), then it would also be the case that ¥ F* w < w.

Under the requirement ¢ csound the judgements A\y; A;T F; M : A and
A\Y; A;T 5 E + A become sound with respect to the original notion of well-
formed proof.

Theorem 4.1 (Soundness of Process Configuration Typing) Assume that
P esound and Y F¢ C : A. If A\; A;T by M : A, then there exists M' such
that A;T - M': A, And if A\; A;T by E + A, then there exists E' such that
ATHE + A

Proof: by induction on structure of typing derivation F; and location index J
(ordered by accessibility). Indices J are compared by their root labels, ignoring
quantification (w< = w). For indices of the form J<, we assume the property
holds for prior J' (J'<J). After establishing this, we can proceed to arbitrary J,
assuming the property holds for subsequent J' (J<J'). Both forms of induction
hypothesis are sound, because (<) is a well-founded strict partial ordering on
labels.

Case:
A:A]_,’r, ZZA,A2 '¢|—‘1r'<1w
MNY; AT Ry r' - A

ures

(r:MYeC Assumption, Definition

A\Y; -5 Fpq M': A Assumption, Definition

YEIr quw Assumption

There exists N’ such that ;- - N': A TH (accessibility)

ATEN' A Weakening
Case:

A:A]_,TI ZZA,A2 ﬂb}_aTIQU)

ANY; AT hy ' 2 A res
(r-MYeC Assumption, Definition
ANY; - Fug M A Assumption, Definition
Y qw Assumption
There exists N’ such that -;-+ N': A TH (accessibility)
A;TEN A Weakening
Case:
A=A+ AN ¢|—aw<ll’l
A AT H, U= A oc
(I':E"YeC Assumption, Definition
A¢;-Fp E' A Assumption, Definition
PR wal Assumption
There exists E' such that ;- E'+~ A IH (accessibility)
A;THE + A Weakening
Case:
As-bFjaM: A I
A;TFyboxM :OA -
ANY; A Fgq M A Assumption
There exists M' such that A;-F M': A IH (derivation)
A;T FboxM': OA Typing (rule OIT)
Case:
A;TH;E+ A oI
A;THy;diaE:0OA
MNYy;ATHE+ A Assumption
There exists E' such that A;T - E' + A IH (derivation)
A;TFdiaE' : QA Typing (rule OI)

10

Case:

ATH MDA
poss
MNY; A TR M A Assumption
There exists M’ such that A;TF M': A IH (derivation)
ATH{MT+A Typing (rule poss)
Case:
ATH, M:0A Ajx: AR, F+B OF
A;T+jylet diax=MinF + B
ANY; ATy M QA Assumption
MNyY;A;x: AR F+B Assumption
Exists M’ such that A;T'F M': A IH (derivation)
Exists F” such that A;x: AFF'+B IH (derivation)
A;TF let diax=M'inF' + B Typing (rule OF)

O

Computationally, the proof translates terms and expressions well-typed un-
der F; by substituting the translation of M from process (r : M) for each
label 7, and E from (I : E) for each occurrence of I. This collapses a process
configuration into a single term or expression, well-formed under the original
judgement.?

The judgement F; is also complete with respect to I, in the following sense:

Theorem 4.2 (Completeness of Process Configuration Typing) IfA;T
M : A then \T;A; Ty M : A for any J. If A;T - E+ A then \T;A;T
E =+ A for any J.

Proof: by straightforward induction on derivations F M : A and + E + A.
Index J can be chosen arbitrarily because only typing rules for labels (res, loc,
ures) constrain the form of J. O

5 An Operational Semantics

In this section, we present a type-sound operational semantics for process con-
figurations. Logical considerations will provide justification of why proofs of
a certain form are regarded as mobile whereas others must remain fixed to a

5Defining such a substitution operation {C’/A}wM explicitly is complicated; a simple si-
multaneous substitution is not adequate. Rather, we must choose an ordering of A (according
to certain accessibility criteria) in which M and E are substituted.

11

certain location. In certain cases, a term (or expression) may be mobile, in the
sense that A\¢ F; M : A and A\ F,» M : A for distinct location indices J and
J'. Viewed in this way, the typing judgement expresses the potential locations
where a term or expression may be placed, not merely its current location. If
the operational semantics is to be type-sound, each case in which we move terms
or expressions from one world (process) to another must be justified in this way.

We will not assume a priori a set of worlds and an accessibility relation
constrained by . Rather, it is natural to assume that a proof expression (the
program), will reside at a single location initially, but as that program evolves
under reduction, certain mobile fragments of the program will be spawned for
evaluation in other locations. In each case where such a new process (location) is
created, we will assert additional accessibility constraints 1)’ essentially defining
the new location relative to existing ones.

5.1 Form of Values

Two judgements, M tvalue and E evalue, define the form of term and expres-
sion values, respectively.

Mx: A.M tvalue boxM tvalue diaF tvalue r tvalue

V tvalue
{V} evalue l evalue

We find it natural to treat the O and ¢ introduction forms (box M and dia E) as
values, by analogy with the — introduction form (Ax : A. M). The result label
r is also treated as a value, so that synchronization can be performed lazily. The
expression values have the form of either a location label | or a coerced term
value {V}.

We may draw certain conclusions about form of a value given its type. Con-
sidering only closed values (A and I' empty), the typing judgement may be
abbreviated as A\¢ F; V : A.

Lemma 5.1 (Typing and Form of Values)

Vtvalue A A\W+t;V:A— B V=Xx:AMVV=r
Vtvalue A A\, V:04 V=boxM V V=r
Vtvalue A A\YrF;V:0A V=diaE V V=r

IR

V* evalue A A\¢Qh, V*+ A4 *={V} A V tvalue

v V*=

Proof: directly, by considering rules defining tvalue and evalue judge-
ments and rules defining typing judgements. Note that hypothesis rules res and
ures could be used to derive F; V : A for any type A. Similarly, loc can be
used to derive ,, V* + A for any A. O

12

5.2 Definition of Substitution

Pfenning and Davies develop a substitution-based notion of reduction in their
paper [11]. Substitution of terms for variables x ([M/x]N and [M/x]F) was
defined as one would expect, taking into account restrictions on the scope of
hypotheses x : A. Substitution of terms for u :: A ([M/u]N and [M/u]F)
was also defined in a straightforward way. However, an unusual definition of
substitution on expressions was found to be necessary in order to maintain type
soundness. Substitution of expressions into expressions (including terms) was
defined as follows:

({M}/=x)F = [M/x]F
{(let diay=M inE/x)F = 1let diay=M in{(E/x)F
{(1et boxu=M inE/x)F = 1let boxu=M in{(E/x)F

Note that the definition of ({(E/x)F is inductive in the structure of E rather
than F. This form of substitution is applied to reduce expressions of the form
let diax=diaEin F'. An inspection of the typing rule 0 E shows why substi-
tution must behave this way. Specifically, F' is well-formed under the assumption
x : A, that is, x is assumed to be a term. Simply replacing x with E would not
result in a well-formed expression.

We have extended the syntax of terms and expressions with labels. Hence
it is technically necessary to extend the definition of substitution also. Labels
w of both varieties are regarded as insensitive to substitution. The intuition is
that labels denote processes which contain terms or expressions that are closed
with respect to A and T.

[M/x]w

w [M/juw = w
{l/xpF = 1let diax=dialinF

The case of expression substitution (I/x))F is unusual. We cannot simply follow
the same strategy used in the prior definition because the form of expression
denoted by [is unknown, at least in the context of performing a local substitu-
tion. By introducing processes and labels we have created dislocations in terms
and expressions, hence reduction cannot always be explained purely by local
substitution. A global view of the process configuration as a whole is needed to
fully explain the behavior of labels.

Though this definition of {(I/x))F is sound with respect to typing, it is
is not intended to be an effective means of reducing let diax=dialinF
since ({/x))F = let diax=dialin F. Rather, the form let diax=dialinF
should be regarded as a way to defer or suspend the substitution {I/x})F until
the expression value denoted by ! can be provided. We will provide a spe-
cial reduction rule (one not based on substitution) specifically for this form of
expression.

13

5.3 Transition Rules

A single-step transition in the semantics is stated as C' \ v = C' \ ¢’ for
constraints 1,1’ and process configurations C,C'. We take the point of view
that accessibility constraints are informative assertions about the structure of
the running program. As additional processes are created, the set of constraints
1 will grow, but we are required to preserve soundness of 1) (1) csound) and
well-formedness of C' with respect to ¢ (¢ F¢ C : A).

We will be using the notation of evaluation contexts S to reflect where (in a
term or expression) reduction may take place. In fact, evaluation contexts can
be split into two definitions, term and expression contexts.

Term Context R == [] | RM | VR
| let boxu=RinN

[1 | {R}

| let boxu=RinFE
| let diax=RinFE

Expression Context S

Note that only terms M may appear in a context R[M]. Note also that
the structure of S implies we will only perform reductions on expressions in the
empty context (S = []) whereas reductions on terms can occur nested inside of
other terms or expressions.

Processes irrelevant to the transition are omitted: Ci, (r : M), Cs,{l : E),C3
is abbreviated as {r : M), {l : E). Also recall that the ordering of processes in C
is not considered relevant, though an order must be chosen when writing down
an instance of that transition.

Rules for reduction of terms will occur in pairs, one applicable to processes of
the form (r : R[M]), the other for processes (! : S| M]). We follow a convention
of naming these variants app, app', etc.

i=0Mx:A.M'") V, tvalue
(r:R[Vi 2]y \ ¢ = (r: R[[Vo/x]M']) \ ¥

app

Vi=0Mx:A.M") V, tvalue
(L:SVi Va]) \ v = ({1 : S[[Va/x]M"]) \ ¥

!

app

V tvalue
(r' V) (re RPN\ = (" V), (r :RIV])) \ ¥

syncr

V tvalue
(r' V), {L:S[P P\ = (" V), {{:S[V])) \ ¢

The rules for function application are straightforward. Note that synchroniza-
tion on a result label r may happen implicitly at any time, but it only becomes
necessary when the structure of a value is observed. For example, synchroniza-
tion could be forced to occur before we may apply the app rule, because the app

syncr'

14

rule requires that V; have the form Ax: A. M'.

V =boxM r' fresh

Y= AT <) AN(N{ri<r | Y riar})

(r:R[let boxu=VinN]) \ ¥ = {r' : M), (r : R[[r' /Ju]N]) \ ¢’ letbox
V =boxM 7' fresh
Y=y A (" <A N{riar' [rial}) ,
(I:8[1et boxu=VinN)) \ Y = (' : M),{l: S[['/u]N]) \ ¢ letbox
V =boxM 7' fresh
P =A@ <) AN{riar | YT al)) Lotbon
p

(l:1let boxu=VinF) \ ¢ = (' : M),{l : [r'/u]F) \ ¢’

The letbox and letboz' rules govern the behavior of terms of type CA. Because
the boxed term M is known to be logically valid (and hence mobile) we can
spawn an independent process for evaluation of M. Since we are creating an
new process 7', we must define its relationship to other processes by adding
constraints to 9. Though there are other ways to generate such new constraints,
the form of 4’ is intended to be suggestive of creating a new process at a location
r! distinct from r. The result label ' is substituted for uin N. Label r' will serve
as a placeholder for the value of M, allowing us to achieve some concurrency
in evaluation. The rule letboz, defines the behavior of the variant in which the
body F' is an expression.

Finally, the syncl and letdia rules define the behavior of terms ¢A. Recall
that expressions (proofs of A poss) serve as evidence that A is true at some
accessible world.

V=diaE E#I
(I:1let diax=VinF) \ ¢y = (I : (E/x)F) \ ¢

letdia

In the case of letdia, we have direct evidence of A poss (E #1'). Therefore E is
either {M} corresponding to a deduction A poss because A true (here), or E
is some other form of expression. In either case, we can continue by performing
substitution locally. Note that the restriction that E is not a label is crucial
because substitution of a label {{I'/x)) F' does not allow us to make progress.

V =dial’ V* evalue [" fresh ¢'=¢ Al =1")
(l:1let diax=VinF),{I' : V*) \ ¢
= () {0V, {07 (V) F) \

One can look at syncl as a sort of dual of syncr — but instead of bringing the
immobile expression V* to our current location, the mobile code F' is sent to
the location of V*. Here we have “indirect” evidence I’ of A poss at some other
world. Therefore we jump to that world and resume reduction with the contents
of process I'. Note that we must duplicate V* in (I” : V*) to preserve the type

syncl

15

of the original process I'. The form of the constraints ¢’ is intended to suggest
creating a process I at the same location as I', though as with letbox, other
forms of 9’ are possible. The expression value I"” is produced in the original
process to represent the effect of this jump to I”.

5.4 Accessibility Constraints

A few words about the operational interpretation of accessibility constraints are
in order. First, note that a single process in isolation, closed with respect to A,
requires no constraints (¢ = T) in order to be well-formed. Secondly, as the
process configuration evolves and additional processes are spawned, the set of
constraints will grow monotonically, through the creation of new processes (rule
letbox) or duplication of processes (rule syncl). Thirdly, in interesting initial
states Co, (lo : E) \ %o, corresponding to running a program E in an environ-
ment Cp, some initial constraints vy could be required to specify the relative
locations of processes in C' and the program ly. Finally, at any given moment,
the set of constraints 1) may be stronger than required to ensure well-formedness.
Generating or maintaining a minimal v requires more detailed program analy-
sis, but would give more precise information about the dependency structure of
the program.

There appear to be two ways to view accessibility constraints: either the
constraints are informative assertions about dependence between processes (new
processes may be placed arbitrarily), or the constraints must be solved at run-
time against some a priori notion of accessibility (essentially a concrete Kripke
model). We have chosen to adopt the former point of view, noting that it is
not clear what limitation of the runtime environment a fixed accessibility rela-
tion would describe. Accessibility is not precisely communication, since not all
communication is conducted in a direction compatible with accessibility.® For
example, reduction rule letbox creates new processes {r' : M) by moving M
against the direction of accessibility. Accessibility constraints might be useful
in other ways when read as assertions about dependency. For example, they
might be used to schedule execution and synchronization more efficiently in a
lower-level operational semantics.

6 Properties

We will now present type soundness, progress, and confluence theorems for the
operational semantics, as well as supporting lemmas. This will demonstrate
that the choices we made in defining the operational semantics were correct and
logically coherent.

61f we also assume symmetry of accessibility, as in the modal logic S5, then viewing acces-
sibility as the capability to communicate might be more tenable.

16

6.1 Substitution

With some generalization, the following substitution properties from [11] hold.
As before, a constant A\¢ deduction context is assumed.

Lemma 6.1 (Properties of Substitution)

AT)x:BT'F;N:A AN ATHM:B = ATV, [M/X]N:A
AT)x:BT'F; F+A AN ATHM:B = ALV, [M/x]F+A
Aju:BATE,N:A AN AjrbjgM:B = AAN;TH;[M/ulN:A
AjuzB/ATH,F+A AN AjrbjgM:B = AATH[M/uJF+A
Asx:BlFj F+ A AN ATHE+B = A TH{(E/x)F+A

Proof ([M/x]N and [M/x]F): by straightforward induction over the typing
derivations for N and F', respectively. O

Proof ([M/u]N and [M/u]F'): by induction over the typing derivations for
N and F, respectively. The specification of a quantified location index J< in
A;-Fjyq M : B is crucial in the following cases:

Case:
Ayu: B,A";- Ry N A ar
A,u:: B,A';TFybox N :OA
AMNyY;AjuB,A'; - Fjg N A Assumption
MNY; Ay M B Assumption
AMY;A;-Fyjea M B Equivalent Index
[M/u]box N = box [M/u] N Definition
MNY; A A -y [M/u]N - A IH
AY; AJAT Ry box [M/u]N : OA Typing (rule OT)
Case:
A,u:: B,A';TFN:0C A,u::B,A';x:C’I—E+A0E
A,u: B,A";TF let diax=NinE + A
ANY;Aju: BJA',TH; N:QC Assumption
MNyY;Aju: BJA;x:ChjgE+ A Assumption
MNY; Ay M B Assumption
MNY;A;-Fjea M : B Equivalent Index
[M/u]let diax=NinF = let diax=[M/u]N in[M/u]E Definition
ANY; AJAL T F[M/]N : OC TH
AMNY; AN x:CH[M/WE + A TH

AMY; A, AT F let diax=[M/u]N in[M/u]E + A Typing (rule OF)

O

17

Proof ({E/x)F): by induction over the typing derivations for E, relying on
substitution property for [M/x]|F.

Case:
A=A, l+B, Ay YF*wal
loc
AMNY; AT R, I+ B

MNY; AT R, L+ B Assumption

AMyY;A;x: By F+ A Assumption

{(I'/x)F = let diax=dial inF Definition

A\Y; A;T H,, let diax=dial'inF+ A Typing (rule OF)
Case:

A;TH; M:B
poss
AT H; {M}+B

ANY; ATy M- B Assumption

AMyY;A;x: Bl F+ A Assumption

ANY;A;x:BFy F+ A Typing Inclusion

MNYy;ATx: By F+ A Weakening

({M}/x)F = [M/x])F Definition

MNY; AT Ry [M/x]F+ A Substitution Prop.
Case:

AT M:0C Ajy:CHjqE+B B
A;TFjylet diay=MinE + B 0

MNY; Ay :CrHqE+ B Assumption

ANY; ATy M OC Assumption

MNyY;A;x:BEF+ A Assumption

MNyY;A;x: Bl F+ A Equivalent Index

(let diay=M in E/x)F = let diay=M in (E/x)F Definition

MNY; Ay : CHig (E/xDF + A IH

A\Y; AT Fy let diax=M in{(E/x)F + A Typing (rule OF)

18

Case:

ATy, M:OC Aju:CT'H;E+B

A;T +j;1let boxu=MinE + B OE,
ANY;Au:C;TH; E+ B Assumption
ANY; ATy M 0OC Assumption
MNy;A;x: Bl F+ A Assumption
MNY;Aju:Cyx: Bl F+ A Weakening
{(1et boxu=M in E/x)F = let boxu=M in {E/x)F Definition
AMYy;Aju: C T Ry (E/x)F + A IH
A\Y; ATy let boxu=M in{(E/x)F + A Typing (rule OE)

O

6.2 Mobility

There are a variety of mobility properties which relate the typing judgements
AY; AT Ry M2 Aand A\y; A;T By M @ A made relative to distinct locations
J and J'. In general, the two judgements are related only if J and J' (when
stripped of quantification) are related under accessibility constraints ¢. We
analyze various forms of mobility below, noting which reduction rules in the
operational semantics make use of each mobility principle.

In the reduction rule syncr the following property justifies moving the term
value V from w to w'. In the case of syncl, it also justifies movement of ex-
pression F', the body of a letdia expression. Note that we are moving a term
(or expression) typed under the quantified form of typing judgement +,4 from
w to some accessible location w’, a situation which was anticipated when the
judgement F,,4 was defined. Hence this is the simplest, most “natural” form of
mobility.

Lemma 6.2 (Natural Mobility (w <w'))

MNY;AsTH, M A A YR (waw') = A\Y;ATHyM:A
AMNY; AT, GE+A AN YR (waw') = A\ A THyE+A

Proof: by induction on the typing derivations of M and E. Only the key
base case ures is shown.

Case:
A:Al,TI o A,A2 ’(/Jl_a ' aw ures
MNY; AT hyqr' 1 A
P 9w Assumption
P waw Assumption
YE* ' quw Entailment F* (trans)
MY AT Fygr’ + A Typing (rule ures)

19

O

In reduction rule syncl we copy expression value V* from [’ to I"”. The
intuition is that the duplicate process is be placed at the “same” world, that
isy F* (I' =1"). Tt is always possible to move (in a trivial sense) terms or
expressions between equivalent locations.

Lemma 6.3 (Equivalent Worlds (w = w'))

MNY; A TR M A AN YR w=w = ANY;A Ty M:A
MNY;ATH, M:A AN YR w=w = AY;ATH,M:A
MYy;ATHGE+A AN Yy w=w = AY;ATHyE+A
MNYy;ATHL,E-A AN Y w=uw = ANy;ATH,E+A

Proof: by induction on the typing derivations of M and E. The key cases
are the typing rules for hypotheses r and .

Case:
A:Al,TI N A,A2 ¢}_a r' qw ures
MNY; AT Ry r' 1 A
PR Qquw Assumption
Y w=w Assumption
YE* ! qw Entailment F* (cong.)

MY AT Fygr’ + A Typing (rule ures)
Case:
A:Al,’l‘l o A,Az Qpl_a r'qw res
AY; A;Thy ' 2 A
YEYr Quw Assumption
Y w=w Assumption
Y EC ! quw Entailment F* (cong)

ANY; ATk ' 2 A Typing (rule res)

Case:
A=Al A A ¢I—“w<ll’l
AY; AT H, I A oc
PE*wal Assumption
PE*w=w Assumption
P w <l Entailment F% (cong)

A\Y; AT Fyrgr' - A Typing (rule loc)

20

O

In cases when we spawn a new process (letbor and variants), we must move
a term from w to w' where w' <w. Since we cannot assume the term is closed
with respect to A we must ensure the new location w' is interposed between
w and all r; on which the term might depend. This is the most complex case,
because in a sense we are moving against the “natural” direction of accessibility.

Lemma 6.4 (Mobility Against Accessibility (v’ <w))
MNY; ATy M2 A
A Vry. W rqw) = WE raw') = AY;AThpqM: A
MNY; ATy E+ A
AN YVry. (W riqw) = WHE rqw') = AL ATHyE+A

Proof: by induction on typing derivations for M and E. Only the key base
case ures is shown.

Case:
A=Ay, AN YE2 7Y quw
A\ AT Fyer :4 O

YEIr quw Assumption
Vri . (Y F*ri<w) = (P Friqw') Assumption
Hence ¢ F2 r' «w'

A\Y; AT Eyigr' - A Typing (rule ures)
O

6.3 Evaluation Contexts

A key property of evaluation contexts, as they have been defined, is that we
never evaluate below a binding construct. Hence we know that the term M’
filling the hole in R[M'] will be typed in the same combined context A\y; A;T
as the surrounding parts of the term (or expression). For example, if we assume
S[M] is closed (with respect to A and I'), then M is closed as well.

Lemma 6.5 (Inversion of Typing for Evaluation Contexts) The follow-
ing inversion principles apply when typing terms and expressions of the form
R[M], S[M], and S[E]:

1) A\Y;ATH;R[M):A = 3B . A\Y;ATH; M B

(2) M\Y;ATH;SIM]+A = 3B . A\Yy;ATH; M :B

3) A\Y;ATH;S[E]+A = AMNy;ATH,E+ A
Proof (1): By straightforward induction on the form of R. O

Proof (2): By cases on the form of S, assuming (1) holds for all term evalu-
ation contexts R. O

Proof (3): Since S could only be [], the conclusion is immediate. O

21

6.4 Type Preservation

The operational semantics is type sound, in the following sense: As the process
configuration evolves, new processes may be created, but existing processes
remain well-typed (at the same type). The set of accessibility constraints will
change to account for the creation of new processes, however, soundness (absence
of cycles) of such constraints is preserved.

Theorem 6.1 (Type Preservation) If v csound, process configuration C is
well-formed (Y F C : A), and a reduction step C \ p = C' \ ¢ is made, then
1’ csound and ' ¢ C : A, where A" extends A.

pecsound A YFC:A A C\v=C"\¢
= JA'DA). W . ' csound A P FC A

Proof: By cases on the C' \ ¢y = C" \ ¢’ judgement. Representative cases
are shown.

Case:
V tvalue syner
(VS P\ =" V), (A :S[V]) \ ¥
A\ - S[r']+ A Assumption, Definition
A\Y;5-F ' B Typing Inv. Lemma
A\Y;-5-Fpg Vi B Assumption, Definition
YR ral Inversion (res)
A\Y;5-H V:B Natural Mobility
A\ps - = S[V]+ A Ev. Context Typing
' =1 and ¢’ csound Assumption
A=A Directly
Case:
V =boxM r' fresh
V=A@ <N N{ri<ar" | P2 <l}) /
(1:S[1let boxu=VinN]) \ ¢ = (' : M), {l: S[[r'/u]N]) \ ¢’ letbox

A\Y; ;- F; S[let boxu=V inN]+C Assumption, Definition
A\¢;-;-F; let boxu=VinN: B Typing Inv. Lemma
A;u:: A, N: B Inversion (OF)
A\Y; ;- Frbox M :TOA Assumption, Inversion (OF)
A\Y;5-Fg M A Inversion (OI)
Let ' =Ar' = A

V=Y AT <D)ANN{riar’ | Yl ri<l}) Assumption
YR = Y2 Entailment F¢

22

VR al = ' e ar! Entailment F¢

Y el Entailment F¢
A\Y'5 - Fpg M2 A Mobility Against Accessibility
A\Y'5 - A Typing (res)
A\Y's- - [r'Ju]N : B Weakening, Substitution
A\Y'5 - S[[r' /u]N] = C Weakening, Ev. Context Typing
r' fresh Assumption
Jw,w' . P F* w<w' contradicts 1 csound Entailment H®
1)’ csound By Contradiction
ANDA Directly
Case:

V=diaE E#I
(I:1et diax=VinF) \ v = (I : (E/x)F) \ ¢

letdia

A\¢;-;-F; let diax=VinF + B Assumption, Definition
A\y;sx: Abg F+B Inversion (QF)
A\Y;5-FdiaE: QA Inversion (QE)
A\Y;5-HE+ A Inversion (1)
A\Y; - (E/x)F + B Substitution
¢ =1 and ¢’ csound Assumption
A=A Directly
Case:

V =dial’ V* evalue ["” fresh ¢' =y A (' =1")

(l:1let diax=VinF),{I': V*) \ ¢ syncl
(U VG (VN \

A\¢; ;- let diax=V inF + B Assumption, Definition
A\Y;5-Fp V- A Assumption, Definition
A\Y;5x: Abg F+ B Inversion (QF)
A\y; ;- Fpdial’ : QA Assumption, Inversion (QF)
YE*Ial Inversion (loc)
Let A' =AlI" + B

Y=Y Al =1") Assumption
YR = Y ¢ Entailment F©
PRl =1 Entailment F°
Y Elal” Entailment F (cong)
AN\Y'5 - b V= A Weakening, Mobility Equivalent Worlds
MY 5x: Abpg F+ B Weakening, Natural Mobility
ANY's 5 b (V*[x)F + B Substitution
A\Y'5-H 1"+ B Typing (loc)

23

[" fresh Assumption
Jw,w' . ¢Y' F* w<w' contradicts ¢ csound Form of ¢', Entailment +*

1)’ csound By Contradiction
AN DA Directly
O

6.5 Progress

A progress property for the semantics ensures that well-formed process configu-
rations do not get stuck in an erroneous, non-value, state. The proof of progress
relies on the condition 1 csound, since the ordering of labels under w <w' must
be inductively well-founded.

Theorem 6.2 (Progress) Assume ¢ csound. If ¢ ¢ C : A, then either C is
terminal (all processes contain values) or C \ v = C' \ ¢/ (progress can be
made).

V* evalue V tvalue
(I:V*) terminal (r:V) terminal

Y csound A PFCC:A

= C terminal VvV 3J(C,¢).C\yv=C"\¢

Proof: Consider an arbitrary process (r : M) or (I : E) in C. We reformu-
late the progress theorem as follows, separating M or E from the rest of the
configuration C.

Y csound A YFCC:A A A\Y;5-F; M: A
= M tvalue V IC',M' . C,{r: M)\ v = C",{r: M") \ ¢’

Y csound A YpFCC:A AN A\Y;5-F E+ A
= FEevalue V 3C",E' .C,{{: EY\ v = C",{{: E") \ ¢

The proof then proceeds by induction on the typing derivations for M and E,
as well as ordering of location indices J imposed by accessibility constraints).
As before, indices J are compared by their root labels w ignoring quantifier
symbols. We first consider judgements of the form J«, in which case our induc-
tion hypothesis is that progress holds for prior J' (J' < J). Then unquantified
J can be considered under the hypothesis that progress holds for subsequent J'
(J < J'). Representative cases are shown:

Case:

A:A]_,TI ZZA,A2 '¢|—‘1r’<1w
MNY; AT Ry r' - A

ures

24

)

r’ tvalue Definition

Case:
A:Al,T’I o A,AQ ’(f)"a ' aw res
ANY; AT h, 7' 2 A
r’ tvalue Definition
Case:
A=Al AN Y wal .
A AT F, '+ A oc
l' evalue Definition
Case:
A;T,x: Ay M: B 7
ATH; Ax: A M:A— B -
Ax: A. M tvalue Definition
Case:
ATH/M:A—-B ATH;N:A B
ATH, M N:B -
ANy;5-Fy M:A— B Assumption
Ay;5-FyN: A Assumption
M tvalueor C,(r: M) \ v = C",(r : M") \ ¢/ IH (derivation)
N tvalueor C,{r: N) \ ¢y = C",{r : N') \ ¢/ IH (derivation)

Subcase: Progress on either N or M

Progress is also possible for (M N) Def. Eval. Context
Subcase: M tvalue and N tvalue

M=Xx:A.M o M=1r' Form of Values

If M =Xx:A.M' then:
C,(r: M NY\ ¢y = C,(r:[N/x]M") \ ¢ Reduction (rule app)

If M = 7' then:

25

Y ar Inversion (ures)
Process {r' : M') € C
A\p;5-FpgM': A= B Def. Well-formed Conf.
M' tvalue
or C,(r: M N),{r' : M"Y\ ¢p = C",{r : M N),(r' : M") \ ¢

TH (accessibility)

In the latter case we are done.
If M' tvalue then:
C,(r:r" NyY\w=C",(r: M' N) \ ¢ Reduction (rule syncr)

Case:
Ay M A 7
A;TFyboxM :OA -

box M tvalue Definition

Case:
A;TH; M:OA Au:ATH; N:B B
A;T'F;let boxu=MinN : B -

A\Y;-5-F; M :0OA Assumption

My;u A;-Fy N: B Assumption

M tvalue or

Coir : MY\ = C"(r: M)\ ¢ IH (derivation)

Subcase: Progress on M.

Progress is also possible for (let boxu=M in N)
Def. Eval. Context

Subcase: M tvalue
M =bvoxM'or M =7’ Form of Values
If M = box M' then:

C,(r:let boxu=MinN) \ v = C,{r' : M"), (r : [r' /u]N) \ ¢'
Reduction (rule letbox)

If M = 7' then

YO ar Inversion (ures)
Process (r' : M") € C

A\Y; - g M':OA Def. Well-formed Conf.
M' tvalue

or C,(r =), (! s MYy \ o == C", (r:..), ('« M"Y\ ¢

26

IH (accessibility)

In the latter case we are done.

If M’ tvalue then

C,(r:let boxu=r'"inN) \ v = C,(r : let boxu=M'inN) \ ¢'
Reduction (rule syncr)

Case:
ATH, M:0A Ajx: AR, F+B OF
A;T+; let diax=MinF + B
ANY;5-Fg M Q0A Assumption
AMy;u A;- -y F+ B Assumption
M tvalue or
Cor:MY\v=C",(r: M')\ ¢ TH (derivation)

Subcase: Progress on M.

Progress is also possible for (let diax=M in F)
Def. Eval. Context

Subcase: M tvalue

M =diaEor M =1' Form of Values

If M =dia FE and E # [then

C,(l:let diax=diaEinF) \ ¢y = C,({l: (E/x)F) \ ¢’
Reduction (rule letdia)

If M =diaFE and E =1 then

Yelal Inversion (loc)
(' .EYeC

A\Y;5-Fp B+ A Def. Well-formed Conf.
E' evalue

or C {l:..),(I' : EY\¢yp=C'{l:. .){:E"Y\¢
TH (accessibility)

In the latter case we are done.
If E!' evalue then
C,(l: let diax=dialinF) \ ¢

= C,{l:1"),{I' : E"), (" : {(E'/x)F) \ ¢' Reduction (rule syncl)

If M =r' then

P e al Inversion (res)
Process {r' : M') € C

27

A\Y; 5 g M': OA Def. Well-formed Conf.
M' tvalue
or Co(l:..),(r - MY\Yp=C",{:..),{" : M")\ ¢

TH (accessibility)

In the latter case we are done.

If M' tvalue then:

C,(l:1let diax=r"inN) \ v = C,({l : let diax=M'inN) \ ¢
Reduction (rule syncr')

O

6.6 Termination

Because the basic calculus of proof terms has no primitive fixpoint construct
nor are recursive types allowed, it is reasonable to suspect that the operational
semantics (C' \ v = C' \ ¢') is terminating. Furthermore, the possibility
of cyclic, non-terminating process configurations, such as (r : r), is specifically
ruled out by the requirement that v specify a well-founded accessibility relation.
In this section, we establish termination of such well-formed process configura-
tions using the method of logical relations.

Sangiorgi has also applied logical relations successfully in proving termi-
nation for a fragment of the Pi calculus [12]. He considers only “functional”
processes; in our case, the restriction on accessibility 1 plays a similar role in
forcing termination. Though his work encouraged us to believe that logical re-
lations could be applied in the setting of a process calculus, the details of our
definitions and proof are quite different.

6.6.1 Definitions

The normal forms under reduction are a subset of what were termed values in
prior sections. Though process labels were treated as values in some settings
(delaying synchronization), these labels cannot regarded as a proper normal
form, since a synchronization rule may apply. We say C \ 9 halts if all re-
duction sequences from C' \ 1 end with a process configuration in normal form,
that is, C has no infinite reduction sequences C' \ ¥y = C; \ ¥y = This
behavioral criterion defines a subset of configurations for which reduction (=)
is strongly normalizing.

In order to reason compositionally about the halting of configurations, we
introduce the logical predicates T% (M) and T (E) defined on terms A\
M : A and expressions A\¢ F; E + A. Note that M or E may be open with
respect to process labels in A. We also assume the accessibility constraints
satisfy ¢ csound. These predicates characterize a subset of terms/expressions
which halt when placed in a process and run in an environment 1 F¢ C : A. Of
course, M, E, and C must satisfy certain additional conditions.

28

We now give definitions of T (M) and T4 (E) which are inductive in J (or-
dered by accessibility) and type A (structurally). The auxiliary predicates
H(J,M) and H(J,E) are introduced as abbreviations. H(J, M) holds if M
halts when placed in a process and composed with any terminating configura-
tion C of the proper type. H(J, E) is the analogous condition for expression
E.

H(J,-) (defined for J of the form w or w<)
H(J,M) =get VCETX\¢.C,<TZM)\1/JA(Tiw) halts
H(J,E) =4 VCE€ Tz(\w .C,{l: E) \ YA (l =w) halts

T4 (M) (defined for A\¢ F; M : A where J = r<)
T4, (M) < H(J,M)
T4, g(M) < H(J,M) A VNeT, T4HM N)
L, (M) <= H(J,M) A T)(let boxu=M inu)
Tis(M) <= H(J,M) A T)(let diax=M in{x})
T4(E) (defined for A\¢ F; E + A where J =1,J = [<)
T4 (E) <= H(J,E)
T;{l__”;(E) < H(JE) ANVNE€ T4? . TL(let diax=diaEin{x N})
TL,(E) <= H(J,E) A T)(let diax=diaEin{let boxu=xinu})
T{a(E) <= H(J,E) A T)(let diax=diaFEin(let diay=xin{y}))

Expression termination T4 (E) is clearly related to the corresponding predi-
cate for terms T%. Indeed, if we consider only the trivial expression E = {M}
then the criteria for concluding T ({M}) is related to T (M) by a kind of local
expansion. But due to the syntactic distinctions between terms and expressions,
it is not clear how to combine TY and T9 in a single definition.

The predicate ']I‘I{\ " (C) characterizes those configurations C' consisting solely
of processes accessible from index J whose contents satisfy a termination predi-
cate. No extraneous processes that are inaccessible under typing (;) at judge-
ment index J are permitted. The form of quantification over r,[relative to w is
crucial to achieving an inductively well-founded definition. Formally, 'JI‘X\ »(C)
is defined as:

TY, . (C) <= VreDom(C).¢vForaw A TTET) (C(r))
A VL€ Dom(C) 4 Hwal A T, (C(1)
TRV (C) <= VreDom(C) . ¢ F*raw A T}, (C(r))

A il € Dom(C)

In the context of a fixed A\y where ¢ is sound (acyclic), the predicates
T4(M) and T (E) are inductively well-defined. There are two lexicographic
induction orderings, defined on pairs (w<, A) and (w, A), respectively. To define
the family of termination predicates for J = w<, each RHS of the definition
refers to termination predicates at prior labels r or at the same w but with a
smaller type. When J = w, each RHS refers to J = w< (a family of predicates
known to be defined), or a subsequent label [, or at the same w with a smaller

type.

w
A\y

29

6.6.2 Global Soundness

We now argue that the termination predicates T (M) and T%(E) have the
intended meaning, that is, they are sound with respect to halting.

Lemma 6.6 (Global Soundness) Assume ¢ ¢ C : A for ¢ csound. If all
processes v in C satisfy Ty{,,(C(r)) and all processes | in C' satisfy Tk(l) (cw),
then C' \ 9 halts.

Proof: Consider each process (r : M) in C. By assumption, we know T73(M).
By definition of the termination predicate, VD € ']I‘x{ v - D,(r: M) halts. By
the assumption that C is well-formed, and A\¢ F,q M : A, we know that process
r is (potentially) dependent on some subset C,. of C, specifically those ' such
that 9 F® ' <r. By the assumption that all C' satisfy a termination predicate,
’]I‘x{w(Cr). Hence C,,(r : M) halts. The case of a process (I : E) is similar,
though Cj, the set of (potential) dependencies may consist of both term and
expression processes. We conclude that Cj, (I : E) halts.

For each process, we have a halting fragment C,,(r : M) or Cj,(l : E) of
the entire configuration C. Note, however, that some of these fragments may
overlap and there may be no single fragment encompassing all processes in C.

We argue that C' halts by contradiction. Assume that C does not halt.
Then there exists an infinite reduction sequence S starting from C \ 1. For
each fragment C,.,{(r : M) or C,{l : E), there is a subsequence S, or S; of S
consisting of reduction steps which apply to that fragment. Due to the way
syner, syncr’ and syncl preserve or duplicate processes, each fragment is essen-
tially independent even though some processes may be members of more than
one fragment. So each step in the infinite sequence S is present in one or more
of the subsequences S,, S;. New processes do not arise spontaneously; all new
processes are identified with one of the original fragments, which are finite in
number. Hence, by a counting argument, at least one of the original fragments
supports an infinite reduction sequence. This contradicts the previous result
that all such fragments halt. O

6.6.3 Admissibility

In order to show that all well-formed terms and expressions satisfy T4(M) or
Ta(FE), respectively, we must prove certain admissibility /type-closure properties
hold for the predicates. Though for the pure lambda calculus, only condition
(1) is needed, the calculus of proof terms has a more varied structure requiring
further closure conditions. Conditions (2 — 4) are related to (1) by analogy
and allow us to conclude that the various elimination forms are terminating.
Conditions (5 — 7) allow us to conclude that the introduction forms for OA
and QA, as well as {N} are terminating when the term N or expression E
is terminating. Conditions (8 — 10) account for process labels w, which are
terminating when the contents of process w is assumed to be terminating.

To prove the lemma by induction on types, the statement of each property
must be generalized with an elimination context £. As with evaluation contexts

30

R,S, elimination contexts come in two varieties £,&'. €[M] denotes a term,
and £'[M] and &'[E'] denote expressions.

Lemma 6.7 (Closure/Admissibility Conditions)

Elim. Context & 3= [lterm | EN | let bozu=E€ inu
&' = [lexp | let diax=E in{x}
| let diax=dzaf' in{x N}
| let diax=dza&' in{let bozu=x inu}
| let diax=dzal' in(let diay=xin{y})

The following admissibility conditions hold. Due to the T (E[]),T4(E'[]) dis-
tinction, expression variants exist for (1,2,6,8,9). In these cases, we present
only the term variant T (€]]).

(1) VNeT]. TL(E[N/xIM])) = VNeT] . .TL(E[(Mx:A.M) NJ)

(2) VN ety . TL(E[[N/u]M]) = VNeTL, . TL(E[Let bozu=N inM])

(3) VN eT).TL(E'[[N/u]F]) = VNeTl,.TL(E'let bozu=N inF))

(4) VEeT).TLE[(E/xNF]) = VNeT],.TL(E'[let diax=NinF))

(5) VN eTy. ’TJJB(&"[[N/X]F]) = VNeT).TL(Elet diax=dia{N}inF))
(6) VN eT).TL(E[[N/u]M]) = VN eT).T4(E[let bozu=bozN inM |)
(1) VEeT).TLE(E/x)F]) = VEeT] .TL(E'let diax=diaE inF])
(8) VN eT{ . TEYE[N]) = VrazAeA . ¢Firaw=TE(E[r])

9) YNeTY . T8E[N]) = VrzAeA.¢roraw= TEr])

(10) VEeTY .TY(E'E]) = Vi+AeA . ¢prrwal=TEEI])

Proof: Each can be proved by induction on type B. In the base case when
B = Ay, the definitions of TY and T are purely behavioral (expressed as the
abbreviation H(J, —)). By assuming that the compound term in the conclusion
does mot halt, we arrive at a contradiction of the assumptions. The term in the
conclusion must halt if we assume the components of that term halt. The same
form of argument about the behavior of terms applies at all types, and we omit
proofs of H(J,—) in subsequent cases. For the cases B = A; — Ay, B =0A,,
or B = QA;, we assume the admissibility condition holds for smaller types A;
and A,. The definitions of elimination contexts £,&’ are specifically crafted to
allow induction to succeed in these cases.

Case: B = Ay (base type)

Cond: (1)

VN € T . Ta,(E[[N/x]M]) Assumption
Let: N € T}

H(J,N) and H(J,E[[N/x]M]) Def. T, T4,
Assume not: H(J,E[(Ax: A. M) N))

this contradicts H(J,N) or H(J,E[[N/x]M]) Def. =
H(JLE[(Mx:A. M) N)) by Contradiction
VN eT) . T4, (E[(Ax: A. M) N1) Def. TY,

31

Cond: (2-7) similar to (1).

Cond: (8)
VN € T4 . T{IE[N]) Assumption
Let: N € TY"
VC e TR, - Co(r' : E[N]) \ ¢ A (r' = w) halts Def. TS

= H(w<,E[N))

Let: r: A€ A
Y EYrqw Assumption
Let: '€ TY,
(r: M) e C and T'?(M) Def. T,
Assume not: C,(r' : E[r]) \ ¥ A (r' = w) halts
This contradicts H(w<, E[N]) or T(M) Def. =
H(w<,&[r]) by Contradiction
VraAeA. Rt raw= THIEr])

Cond: (9-10) similar to (8).

Case: B =04,

Cond: (1)
VN €T} . TéAl (E[IN/x]M]) Assumption
VN € T} . T4, (et boxu=&[[N/x]M]inu) Def. TéAl
VN €Ty . Ta,(let boxu=&[(Ax: A. M) N]inu) TH (A;)
VN eT} . Th,, (E[(Ax: A. M) N1) Def. TS ,,

Cond: (2)
VN e T4 . T 4, (E[[N/u]M]) Assumption
VN € T . T}, (let boxu=E[[N/u]M]inu) Def. TéAl
VN € TS, . T}, (let boxu=E&[let boxu=NinM]inu) IH (4,)
VN e TS, . Th4, (E[1et boxu=N in M]) Def. TZ,,

Cond: (3-7) similar to above.

Cond: (8)
VN e T4 . &5, (E[N]) Assumption
VN € T4 . T4(let boxu=&[N]inu) Def. Ty,
VraAeA. .y raw= T let boxu=E&[r]inu) IH (4;)
VraoAeA. . YpRrraw=TE, (E[r]) Def. T,

Cond: (9-10)

Case: B=0A,

Cond: (1-6) similar to prior cases.
Cond: (7)

32

VE € T . T{ 4, (E'[(E/x)F]) Assumption
Let: F' = (let diay=xiny)

VE € T . T}, (let diax=dia&'[(E/x)F]inF") Def. T4,
VE € T} . T}, (let diax=dia&'[let diax=diaEinF]inF)

IH A,
VE € T . T{4,(£'[1et diax=diaEinF)) Def. T4,

Cond: (8-10) similar to prior cases.

Case: B = A; — A, similar to B =0A; and B = Q0 A;.
O

6.6.4 The Fundamental Property

We show that all well-formed terms (A;T F; M : A) satisfy T/ (cM) when
elements of the substitution o are assumed to be terminating. An analogous
property holds for expressions E. Note that o satisfies the typing assump-
tions A; T and may consist of several forms of substitution — [M/u], [N/x] or
{E/y), depending on A; T and the form of typing judgement. When Tﬁu)(M),

T{(x) (N), and T{(y)(E), respectively, for all M, N, E components of o, we write
Ti;r(a), meaning o satisfies the termination conditons for contexts A;T" at J.

Lemma 6.8 (Fundamental Property of Logical Relation) AssumeT3 (o).
That is, o is a substitution operator satisfying typing assumptions A; T with ter-
minating bindings. If A;T 5 M : A then T4 (o(M)). And if A;T ky F <+ A or
A;xq 0 Ay byg F = A then TY(o(F)). The precise form of o depends on A;T
and the form of typing judgement b ; as detailed below:

ATH,N: A

Ao =[Mi/u]...[M;/u;][N1/x1]...[Nk/xx

A Vi . TX?ui) (M;) A Yi. T e (N;) = TY%(c(N))

ATy F+ A

N o= |[M1/111]] e [MJ/UJ]][Nl/Xﬂ e [Nk/xk]

A Vi TR (M;) A Vi Thx) (N;) = TY%(o(F))

A;-Fya N A

Ao =[M/u]...[M;/us]

A Vi . TX?ui) (M;) = T4 (o(N))

Ajxg i Ay by F- A
Ao =[Mi/u]...[M;/o]{(Er/x1))
AVi. TX?ui)(Mi) A Tﬁl(El) = TY(c(F))

Proof: By induction on typing derivations, making extensive use of admis-
sibility conditions (1-10). Some representative cases are presented.

33

Case:

AT, x:AT"Fyx: A hyp
TA,r(0) Assumption
T (0 (x)) Immediate
Case:

A=Al = A Ay Y wal

AY; AT E, '+ A oc
P wal Assumption
T4 (") Admissibility (10)
Case:
A;T,x: Ay M: B
ATH w:AM:A->B 1
ATyx: Ay M : B Assumption
TA.r(0) Assumption
VN €T . T4 (o ([N/x]M)) IH
VN e T} .T4(o((Ax: A. M) N)) Admissibility (1)
T4 glc(x : A. M)) Def. T) 5
Case:
ATH; M- A
poss
ATH, {M}=A
ATy M: A Assumption
TA.r(0) Assumption
T (o (M)) IH
T4 (c({M})) Admissibility (5)
Case:
Ay M A ar
A;TFyboxM :OA
A;-bFga M- A Assumption
TAL (o) Assumption
T/5(o(M)) H
T, 4 (o(box M)) Admissibility (6)

34

Case:

ATk ;diaFE: QA 2

ATH;E+A Assumption

TA,r(0) Assumption

T (o(E)) H

Toa(o(dia E)) Admissibility (7)
Case:

ATH/ M:A—-B ATH;N:A
ATF, M N:B —+E

A;THIM:A— B Assumption

A;THINGA Assumption

TA.r(0) Assumption

A;T

T, p(o(M)) H

™ (o(N) H

TL(o(M N)) Def. T ., 5
Case:

ATy M:OA Au:ATH; F+B OF
A;T'F;1let boxu=M inF + B P

A;THy M:OA Assumption

Au: A TH; F+B Assumption

TA.r(0) Assumption

T (o (M) TH

VN € T4 . T4 (o([N/u]F)) IH

VN €T, . TL(o(let boxu=N inF)) Admissibility (3)

T4 (o(let boxu=M inF)) Directly
Case:

AT M:0A Asx: ARy F+B OF
A;Tkjylet diax=MinF + B

A;TH; M : QA Assumption

A;x: A+ F+B Assumption

o1 =[Mi/ui]... and o3 = [N1/x4]... Assumption

Ti;F(UIUQ) and Ti;.(al) Assumption

T3 a(0102(M)) IH

VE €T . T4(o1((E/x)F)) TH

VN € TgA .Tf(01(let diax=NinF)) Admissibility (4)

T} (0102(let diax=M inF)) Directly

35

O
Theorem 6.3 (Strong Normalization) If¢ ¢ C : A then C halts.

Proof: By definition, ¢ F¢ C : A implies all processes in C are well-
formed. By the fundamental property lemma, processes r satisfy TX?T)(C (r))

and processes [satisfy Tk(l)(C (1)). By the global soundness lemma, we conclude
C halts. O

6.7 Confluence

Reduction on configurations C' \ ¢ = ¢’ \ C' is nondeterministic. For any
configuration C, there may be a choice of process on which to focus, as well
as a choice of performing some optional synchronization step(s) (with syncr
or syncr'). Though nondeterministic, the operational semantics is confluent
modulo a certain notion of equivalence on process configurations C. We will
define this equivalence in such a way as to capture precisely the effects of these
nondeterministic synchronization steps. Differences in the form of constraints
1 will be ignored, hence C \ ¢ = C' \ ¢’ is abbreviated as C = (.
Equivalence at the level of terms (and expressions) is defined by the judge-
ment [M], = [N],,, meaning that “M (interpreted relative to C) is equivalent
to N (relative to D)”. There is an implicit side condition that C = D, but C
and D are not required to be identical. We write simply M = N when the con-
figurations (C, D) are clear from context. Equivalence of expressions is written
as [E], = [F]p- The M = N relation is simultaneous structural congruence
defined by the following axioms and rules (the congruence rules are omitted).

Mo=bl ‘™ o=,
o=ty " To=m,
(r:V)yeC Vtvalue [V],=[V']p .
[r]c = [V,]D rans
(r:V)yeD V tvalue [V'],=[V]p, .
[VI]C’ - [T]D trans

The trans and trans' rules govern equivalence of labels r and values V' (which
may be some other form of term value). The intuition is that synchronization on
labels r (rule syncr or syncr') can be applied at any time. Therefore each label
r should be considered interchangeable and equivalent with the corresponding
term value in process (r : V). On the other hand, location labels | are only
equivalent under eqloc. We do not consider [equivalent to V* in another process,
since rule syncl is applied deterministically (within a process) and our goal is to
capture precisely the unpredictable aspects of synchronization with equivalence.

36

Reflexivity is admissible for (=), as are symmetry and transitivity. Reflex-
ivity arises from the structural congruence rules (omitted above) and axioms
eqhyp, eqhyp*, etc. The form of trans and trans’ rules were chosen to incorpo-
rate symmetry and transitivity.

Lemma 6.9 Under the definition of M = N (and E = F), reflexivity, symme-
try, and transitivity of = are admissible.

Proof: Reflexivity by straightforward induction on the structure of terms and
expressions. Symmetry and transitivity by induction on derivations [M], =
[Np

Equivalence for process configurations (C' = D) is simply defined as pairwise
equivalence of processes. For convenience, we will assume that C and D use
identical labels for equivalent processes so that processes are comparable without
establishing a mapping between labels of C' and those of D.

C=D <= §=Dom(C)=Dom(D)
AY(res). [C()] = [D(n)]p
AV(leS).[C ()]oz[D(l]

This strong notion of pairwise equivalence is helpful in proving confluence,
though an outside observer may only care about equivalence for a distinguished
“main” process.

6.7.1 Properties of Equivalence

Derivations of [M], = [N], are not uniquely invertible, since several rules
(namely egres, trans and trans'), apply to terms of the form r. However, we
can identify certain cases based on the form of M and N.

Lemma 6.10 (Inversion of Equivalence) If [E], = [F],, then correspond-
ing subterms or subexpressions of E and F are equivalent or E =1 = F. If
[M]. = [N], then one of the following holds:

(1) Neither M nor N is a label (r) and either corresponding subterms or
subexpressions of M and N are equivalent (a congruence rule was used)
or M = N (rule eqhyp or eqhyp* was used).

(2) M =r =N (rule eqres was used).

(8) M =r and there is a process {r : V) in C such that V = N (rule trans).
Or N = r and there is a process {r : V) in D such that M =V (rule
trans').

Proof: direct, considering cases of [M], = [N], judgement. O

Equivalence (=) is a logical relation in that it relates terms (or expressions)
with the same typing properties.

37

Lemma 6.11 (Typed Equivalence) Assume C =D where both ¢ ¢ C : A
and Y+ D : A. Under such A and ¢, if [M], = [N]p and A\¢; A;TF; M : A
then A\¢; A;TFy N : A, Also, if [E], = [Flp and A\Y; A;T =5 E + A then
AMNY; AT Ry F+ A

Proof: by induction on derivation [M], = [N], (or [E], = [F], for expres-
sions). The cases involving labels r are shown:

Case:
(r:VyeC Vtvalue [V],=[V']p
— 7 trans
[rle =[V']p
YpEC:A Assumption
(r:VYecC Assumption
A;5-Fq Vi A Definition
Vle=[V'lp Assumption
A\ 5 g VD A IH
Case:
(r:V)eD Vtvalue [V'],=][V], .
trans
Ve =lrlp
YFEeD:A Assumption
(r:V)eD Assumption
A\p; 5 Frq Vi A Definition
Ve=[Vlp Assumption
A\p; g VD A Symmetry, TH
O

Equivalence is compatible with the definition of term and expression values,
in the sense that values are equivalent to other values.

Lemma 6.12 (Equivalence of Values) If M tvalue and [M], = [N][, then
N tvalue. If E evalue and [E], = [F|[, then F tvalue.

Proof: For term values, the proof is by induction on derivations of M = N,
considering cases consistent with M tvalue. The analogous proof for expression
values is also straightforward, and relies on the property we just established for
equivalence of term values. [

Equivalence is compatible with substitution in the sense that substitution
applied to equivalent terms or expressions yields equivalent results. Note that all
terms, expressions, and process configurations are assumed to be well-formed.

38

Lemma 6.13 (Equivalence Compatible with Substitution) If C' and C'
are well-formed and C = C' then the following hold:

[M]c =[M'|lc. AN [N]lg=[N'le, = [[M/x]|N]o=[M'/x]N'].
M]o =[M']ce N [Flg =[Fle, = [[M/x]F]; =[[M'/x]F].,
[M]o =[M']c: N [Nlg=[N'lex = [[M/u]N]; = [[M'/e]N']c
M]o =[M']er N [Flg =[F'len = [[M/u]F] = [[M'/u]F].
[Elg =[Eer AN [Flg=[F'le = [(E/x)F]c = [(E'/x)F']c

Proof ([M/x]N and [M/x]F): by induction on the derivation [N]. = [N'].,
(or [F]s = [F'])- Some representative base cases are shown:

Case:
—_ eqres
[rle = [rler
[M/x]r =r and [M'/x]r =1 Definition
([M/x]r]o = [[M'/x]r] o Equivalence (rule egres)
Case:
———— eqloc
e = Wer
[M/x]l =1 and [M'/x]l =1 Definition
([M/x]l] = [[M'/x]l]. Equivalence (rule eqloc)
Case:
(r:VyeC V tvalue [V],=[V']a
— 7 trans
[rle = Ve
[M/x]r =7 Definition
(r:V)e CandV tvalue and [V], = [V'] Assumption
ANY; -V A Def. Well-formed Conf.
A\Y;5-Frg VDA Equiv. Typed
M'/x)V' =V Subst. on Closed Term
([(M/x]r]e = [M'/x]V'] Equivalence (rule trans)
O

Proof ([M/u]N and [M/u]F'): by induction on the derivation [N], = [N'],
(or [F], = [F"]r)- The proof is straightforward and quite similar to the case
of ordinary substitution ([M/x]N and [M/x]F). O

Proof ({E/x)F): by induction on the derivation [E]. = [E'].,, making
use of the equivalence result for term substitution established above. A few
representative cases are show:

39

Case:

o=l
(I/x)F = let diax=dialinF
and (I/x)F' = let diax=dialinF’ Definition
e =Ue Assumption
[Flo = [F']e Assumption
[dial], = [dlal]o, Equivalence (cong. rule)
[({I/x)Flo = [(1/x)F'] o Equivalence (cong. rule)
Case:
(Mg = M, eqposs
(e = 1Y
({M}/x)F = [M/x]F Definition
({M'}/x)F' = [M'/x]F' Definition
[M], = [M'] and [F], = [F'] Assumption
[M/x]F), = [[M [x]F') Compatibility with Subst.
[({M}/=)Fle = [({M"} /=) F'] Definition
Case:
[M]o =M [Elg = [E'e
[let diax=(Jj\/I inE]CCE [letc diax=(;\/I inE] ., eq0F

(let diax=M in E/x)F = let diax=M in (E/x)F Definition
[Flo = [F'le Assumption
[M], = [M'],, and [E], = [E'] Assumption
[(E/x)Fc = [((E'/X))F e IH (derivation)
[(let diax=M in E/x)F|, = [(let diax=M in E/x))F'].,

Equivalence (cong. rule)
O

Equivalence is also compatible with the formation of evaluation contexts, in
the sense that decompositions R[M'] are related to “equivalent” decompositions
R'[N'].

Lemma 6.14 If M = N and N = R[N'] then there exists R' and M' such
that M = R'[M'] and M' = N'. If E=F and F = S[N'] then there exists S’
and M' such that E =S'[M'] and M' = N'.

Proof: By induction on the structure of evaluation contexts. We note that
only case (1) of the equivalence inversion lemma applies when either M or N is

not a

value. A representative case is shown:

40

Case: R[N']=V; R'[N']

M=V; R'[N'] Assumption
M =V/ My and V{ =V; and My = R'[N'] Inversion
There exists R"[] such that My = R"[M'] and M' = N’ IH
M =V/R'[M] = R"[M'] and M' = N' Def. of Ev. Context
O

6.7.2 Equivalence and Reduction

We can now proceed to analyze the interaction between equivalence and reduc-
tion in certain restricted cases. A number of lemmas are proved which will be
of use later in establishing the confluence result.

The first of these is that equivalence (C = D) does, in fact, capture the
synchronization steps which we wish to ignore.

Lemma 6.15 (Synchronization Preserves Equivalence Class) For well-
formed configurations C, if C = D is made via the rule syncr or syncr', then
C=D.

Note that the converse of this property does not hold in general, because
reduction can only occur in certain contexts S[] or R[], not in arbitrary loca-
tions of the term or expression. Thus equivalence does not imply convertibility
of terms in one direction or the other.

Proof: direct, considering the two reduction rules syncr and syncr’. The
case of syner' is shown:

Case:
V tvalue suncr!
VY SIDNY = V), S[V Ve Y

Vle=[Vlp Reflexivity
[r'le =[Vlp Equivalence (rule trans)
S[e =[S[V]p Equivalence (cong. rule(s))
¢=D Definition
O

Though equivalent terms M and N are not always convertible to syntacti-
cally equal forms, if we restrict our attention to values, it is clear that we can
perform a series of synchronization steps to reach observationally equivalent
terms.”

Observational equivalence [M], =, [N]p, is defined on term and expression
values. It is stronger than general equivalence, that is, M =, N implies M = N.

"The restriction to values limits the scope of this lemma, making the proof manageable.
We will later show confluence holds for arbitrary terms.

41

Essentially, M =, N requires that M = N and both M and N have the same
top-level form.

[M]o =[N]p [M]o = [N]p
e =olrlp [Mx:A.M],=,[AXx: A.N]p [boxM], =, [boxN],
[Vle =0 [Vlp [Elc = [Flp
(e = lllp [{V}He = [{V}Hp [dia E] =, [dia F]p

Lemma 6.16 (Equivalence of Values implies Weak Convertibility) If
M tvalue and [M], = [N], then M and N are convertible to observation-
ally equivalent forms [M']. =, [N'],, via reduction sequences C,(r : M) =*
C,(r: M"Yy and D,{r : Ny =* D,(r : N'). For expressions, if E evalue and
[E]l, = [F]p then E and F are convertible to observationally equivalent forms
[E'lo =0 [F']p via C,{(l : E)y =* C,{l: E') and D,(l: F) =* D,(l: F')

Proof (M = N): by induction on the derivation [M], = [N], considering
cases which are compatible with M tvalue and N tvalue. Only the cases
corresponding to trans and trans' involve non-trivial reduction sequences.

Case:
eqres
[rle =Irlp
r =, r (no reduction steps are required) Definition
Case:
(r:V)eC Vtvalue [V],=[V']p
— 57 trans
Mo =V1p
(r:V)eC and V tvalue Assumption
C(r':ry = C,{r' : V) Reduction (rule syncr)
Ve =V'1lp Assumption
V' tvalue Assumption
Cor': V) =*C,(r' : M)
and D, (r' : V'Y =* D,(r' : N')
such that M' =, N' IH

O

Proof (E = F): by cases on the the derivation [E], = [F]p, assuming the
property holds for all term values. O

Within a process (r : M) or (I : E, the decomposition of M into R[M'] (or
E into S[M] or S[E']) is not uniquely determined (in a strict sense). Typically,

42

values are not allowed to be redices, but our semantics makes an exception for re-
sult labels, R[r’] via the syncr rule (and S[r'] via syncr’). This exception leads
to many possible decompositions of a term, and hence many possible reduction
steps within a single process. We will show that all of these choices (except one)
correspond to optional synchronization steps. We note that redices have the
forms: (Ax : A.M') V3), (1et boxu=box M in N), (let boxu=box M inF),
(let diax=diaFEinF), or (r').

Lemma 6.17 (Unique Evaluation Contexts (excluding redices 7)) Any
well-formed term M (or expression E) is either a value or has at most one de-
composition as R[M'] (or S{M'], S[E']) where M' and E' are redices and
M' # r. If redices M' = 1 are also considered, then there will be one or more
such decompositions.

Proof: by a straightforward induction on the structure of terms and ex-
pressions. Only the form of function application (M N) allows more than one
decomposition (when redices r' are considered). We summarize the possibilities
for decomposing (M N) in the table below:

Form of (M N) Form of V Reduction(s) Context Extension(s)
(la) (x:A.M"HYV V=r app R[Xx:A.M'V]—>R[V]
(1b) V#r app
(2a) V N V=r R[V N] = R'[V]
R[V N] = R/[N]
(2b) V=)x:A. M R[V N] = R/[N]
3) MN (none) R[M N]—- R'[M]

Metavariable V' denotes a term value. Cases (la) and (2a) are the source of
nondeterminism. In (la), we can treat ((Ax : A. M) r) as a redex, applying
rule app, or we can further decompose this term as R'[r], synchronizing on r.
In (2a), we can decompose the term two ways, focusing either on the function
position (R'[r]) or the argument position (R'[N]). If we disallow decomposi-
tions R'[r] then this nondeterminism in cases (1a) and (2a) disappears, and at
most one decomposition of (M N) possible. The term (r V') will be the critical
case in which no decomposition exists, synchronization being mandatory in such
cases. Now if we also permit decompositions R'[r], there will be one or more
such decompositions. All but one of these decompositions will correspond to
optional synchronizations via rule syncr or syner’. O

6.7.3 Properties a and

We now proceed to analyze how equivalence C' = D interacts with arbitrary
reduction steps (C = C'). We follow Huet’s [8] strategy of decomposing
global confluence into two properties, a and (3. Informally, property « states

43

that local confluence holds for two independent reduction steps starting from
a single configuration, and property § states that a single reduction step on a
configuration C' can be emulated in an equivalent configuration D, preserving
equivalence between C' and D. The full generality of Huet’s a and 8 are not
needed; we present stronger analogues of a and 8 which are also satisfied by the
the operational semantics.

Lemma 6.18 ((5): Reduction on = Configurations) IfC = P and C =
D, then there exists Q such that P =—=* Q).

C=P A C=D = 3Q. P=*Q A D=Q

Proof: Without loss of generality, we may assume C' has the form C, {r : M)
(or C,{l : E)) and that the reduction C => D acts on process r (or [). The
proof is by cases on the judgement C' = D. Some representative cases are
shown:

Case:
Vi=0Qx:A.M') V, tvalue ,
a
(ISR el \ & = (= S[Ia/xIp) \ v
(l:F)e Pand S[V; b]=F Assumption, Definition
S[Vi] =8V V3]
and Vi Vo =V V) Equiv. and Ev. Context Lemma
Vi=V and Vo =V Inversion (cong. rule)
Vi=Xx:A.M"orV/=r Inversion Lemma

Subcase: V{/ = Ax: A. M"

@SV Ve = {:S[[Vs/x]M"]) Reduction (rule app)
M =M" Inversion (cong. rule)
[Va/x]M" = [V /x]M" Substitution Prop.
S[[Va/x]M'] = S'[[Vy /x]M"] Equivalence (cong. rule(s))
Hence D = Q

Subcase: V| =7
(r:VYePand dx: A.M'=V Inversion (rule trans’)

r:VYy=*@:Xx: A M"Yand \xx: A.M' =, \x: A. M"
Convertibility Lemma
x:A.M=Xx:A.M" Definition (=,)
(r:dx:A.M"),(1:8[V] Vi)
= (r:Xx:A.M",{:S[xx:A.M" V]])
Reduction (rule syncr')
Then proceed as in case V{ = Ax: A. M".

44

Case:

V tvalue syner!
(' =V (SIP P\ = (" V), S[V]) \ ¥

cC=P Assumption

C=D Synch. Pres. Equivalence

D=P Symmetry, Transitivity
Case:

V =boxM 7' fresh

P =N <N N{riar! | Y21 <l})

; ; ; ; letbox’
(I:S[let boxu=VinN]) \ ¢ = (' : M),{l: S[[r'/u]N]) \ ¢
(I: E) € P and S[let boxu=VinN]=E Assumption, Definition
E = S'[1let boxu=V'inN’] Equiv. and Ev. Context Lemma
V=V"and N=N' Inversion (cong. rule)
V =box M Assumption
V'=boxM'orV'=r Inversion Lemma

Subcase: V' = box M’

(I:S8'[1et boxu=boxM'inN']) = (v’ : M'), (L : S'[[r' /u]N'])
Reduction (rule letbox’)

M=M Inversion (cong. rule)
r=r Equivalence (rule egloc)
N=N' Assumption, Reflexivity
[r' /u]N = [r' /u]N' Substitution Prop.
S[[r'/u]N] = S'[[r'/u]N'] Equivalence (cong. rule(s))
Hence D = (@

Subcase: V' =1r

(r:V")€ P and boxM =V" Inversion (rule trans')
(r:V"y=* (r : box M') and box M =, box M' Convertibility Lemma
box M = box M' Definition of =,

(r:box M"),(l: S'[let boxu=rinN'])
= (r : box M'),(l : S[let boxu=box M'in N'])
Reduction (rule syncr')
Then proceed as in case V' = box M.

Case:
V =dial’ V* evalue ["” fresh ¢' =y A (' =1")

(l:1let diax=VinF),{I': V*) \ ¢
= L"), V), " (VD) \ Y

syncl

45

(l: E)y € P and let diax=VinF=E
(I":v¥yePand V* = V*

E =1et diax=V'inF'

V=V"and F=F'

V =dial’

V'=dial' or V' =17

Assumption, Definition
Assumption, Definition
Inversion

Inversion (cong. rule)
Assumption

Inversion Lemma

Subcase: V' = dial’

(I:1et diax=V'inF"),(I' : V*)
= (L 1"), (" : V¥), (0" (V¥ [x)F")
Reduction (rule syncl)

=1 Equivalence (rule egloc)
Vvr=v~ Assumption, Reflexivity
(V*/x)F = (V* [x)F' Substitution Prop.

Hence D = @)
Subcase: V' =1r

(r:V") € Panddial' =V"
(r:V"y=*(r:dial') and dial' =, dial’
dial’ =dial’
(r:dial’),{l:let diax=rinF")

= (r:dial'),({l : let diax=dial’ inF")

Inversion (rule trans’)
Convertibility Lemma
Definition of =,

Reduction (rule syncr')
Then proceed as in case V' = dial’.

O

Lemma 6.19 ((a): Local Confluence (modulo =)) IfC = Cy and C =
Cy, then there exist D and D' (where D = D') such that C; =* D and
CHy =* D'.

C=CANC=Cy =— 3D,D'. D=D'" AN Ci=*D A Cy =*D'

Proof: We will consider pairs of such transitions C' @ C7 and C &g Cs,
where a(w) denotes application of rule a to process w. The reduction rules fall
naturally into certain classes (silent, local, and spawn) with properties as stated
in the table below. The forms of C' and C" are given for reduction of a process
(r : M) though of course reduction of a process (I : E) is also possible.

Class Rule Form of C and C'

Silent syner, syncr’ c=cC'

Local app,app’,letdia C=C,(r: M)y N C'"=C1,{r: M")
Spawn letboz, letbox’, letboxp, syncl C = Cy,(r: M) N C'=C1,{r : M'),C

46

Not all combinations of two transitions C @ Cy and C B(zw;) C5 are possi-
ble. Because evaluation contexts are uniquely determined (excluding synchro-
nization contexts such as R[r']), in many cases a(w) and S(w') occur in sepa-
rate processes (w # w'). We argue that reductions in separate processes do not
interfere and that equivalence can be re-established by performing reductions
B(w') and a(w) on C; and Cy, respectively. We consider a few representative
combinations the three classes of reduction steps:

(Silent, Silent)

(Silent, Local)

(Silent, Spawn)

(Local, Local)

(Local, Spawn)

(Spawn, Spawn)

In this case, C' M Ci and C ﬁ(:w;) C5. Now C = (1 and C = (5 by the
lemma stating that synchronization preserves equivalence. We conclude
C1 = Cs by symmetry and transitivity, with no further reduction steps
required. The result holds even if w = w', that is, if a and § apply to the
same process w.

Without loss of generality, assume C' == () is the silent step. Then
C = (. By the lemma regarding reduction on equivalent configurations,

we can replicate the effect of C' B(=w>) C>, with some sequence of reductions
Cy =* D such that D = C5. The same result holds if w = w'.

Similar to (Silent,Local).

We assume C @ Ci and C 5(:11);) C5. By the lemma stating that eval-
uation contexts are “uniquely” determined (excluding redices r), a com-
bination of two local reductions is only possible if they occur in separate
processes (w # w'). Hence it will be possible to perform a(w) to make a

step Cy ng D and B(w') to make a step Cy ﬂ(:w>) D. This is because C
and Cs remain syntactically identical to C' except for the particular pro-
cesses (w,w') affected by the initial steps C = C; and C = (. Since
the second step will be made in a different process, it remains applicable.
Both sequences a8 and Ba yield the same result D.

As before, a(w) and B(w') must occur in separate processes. Performing

C @:2 C5 spawns a new process with a fresh label. This new process will
not interfere with reduction step a(w) because it has a fresh label. Hence

Co (i—wg D. Tt will also be possible to make the transition C} ﬁ%) D,
choosing the same fresh label for the newly spawned process. As before,
a and @ commute, yielding the same result configuration D.

This case is similar to (Local,Spawn) except that two new processes are
created. Assume C ogug Ci and C ﬁ(=w>) C5. In the case of letbor (and
variants), these new processes do not interfere with C; ﬂ(=w>) D nor with

Cs g D. In the case of two syncl reductions, the fact that we duplicate
the process (I : V*) is essential to ensure that o and 8 do not interfere.

47

6.7.4 Global Confluence

Having established property a (Local Confluence) and 8 (Reduction on Equiv-
alent Configurations), we claim that the conjunction of these two are sufficient
for global confluence (modulo =). Therefore, the operational semantics satisfies:

Theorem 6.4 (Global Confluence (modulo =)) Assume csound and both
C and P are well-formed () ¢ C : A and ¢ ¢ P : A). Then the following
confluence property holds:

C=PANC=*C"ANP=*P
= 3dD,Q. D=Q AN C'"=*D AN PP=*Q

Proof: see [8]. Note that = satisfies the condition that all reduction se-
quences terminate because 1 is assumed to be sound (acyclic) and the basic
language of proof terms has no primitive fixpoint construct or recursive types.
O

7 Why Modal Types?

Since the laws of modal logic are designed to characterize structures in which
truth of propositions is localized, it is quite natural that constructive modal
logic be based on proof objects with varying locality and mobility. The proofs
of A valid are freely mobile terms, proofs of A true are locally available terms,
and proofs of A poss represent remote, immobile terms. We hope to convince
the reader that modal logic proof terms are a sort of universal calculus for
distributed computation in the sense that the typing principles and much of
the operational behavior of other distributed programming languages can be
projected into modal logic and understood in terms of general logical principles.

Safe, statically typed, languages for distributed computation usually adopt
at least some of the typing principles of modal logic. For example, the definition
of valid proof terms (A;- - M : A) in modal logic captures the idea that valid
(mobile) terms may depend only on other valid (mobile) terms. Adoption of this
principle seems inevitable, since operationally speaking, when moving an arbi-
trary term, bindings for its free variables must also be moved. Some languages
place additional restrictions on the form of terms to be made mobile, allowing
only values of function type (closures) to be marshaled, or in the extreme case,
that only certain types of parameter value can be marshaled (requiring that the
code be predistributed).

The principle that a valid (mobile) term is also available here (A;T Fu: A)
reflects the idea that we can receive the result of a remote computation or inter-
act with a proxy as if the remote entity were local. Though the calculus of modal
logic distinguishes u from other terms, one can also hide this distinction. Some
languages do not adopt the operational semantics of synchronization, instead,
the remote term is represented by a local proxy. If the proxy implementation

48

is powerful enough, behaving exactly as a local term would, this strategy is
logically equivalent to synchronization.

Finally, the possibility fragment modal logic reflects the idea that some enti-
ties are immobile and possibly remote. The typing principle OFE describes how
we may use such resources by sending mobile code to a particular location. Since
we did not assume symmetry in accessibility, we cannot receive the result of such
a computation. Furthermore, we may only use resources from a single location
at a time, since these entities cannot be combined (0A x 0A # O(4 x A)).
These principles resemble the concept of “one way” method calls sent to a re-
mote object, or the behavior of a mobile process which chooses to move to a
location with some known resources. Explicit recognition of these principles
(separate from necessity) is more rare, since moving to a particular location is
a special case of general mobility. Also, it is often possible to hide the fact that
a resource is immobile and remote by implementing a local proxy.

Recognizing such principles in other distributed languages is often compli-
cated by the fact that the spatial modalities are hidden, and conversions between
local and mobile terms are made implicitly. Often, rather than providing a gen-
eral mechanism such as OI (the definition of necessity) to make terms mobile,
only certain forms of code (for example closures of type A — B) can be made
mobile as long as such code depends only on values of “marshalable” type. The
assertion “A is a marshalable type” then corresponds to selective adoption of
a non-logical axiom A — A (only for type A). Values of types B, for which
such a marshaling axiom does not exist, are then effectively immobile.

It is often tempting to try to hide the logical distinctions between remote
mobile, local, and remote immobile entities when designing and implementing a
distributed language. However, there are some negative consequences of such an
abstraction. Operationally, blurring these boundaries requires a heroic effort to
make remote things appear to be local (and the converse). Simply marshaling
everything by copying can lead to semantic anomalies, and overuse of proxies
leads to inefficiency and unpredictable performance. Perhaps the best balance of
abstraction and precision could be achieved when the calculus of modal logic is
treated as an intermediate language. Another possibility is to use typing princi-
ples from modal logic in a locality analysis framework to recover the distinction
between remote and local entities by type inference (see [10] for an example).
These sorts of approaches could lead to a better understanding of distributed
programs or more efficient implementations even if such distinctions are never
revealed to the programmer.

8 Practical Programming with (0 & ¢

We must keep in mind that there are two kinds of reason to program with
modal types (JA and ¢ A — safety and concurrency. From a logical point of
view, box M, dia E and their elimination forms provide a safe way to work with
a mix of mobile and immobile entities. Though the generalized language does
not have any primitive localized terms, we can see that locality of term values

49

is respected by observing the typing principles for mobile code (OI and QF).
Since these constructs require mobile code to be closed with respect to I', we will
never be forced to marshal arbitrary term values at runtime. From a behavioral
point of view, the use of O has a secondary effect of introducing concurrency.
Mobility is somewhat intertwined with concurrency because we assume each
abstract “location” has an independent capability to perform computation.

The calculus of proof terms supports two distinct programming styles. The
necessity fragment allows one to build boxed terms, spawn these terms for eval-
uation at an arbitrary location, and receive the result of such a remote com-
putation as a local value. On the other hand, the possibility fragment allows
one to compute locally with an expression of the form {M} or jump to some
other location (denoted by !) where a remote resource is available. The two pro-
gramming styles are not incompatible because let boxu= M in F allows one to
embed spawning of terms in the context of a jumping computation. However,
programs which perform any such jumps will be expressions E +~ A due to the
typing rules governing possibility.

8.1 Runtime Environments

In some cases one may want to program under the assumption that some library
code, localized resources, or other information about the environment will be
provided at runtime. In these cases, open programs can be typed under some
initial assumptions Ag; T'g. If we assume such an open program is placed as the
process (wp : P), then the realizations of hypotheses in Ag; T’y should abide by
the following restrictions:

Hypothesis Typing Form of Constraints
un A Ao\lﬁo"qu:A Yo F2ri<ar A o F®r<auwg
x: A Ao\tbo Fwo M : A tho Fo 1 qwe A ho F* wg <

We require that realizations of valid hypotheses u :: A be typed under the quan-
tified typing judgement Ag\to Frq M : A, whereas the locally true hypotheses
x : A are only required to be well-formed at the particular location wg. Realizing
u:: A at r may impose some constraints on the location of r relative to some
number of r; on which it depends. Realizing x : A at wg imposes constraints
on the location wg relative to some number of r; and /; on which it depends.
Consequently, we see that programs (wg : P) must be placed (conceptually) in a
certain relation to the resources on which they depend. We also note that loca-
tion labels [, corresponding to hypotheses of logical possibility, are not allowed
to occur in realizations of u :: A. It is, however, possible to provide a location
label in a realization of x : A.

We can then place closed terms corresponding to u, as independent processes
of the form (r; : M;), substituting labels r; for u and terms for x into the
program. It is also possible to substitute realizations of u :: A directly if desired.
This leads to an initial configuration (ry : My), (re : My),... ,{(wg : P) \ .

50

To complete the picture, we should also consider processes of the form
(l; - Vi*) and their meaning. Such processes are a way to represent remote
localized resources present in the runtime environment. They are useful in con-
junction with hypotheses x : QA realized by (dial;). By using x : QA, the
program can then jump to the location /; and resume computation in a setting
where a term of type A is locally available.

Generally, a configuration will consist of processes of both kinds. Initially,
processes (r; : M;) can be viewed as globally available, mobile resources, and
processes (l; : Ej) as localized resources, fixed to a particular location. The
program is introduced as a process {(wg : P).

(rv: Ma), ..., {ri My),{wo : P),{la : Ej),...,{l; : E;) \ %o

As the process configuration evolves, additional processes (r : M) can be spawned.
These (r : M) are mobile and can be placed at distinct locations, though the
scope of 7 is not global as before. Duplicates of processes (I : E) are created as
the program P jumps between locations [, though all duplicates of a particular
(I : E) should be regarded as sharing the same fixed location.

To take full advantage of localized resources present in the runtime envi-
ronment, it will be necessary to encode the resources at each location as an
assumption x : Q(A; x Ay X ... x Ag). Further jumps to other locations will
only be allowed if one or more resources in ¢(A4; X Ay X ...) permit it, since the
typing rule for QO F requires we drop all other locally true assumptions I'. For
example O(A; x Ay x O(B; x Bs)) would allow a program to go to the location
of (A; x Ay x O(B; x Bs)) perform some computation with A; and A,, then
jump to the location of (B; x Bs) and continue. In the general case, a directed
acyclic graph of locations and resources can be encoded with possibility and
products.®

8.2 Definition of Recursion

Many interesting distributed programs require recursion to specify. These pro-
grams can be characterized as having a variable degree of parallelism. That is,
they may “unroll” at runtime to a tree-structured or looping form of compu-
tation involving a variable, possibly unbounded number of worlds. To support
recursion, we add add the following fixpoint operators to the language, with
typing as follows:

A;T)x:AFM: A
A;THfix(x:A).M: A

fiz

AuzA;-FM: A
A;TFfix, (u A).M: A

8This limitation is due to the requirement that accessibility constraints be acyclic. We
are considering how best to represent sets of interaccessible locations, so that more flexible
jumping behavior can be supported.

fiz,

51

Clearly, the addition of fix(x : A).M disturbs the logical properties of the
language, since - fix (x : A).x : A for any type A. The usual caveats about
recursion apply, namely that ill-founded “proofs” of this sort will not terminate
under evaluation. At first it might seem that fiz, and fiz, are redundant
derivable rules. Indeed, it is possible to provide a definition for fix, (x :: A) . M
as a proof schema:

box (fix, (u:: A). M) = fix(y:0A).let boxu=yin(box M)

However, when one considers the behavior of such terms under evaluation, it
becomes clear that this is not a desirable way to define recursion over valid terms.
For example, the simple fixpoint fix, (v :: A — A).Ax : A. M never terminates.
The problem is that the behavior assigned to letbox and letdia is too eager in
unwinding the recursion. Hence we must extend the operational semantics for
each flavor of recursion, defining it in such a way that the unwinding is performed
lazily.

r REix (x A) M)\ 0 = (r R[[Eix (e A) MM \ o 2

(r:R[fix, (wz A). M)\ ¥ = (r: R[[fix, (u:: A). M/a]M]) \ ¢ fizy

There are, of course, variants fiz' and fiz! for reducing fixpoint terms in an
expression evaluation context (such as S[fix (x: A). M]). Type preservation
and progress proofs for the operational semantics can be extended to account
for fixpoint. In the case of the progress theorem, we note that fixpoint is not a
value, but that we can always apply one of the rules fiz or fix,. In the case of
the type preservation theorem, a substitution property will ensure proper typing
of the result.

One may also consider recursion over expressions, but this form of com-
putation seems to require additional assumptions of cyclic accessibility to be
useful. Cyclic structures would allow repeated jumps within some set of inter-
related locations, but these sorts of structures were ruled out by the soundness
criterion for constraints ¢. It is not clear at this time how best to combine
expression fixpoint with a means to permit (and constrain) the phenomenon of
cyclic accessibility.?

8.3 Recursion (alternate)

We introduce a variant of “letbox” supporting mutually recursive bindings. This
subsumes fix, (u :: A). M and additionally supports “distributed” recursion.

9Globally accessible hypotheses I = A, such that Vw . w <l are one way to permit cycles.
Recursive types such as (u7.0(A1 X 7) X O(A2 X T7) X ...) also seem promising.

52

Generalization to an arbitrary number of bindings is possible.

A,ug it Aj,ug s Ao T F My : OA,
A,ug it Aj,ug s Ao T My : OA,
Au s A, u i Ay THFN B
A;T'F letrec boxuy :: Ay =M;and boxuy :: As=MsinN : B

It is possible that evaluation of M; or M, will lead to a stuck, black-hole
type state.

r1 fresh 71y fresh o' =y A ...
{r: R[letrec boxuy :: A1 = M;and boxuy :: Ay=M2inN]) \ ¢
= (r1: M), (r2 : Ma),(r : R[[r1,r2/u1, 0] N]) \ ¢

8.4 Axioms of Modal Logic (S4)

Below are reproduced the axioms of S4, together with their realizations as proof
terms. It is interesting to consider what behaviors such proofs correspond to in
the setting of distributed computation.

F S=Xx:A—-B—-C.Ay:A—>B.Az: A.(x2z)(y 2)
: (A>B—=>C)»5(A—>B)-A->0)

F K=Xx:A.)\y:B.x

: (A= (B—=A))

F DB=MXM:0(A— B).Ay:0A.let boxu=xin(let boxv=yinbox (u v))
: 0O(A- B)—~ (0DA—>0OB)

F RB=JXx:0A.let boxu=xinu

: (OA— A)

F S4=MXx:0A.let boxu=xinboxboxu
. (0OA— O0A)

F RD=MXx:A.dia{x}

(A2 04)

I‘- TD=Xx:00A.dia(let diay=xin(let diaz=yin{z}))
L (00A = 0A)

F DD =Xx:0(A— B).let boxu=xin(\y: Q0A.dia(let diaz=yin{u z}))
: O(A->B)— (0A—>90B)

Axiom RB captures the behavior of spawning a boxed term for evaluation,
and receiving the value of that computation for local use. Axiom DD shows us
how to apply a boxed (mobile) function to a localized term of type 0A. The
function O(A — B) is made mobile with letbox, then it can be received as u
and applied {u z} to the localized value z of type A.

We may compose axioms DB and RB to obtain O(A — B) — OA —
B. Axiom DB constructs a boxed term applying the function O(A — B)
to a mobile argument (JA. Axiom RB then spawns the function application,
making the result B available. Note that the axioms relating to ¢ do not

53

exhibit behavior immediately, because dia E is a value encapsulating a localized
computation. The value of such expressions is obtained by forcing evaluation
with let diax=M in F, causing a shift in our perspective. Understood in this
way, axiom T'D (or a generalization) shows how to encapsulate a series of such
“jumps” between locations as a single one.

8.5 Example (Concurrency)

Consider a program for computing the nth Fibonacci number recursively. Ad-
ditionally, we would like to have each recursive call evaluated at a different
location, achieving concurrency by distributing the work. A basic implementa-
tion of fib is given below:

fix fib : int — int .
An : int .
if (n < 2) then n
else (fib (n-1)) + (fib (n-2))

This term is well-typed, having type int — int. It does not, however,
exhibit the desired parallelism. To achieve the sort of arbitrary mobility that
will allow each recursive call to be evaluated independently, it is clear we should
look to box and let boxu=M in N. We will have to decorate the type of fib
with [0 to achieve the proper effect. One way to achieve distributed evaluation
is as follows:

fix, fib :: Oint — int .
A n : Oint .
let box u = n in
if (u < 2) then u
else
let box a = box (fib (box (u - 1))) in
let box b = box (fib (box (u - 2))) in
a+hb

This realization of fib is at type Oint — int. Note that it is necessary
to use recursion over valid terms (fix, (u :: A).M) because we want f£ib to
be available at any world we see fit to spawn (box (fib (box (u —1)))). Now
when £ib is applied to a boxed integer (fib (box 2)), the process configuration
evolves as follows:

54

(ro : £ib (box 2))
=* (ro:let boxu=box2in...)
— <’I‘0 cif (’f’l < 2)) <’I‘1 : 2)
=* (ro:r2+73),(r1 :2),{rs : £ib box (r; — 1)), {rs : £ib box (r; — 2))
= <7‘0 ro + T3), <T1 : 2),(if (7‘4 < 2)), <7‘3 if (T5 < 2)), <T4 ry— 1), <7‘5 ry — 2)
=" (TO 9 +7‘3),<7‘1 : 2),(7‘2 :if (T4 < 2)),(7‘ if (7‘5 < 2)), <’l‘4 : 1>,<T5 0)
=" (ro:r2+r3),(r1:2),(r2:14),(r3 :75),(ra : 1), (r5 : 0)
=" <r0 T2 +T3>,<7‘1 : 2>7<TZ : 1>,<T3 :0)7 <T4 1>7<T5 0)
=" (ro:1+0),(r1:2),(r2:1),{(r3:0),(ra : 1),{rs : 0)
= (ro:1),(r1:2),(r2:1),(r3: 0),(rs : 1), (r5 : 0

Note that the pattern let boxa=box(fib ...)in... is used to spawn two
applications of £ib for concurrent evaluation. The results of both branches must
be received (with the syncr rule) before evaluation of (a + b) can proceed.

8.6 Example (Localized Resources)

Due to the restriction of acyclicity imposed on accessibility, it is not yet possi-
ble to provide interesting examples which make use of truly remote resources.
Recall that a program only has access to some finite sequence or tree of re-
mote resources encoded as QO(A x O(B x ¢(...))). However, we can demonstrate
how the possibility fragment of the language allows programming with local-
ized resources. Here we use logical possibility in the trivial, reflexive sense
(A true F A poss) to hide the locality of the underlying value, and prevent
such localized values from becoming mobile.

Consider, for example, the case of reference cells. Though we could per-
mit them in mobile terms, this creates certain implementation difficulties, since
proxies and/or a coherency protocol are required to faithfully capture the se-
mantics of mobile references. Rather than go to great lengths to implement
this, we could simply take the point of view that reference cell creation is a
manifestation of logical possibility. Notionally, reference cells are created in
some (hidden) location. Though that location is actually “here”, we will not
be permitted to rely on that fact. Values of type Aref (heap addresses) will
never become mobile, because the deduction A poss F A true is disallowed and
no mobile code is allowed to depend on locally true assumptions. With that
motivation in mind, we could provide safe access to localized reference cells with
the following set of primitives:

ATHM:A 7 A;TH M : Aref
A;TFref M + Aref ref ATHIM: A

refE

A;THEM:Aref A;TEN:A
A;T'F M :=N :unit

refSet

The ref M syntax is globally available. Keep in mind that we are merely
using the possibility fragment of modal logic to enforce the restriction that values

95

of type A ref are fixed to the location where that reference cell was allocated. It
is only necessary to make allocation ref M an expression; the other primitives
can be typed as terms. Once an expression ref M is evaluated (and fixed to
a location), computation can proceed under the assumption Aref is locally
available.'°

References, being expressions, are protected by typing rules governing pos-
sibility. For example, we cannot make a reference value mobile:

let box u = box (ref 0) in (* ill-typed *)
u := (lu + 1)

We can, however, make the expression ref) mobile by encapsulating it as
dia(ref0). In this way, we can move the term dia (ref0) anywhere. Allo-
cation, which fixes the location of the reference cell is delayed until ref0 is
revealed by let diax=dia(ref()inF.

let box u = box (dia (ref 0)) in

let dia x = u (*x allocate ref cell x)
in
let dia y = x := (!x + 1); (* update x *)
u (* a new ref cell, y # x *)
in
{y := 'y + 1} (* update y *)

Although u is available at many locations, as dia(ref0), the operational se-
mantics of ¢ and QF dictate that x and y are separately allocated reference
cells. The typing rules for mobile code ensure x : intref and y : intref do
not escape the location where they were allocated. When y is allocated, the
reference cell bound to x becomes unavailable. This may seem restrictive, since
it is obvious in this case that both reference cells could be allocated at the
same location. But in other circumstances, the two might reside at independent
locations. For example, consider a runtime environment with (/1 : ref 0) and
(I3 : ref0) and assumptions x' : ¢(intref) and y' : ¢(int ref) realized by
dial; and dials, respectively.

Effectively, the typing principles given above force us to use references in
certain restricted style, though not precisely the monadic style associated with
lax logic and the identity QA = QOA (due to [11]). The form of ¢ E only allows
us to work with one reference at a time. This restriction precludes any conflict
arising from use of two reference cells available at different locations, but is too
conservative in many common situations. With product types it is possible to
work around this restriction to some extent, by storing more than one value in
a single reference cell.

10Update of a reference cell is an effect and would thus be regarded as an expression in the
“worlds as states” interpretation of modal logic. However, updating a local reference cell has
no spatial significance, so it can be regarded as a term under our interpretation.

56

9 Related Work

Fundamentally, our work is an attempt to uncover simple, logical principles un-
derlying distributed computation. We believe the critical questions are these:
What are the local resources that distinguish locations from one another? And
where may fragments of code (which might depend on these resources) be ex-
ecuted safely? One can address these questions either in the setting of a new
primitive calculus for distributed computation, or by considering what runtime
support structures are necessary to implement mobility in a more conventional
programming language. We have chosen the former, believing that the founda-
tional approach will yield clear principles and more generally applicable results.
But it is also important to consider when and how foundational principles show
up in a more conventional, applied setting.

Recently, we have been made aware of work by Walker and Jia, who have also
adopted a logically motivated approach to distributed programming. Their cal-
culus for distributed computation (Arpc) is based on a constructive logic which
validates at least all of the S5 axioms. Though details of the term assignment
and typing judgement are different, they arrive at some of the same conclusions
about the meaning of JA and QA types and the role of these terms in a dis-
tributed computation. This work is described in an as yet unpublished POPL
submission [9].

Other researchers adopting the foundational approach have based their work
on a process calculus, such as the Pi or join calculus. These sorts of calculi
model the connectivity of processes, but not location and localized resources
in an explicit sense. A notion of location is then added to the operational
semantics, the language is extended with one or more primitives for mobility,
and (optionally) restrictions are imposed on how and where a process may safely
move. Since process calculi usually allow changing the scope of channel names
by name passing and scope extrusion, some means of restricting or monitoring
the flow of names is crucial. Without such restrictions, all names are potentially
mobile and one cannot enforce any stable notion of locality. Cardelli and Gordon
[4, 5] restrict mobility with a specification-logic (with classical semantics) for
ambient calculus terms. Hennessy, et. al. [7] take a type-based, constructive
approach in which names are inherently associated with a location.

Issues of mobility and locality also arise when one considers how to interpret
a more conventional programming language in a distributed setting. We discuss
a type-based locality analysis framework due to Moreira [10] for determining
which values (and references in particular) “escape” to other locations. Though
the essence of locality and mobility is somewhat obscured in this setting, some
of the principles of modal logic seem to show up in restricted forms.

9.1 Mobile Ambients

The ambient calculus, as developed by Cardelli and Gordon [3], is a novel form
of process calculus based on ambients (locations) rather than channels. The
ambient notation n[...] allows representation of location in process configura-

57

tions. Simultaneously, ambients facilitate communication by providing a space
in which processes may exchange messages (replacing the concept of channels).

In subsequent papers [5, 1, 2], an “ambient logic” is developed to characterize
the behavior and spatial distribution of processes. Ambient logic is not intended
to be a system for assigning types to processes. Rather, it is a language for
making statements about a given process configuration (considered as a model
for the logic). These propositions are then either satisfied by the given model,
or not, according to the semantics of the logic. Ambient logic includes modal
operators [, ¢ of both the spatial and temporal variety which are interpreted
by reference to spatial (hierarchical inclusion) and temporal (reduction steps)
notions of accessibility. The full ambient logic is very precise, and allows one to
specify undecidable properties of a program. Verifying a formula in decidable
fragments of ambient logic can be accomplished by model-checking.

Notably, Cardelli and Gordon (in [4]) have extended ambient logic with
propositions expressing hiding, revelation, and freshness of names in order to
characterize the scope and mobility of names. However, since processes in the
ambient calculus are not inherently required to preserve locality of names, most
name-hiding properties must be formulated and proved (by model-checking)
relative to a particular implementation.

9.2 DPI and Process Typing

Hennessy, et. al. have developed a variant of the Pi-calculus, called DPI,
suitable for exploring issues of locality and mobility. It extends the Pi-calculus
with a notation for process location, and a simple go [. P action which moves
P to location | where execution of P resumes.

The typing systems developed for this language are described in papers by
Hennessy, Riely, Yoshida, and others [7, 13, 6]. Though not explicitly modal
(O, poss), the forms of types and typing judgements they introduce do make
reference to “worlds” (represented by an ambient-like notation [[...]).

Their typing system restricts the scope of names so that processes in a
location [are only allowed to access names declared in /. Names may escape the
scope of their declaration, but only as “existential” values n@l, tagged with the
location in which they are valid. In this manner, the authors achieve a stable
notion of which resources are available at which locations. In fact, locations
are characterized by “location types” loc{u; : A,us : B, ...}, which effectively
internalize the set of bound names in scope at that location. The authors also
permit subtyping on location types which is similar to record subtyping.

Informally speaking, we can find counterparts to some modal types in the
scheme of location types. For example, a term of type (A corresponds to a
process P which is well-formed in a location of type loc{} (the top type of the
location typing hierarchy). Such a process may move to any location, since it
depends on no local names. General terms of type 0A do not have a direct
analogue in the DPI typing system, since processes cannot be removed from the
context in which they are well-formed, but for the special case of channel names,
QA corresponds to the use of existential types AQL (there exists a location L

58

in which A) to characterize channel names which “escape” their original scope
of definition.

Interestingly, the behavior of our let diax=M in F' construct defined in
this paper is quite similar to go [. P, in the sense that F' (and P) are being sent
to a new location. The difference is that let diax=dia Fin F allows F access
only to the wvalue of E, rather than all the resources in scope at E’s location.
This is a natural outcome, given that our language is oriented toward evaluation
rather than interaction.

9.3 Locality Analysis of References

As was discussed in one of the examples, it is possible to use the system of modal
types to localize references and prevent them from escaping the location where
they were created. Other work by Moreira [10] has addressed this particular
problem in detail, though not by taking the point of view that references are
localized. Instead, Moreira develops a type-based system for locality analysis
which can (in some cases) distinguish between references used only locally, and
those which escape to processes running on other machines. Both forms of
reference are considered permissible and are type-safe, though access to a purely
local reference can be optimized. In cases when the analysis cannot infer with
certainty that a reference is local, it is conservatively assumed to be mobile.

Though we took the point of view that references are characterized by logical
possibility, some aspects of Moreira’s treatment of references can be understood
in the necessity fragment of modal logic. Assume, for a moment, that one con-
siders all reference cell primitives to be terms (and hence potentially mobile or
escaping). A reference cell could then be boxed (box ref M) and made available
as a valid hypothesis u :: Aref. Such a u would be a sort of explicitly escaping
reference.

Since we were not particularly interested in tracking which terms were mo-
bile, the typing principle (A,u:: A,A";T'Fu: A) derived from S4’s assumption
of reflexivity was used. Shifting to a locality analysis requires changing the
properties of the logic to maintain the distinction between validity and truth,
disallowing A — A (at least for certain types A). Moreira’s notion of labeled
types then corresponds to the distinction between ordinary typing F M : A and
a new explicit validity judgement - M :: A. Since reflexivity is thus eliminated,
synchronization is no longer a logically acceptable operational interpretation of
the valid hypothesis u. The reference cell primitives must now interact with
r :: Aref as a local proxy for an escaped, mobile reference. The typing rules
for primitive operations are tricky, since updating a reference cell can become a
back-channel way of making terms mobile without box/letbox. It is possible to
protect them, as Moreira did, by distinguishing locality (M :: A versus M : A)
when typing the primitive operations. For example, we should not allow M := N
when N : A is local but the reference M :: Aref is mobile.

Though shifting to mobile references and locality analysis required adjust-
ments to the logic and calculus, some of Moreira’s typing principles appear to
have more direct analogues in modal logic. For example, the esc? predicate for

59

placing locality constraints on the free variables of function terms seems to be
built into the typing rule for box M as the idea that proofs of A valid (mobile
terms) can only depend on valid hypotheses (other mobile terms).

Much of the complexity of locality analysis seems to arise from the require-
ment that the distinction between local and escaping terms be transparent to
the programmer. The language of modal logic is a sort of primitive calculus
which makes such properties explicit. Entities with differing locality and mo-
bility have distinct syntactic forms and types, which is a conceptual advantage,
if not a practical one.

10 Conclusion and Future Work

Starting from an intuitionistic formulation of modal logic, we considered the
proof terms for that logic as a programming language. The classical notions
of worlds and accessibility were reflected concretely as processes (r : M) and
(I : E) and accessibility constraints 1, with accessibility governing the depen-
dencies between processes. At the term level, we found the natural and type-
sound operational interpretation for type LJA to be a boxed (mobile) term,
with O elimination spawning such a mobile term for evaluation at an arbitrary
new location. The relationship between validity and truth, characterized by
A valid F A true, corresponded to the ability to receive the result of such a
computation at all other accessible locations. The interpretation of 0 A was as
a local representation of a remote, immobile term. When ¢ A is derived through
reflexivity (A true F A poss), this is merely a way of hiding locality, forcing
a term to become immobile. In cases when the encapsulated resource is truly
remote, elimination of ¢ A was interpreted as a “jump” to the location of that
resource for further computation.

We have shown that the modal types 1A and QA are a safe and natural
way to mix mobility and localized resources in a distributed computation. The
necessity and possibility fragments of the language interact to enforce some
restrictions on how and where certain terms are available. Mobility is permitted
only for terms closed with respect to locally true hypotheses (or almost so, in
the case of let diax=M in F'). These restrictions on the scope of locally true
hypotheses (x : A) and the fact that we are not allowed to pass arbitrarily from
possibility to truth are the essential characteristics of modal logic which ensure
that local values never “escape” and become mobile.

In future work, we plan to consider role of world-structure and accessibility
in more detail. Though the choice of S4 as a logical foundation leads to greater
generality, in the sense that no assumption of symmetric accessibility is present,
it remains to be seen whether this neutrality has practical value. There is a
balance to be struck when deciding how much of the underlying world-structure
to reveal to programmers through the language and its type system. If too
much is revealed, programs can become rigid and specialized to a particular
“network” topology determined by accessibility. If too little is revealed, pro-
grammers may be frustrated by the inability to force collocation of processes or

60

otherwise control the layout of a distributed program.

Toward demonstrating the practical value of the modal calculus, it also seems
natural to take steps to loosen (in a principled way) the restriction that ¢ be
acyclic. This should permit interesting looping computations which make use of
localized resources at some set of interrelated locations. Though we neglected
expressions and logical possibility in the discussion of fixpoint operations, a
good formulation of fixpoint over expressions will be required to take advantage
of such cyclic structures.

Furthermore, the logical generality of the calculus required that the language
of proof terms remain underdeveloped with respect to localized resources. While
{M} and processes of the form (I : {M}) can simulate a localized resource, it
might be valuable to explore how the language can be instantiated with some
additional types and concrete proof terms to represent such localized entities.
Such objects would be a new sort of localized term — in contrast to the location
neutral terms of the pure calculus.

Finally, it should be possible to demonstrate the utility of modal logic as
a primitive calculus by encoding various behaviors supported by conventional
distributed languages in the calculus and relating the type systems of these
languages to certain patterns of deduction or axioms in modal logic.

61

References

[1] Luis Caires and Luca Cardelli. A spatial logic for concurrency (part I). In
Theoretical Aspects of Computer Software (TACS), volume 2215 of LNCS,
pages 1-37. Springer, October 2001.

[2] Luis Caires and Luca Cardelli. A spatial logic for concurrency (part II). In
CONCUR, volume 2421 of LNCS, pages 209-225. Springer, August 2002.

[3] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations of
Software Science and Computation Structures (FOSSACS), volume 1378 of
LNCS, pages 140-155. Springer-Verlag, 1998.

[4] Luca Cardelli and Andrew D. Gordon. Logical properties of name restric-
tion. In Samson Abramsky, editor, Typed Lambda Calculi and Applications,
volume 46-60 of LNCS, pages 46—60. Springer, May 2001.

[5] Luca Cardelli and Andrew D. Gordon. Ambient logic. Technical report,
Microsoft, 2002.

[6] M. Hennessy, M. Merro, and J. Rathke. Towards a behavioural theory
of access and mobility control in distributed systems. Technical Report
2002/01, University of Sussex, 2002.

[7] Matthew Hennessy and James Riely. Resource access control in systems of
mobile agents. Information and Computation, 173:82-120, 2002.

[8] Gérard Huet. Confluent reductions: Abstract properties and applications
to term rewriting systems. JACM, 27(4):797-821, October 1980.

[9] Limin Jia and David Walker. Modal proofs as distributed programs. In
POPL, 2004. (submitted, not published).

[10] Alvaro Moreira. A Type-Based Locality Analysis for a Functional Dis-
tributed Language. PhD thesis, Univerisity of Edinburgh, 1999.

[11] Frank Pfenning and Rowan Davies. A judgemental reconstruction of modal
logic. Mathematical Structures in Computer Science, 11(4):511-540, Au-
gust 2001.

[12] Davide Sangiorgi. Termination of processes. Applies method of logical
relations to prove termination for a fragment of the Pi calculus, Dec 2001.

[13] Nobuko Yoshida and Matthew Hennessy. Assigning types to processes (ex-
tended abstract). In IEEE Symposium on Logic in Computer Science, pages
334-348. IEEE Computer Society Press, June 2000.

62

