Modal Logic as a Basis
for Distributed Computation
(DRAFT)

Jonathan Moody
jwmoody+@cs.cmu.edu

February 18, 2003

1 Introduction

In this report, we give a computational interpretation of modal logic in which
the modalities necessity (O) and possibility (¢) are used to describe locality
in a distributed computation. This interpretation is quite natural, given the
usual “possible worlds” model underlying modal logic. In our case, the possible
worlds we will consider are nodes participating in a distributed computation.
The necessity modality (O) will describe a term that may be evaluated (safely)
anywhere and possibility (¢) a term that may be evaluated somewhere. In this
sense, types will determine the permissible degree of mobility for terms.

Type Interpretation

A term of type A here

OA term of type A any place
QA term of type A some place

In addition to the purely logical motivations, we present some examples
demonstrating how the language of modal logic proof terms allows us to write
distributed, concurrent programs while preserving safe access and manipulation
of localized resources. This work is supported by the NSF GRFP!, as well as
the CMU ConCert? project.

1«This material is based upon work supported under a National Science Foundation Grad-
uate Research Fellowship.”

2The ConCert Project is supported by the National Science Foundation under grant num-
ber 0121633: “ITR/SY+SI: Language Technology for Trustless Software Dissemination”.

2 Modal Logic

Modal logic comes in many flavors — the flavor used in this report is intuitionistic
S4. For an introduction to this system of modal logic see [8] by Pfenning and
Davies. In later sections of [8], the authors provide a language of proof terms,
which can be interpreted as programs via the Curry-Howard isomorphism. We
adopt their notation for this work also.

This language of proof terms would be somewhat awkward for programming;;
in particular, the names “box” and “dia” have no meaning to programmers.
However, this approach has one advantage. If we were to start with more mean-
ingful names, it would mean that in some sense, we had already decided what
these operators should do. The very meaninglessness of “box” and “dia” pro-
vides a blank slate on which to brainstorm, guided only by the logical meanings
of O and ¢. One must keep in mind, however, that this process of “reading the
tea leaves” can only provide a rough sketch of the solution, because there may
be many type-sound evaluation strategies.

In this report, we develop a reasonable, logically-motivated operational inter-
pretation of modal logic proof terms. The precise formulation of the operational
semantics is somewhat underdetermined given only the logical properties of the
language. However, by working from both the logical and the engineering ends
of the problem, we show that modal logic meshes nicely with the practical re-
quirements of a language for distributed programming. Our results represent
one interpretation that we judged best under various practical constraints and
desiderata.

3 Proof Language

The following term assignment for modal logic is reproduced from [8]. The
development of Pfenning and Davies was based on three primitive judgements
Avalid, Atrue, and Aposs, with meanings A is true “everywhere”, “here”,
and “somewhere”. However, only Atrue and A poss are needed to explain the
typing rules for the proof language, because A valid is defined as deduction of
Atrue from no assumptions.

Variable X == x | y |
Valid Variable U == u | v | ...
Term M,N == X | U | Xx:AM | MN
| boxM | 1let boxu=MinN
| diaFE

Expression E, F {M} | 1let boxu=MinF

| let diax=MinF

The distinction between terms and expressions can be motivated purely log-
ically. The expressions are simply those which are proofs of Aposs, whereas

terms are those which prove Atrue. The inclusion of terms in the category
of expressions (as {M}) is a consequence of the logical inclusion between truth
and possibility.

The form of the typing judgment for terms will be A;T F M : A, where A and
I are variable typing contexts for valid and true hypotheses, respectively. Valid
hypotheses in A are globally available (in all subterms and subexpressions),
whereas the locally true hypotheses in I' obey additional scoping restrictions.
Note that the unconventional expression typing judgement A;T' F E + A is a
notation meaning “expression E proves Aposs”.

Types A,B == A—-B | OA | A
Valid Context A == - | AU A
True Context T' == - | T,X:A

A;F,X:A,F'I—X:Ahyp A,u::A,A’;F}—u:Ahyp
A;Tx:A+-M:B ATFM:A—-B A;TEN:A
ATF x:AM:Ao>B 1 ATFMN:B - E
AFM:A I ATHFM:OA Auw: A THN:B B
A;TFboxM :0OA - A;TF let boxu=MinN : B -
A;THM:A ATHFM:OA Auw:=: A THF+B
S e —)T L] OFE
ATH{M}+A A;T+ let boxu=M inF + B P
A THE+A ATHEM:0A Ajx:AFF+B
; ol 0 X OF

A;THdiaFE : QA A;TF let diax=MinF + B

Note that in rule — I, we treat the new bound variable x as a “locally true”
hypothesis. This indicates that variables (x) correspond to the usual notion of
variables in the lambda-calculus, whereas the valid hypotheses (u) are funda-
mentally more powerful. The typing rules I and ¢ F deserve special attention,
because they impose unusual scoping restrictions on variables of the ordinary,
locally true variety. In later sections we will argue that these restrictions are
essential to justify mobility.

4 An Operational Semantics

In this section, we will extend the work of [8], in which various logically sound
reduction rules were derived, to an operational semantics which clearly reflects
locality in evaluation. We must keep in mind both the desired informal inter-
pretations of A and QA, as well as formal judgemental definitions of these

propositions which should provide some clue as to why we are allowed to move
certain proof terms between locations while others must remain fixed.

Before proceeding to analyze the behavior of terms and expressions in de-
tail, a few words about the static properties of terms (establishing truth) and
expressions (establishing possibility) are in order. One must keep in mind that
expressions, being evidence for A poss, are those things which have (or acquire
during evaluation) a location-dependent meaning. These proofs of A poss must
follow a certain strict pattern of reasoning, using only what is know to be true at
one particular world, producing a conclusion at the same world. Terms are the
more mundane, location-neutral objects in the language. In reasoning toward
Atrue we are allowed to use whatever else is known in the current location.
Terms are only localized to the extent that they depend on other locally true hy-
potheses in I'; in fact, terms which are closed with respect to I' have a universal
meaning — they establish A valid.

It is also important to note that we interpret the typing judgement as de-
scribing where a term will be well-formed, rather than where a term resides at
a particular moment. It is natural to assume that all parts of a program will
reside at a single location initially, but as that program evolves under evalu-
ation, fragments will be spawned for evaluation at other locations. The key
runtime property that the operational semantics should obey is that no term
or expression is evaluated (or interpreted in any way) until it is placed in the
proper context.

4.1 Justification of Mobility

Consider the unusual form of some of the typing rules, namely 007 and OFE.
We will argue that the restrictions they impose on the form of I' (the ordinary
variables) provides the logical justification we need to make parts of a program
mobile.

A;-FM:A A;THFM:OA Auw: A THEFN:B
A;TFbox M :0OA - A;TF let boxu=M inN : B

Or

A;TEFM:OA Auw: A;THF+B
A;T+ let boxu=MinF + B

aE,

In the case of OI, reading the rule from the bottom up, if we have a term
box M proving [JA, we must have a closed term M of type A, which is valid
anywhere. That is, M depends on no locally true assumptions in I'. Therefore it
makes sense to treat M as being fully mobile; we may choose to send M to any
location at runtime. Under the elimination rules OF and OF,, we see that given
M = box M’ of type (A, we may rely on the valid hypothesis u :: A throughout
the remainder of the program (N or F'). Essentially, the boxed term M’ becomes
globally available. Hence we see that any operational semantics must provide a
mechanism to give any location access to M’ (or the value of M') by reference
to u :: A. This is the intuition behind the behavior of necessity (O).

A THE+A oI ATHFM:0A Ajx:AFF+B

A;TFdiaFE : QA A;TF let diax=MinF + B 22

Now in the case of I, reading the rule from the bottom up, forming a
term dia E of type QA requires that we have an expression A;T" - E + A.
That is, from a perspective where we know hypotheses in I' are true, E proves
A, possibly somewhere else. The particular location is not made clear, but the
important thing to note is that E is fized to that location — it must be regarded
as totally immobile. For the elimination form { F, reading from top to bottom,
we will have a term M = dia E with type QA and an expression F' such that
A;x: AF F + B. As remarked above, we have in mind some particular fixed
location where E should be evaluated. Furthermore, we know F' + B under the
assumption x : A. Because the judgement A;x : A - F + B depends only on
a single true hypothesis x : A, it makes sense to claim that F' is mobile in a
restricted sense; that is, we may send F' to the particular world where E proves
A, validating the assumption x : A. By doing so we will have established B poss
as required. This is the intuition behind the behavior of possibility (¢).

4.2 Representing Locality

We now introduce a notation for processes and process labels. Besides providing
a mechanism for concurrent evaluation, processes are also identified with the
“worlds” at which computation takes place. This is not a very general notion
of location, for example, we cannot group processes by location or represent
hierarchies of locations as in Cardelli’s ambient notation [3]. Here we are limited
by the language in which we express programs. Because worlds are not present
in the language and typing judgement, there is no sensible (type-theoretic) way
of concluding that two terms or processes should have the same location.?

It is also clear we will need some form of process labels, so that processes
may refer to each other. However, we distinguish between strong labels (r;)
corresponding to logical validity, which we call “result labels” and weak “loca-
tion labels” (I;) corresponding roughly to logical possibility. Result labels will
allow us to receive the result value of a process, whereas location labels are
placeholders for “detached” processes which we can no longer access.

Result Label R == ro | 1 |
Location Label L == Ilop | Iy |
Label W == R | L
Process P == (R:M) | (L:E) | (L:L"
Configuration C == - | C;P

Note that location labels /;, though associated with logical possibility, are
not formally expressions. Hence the need for a special form of process (L :

3There are, however, other formulations of intuitionistic modal logic which incorporate
worlds explicitly into proof terms. Investigation of these formalisms is ongoing.

L') representing the effect of evaluating an expression. We will assume an
equivalence relation defined on process configurations C = C' such that = is a
congruence satisfying associativity and commutativity over parallel composition
(;). This standard technical mechanism permits a concise specification of the
operational semantics.

4.3 Logical Characterization of Labels

As mentioned before, the two forms of label r; and I; should be interpreted
logically as validity and possibility. To do this, we extend the typing judgement
with a process typing context A containing assumptions about the type of labels
W occurring in the program. We say a process configuration C' has type A,
written as F¢ C : A, if it can be derived from the following rules (modulo
equivalence C = C").

Label Context A == - | A/R=A | AL+ A

FeC:A A;-FM:A FeC:A A FE+ A
pterm pexp

Fe C;(ri : M) : Ayry 2 A Fe C;{l;: E) : Al; + A Fo -t

Note that this definition implies that there can be no cycles in the use of
process labels in well-formed process configurations. Proving k¢ C' : A requires
choosing a linear order (consistent with the occurrence of labels) in which the
processes will be typed.

With the foregoing definition of a label typing A in mind, we extend the
language of terms M and term typing to allow for result labels:

ArcAAATFrm:A
Location labels, on the other hand, will not be treated as expressions, though
in an informal sense I; =~ A. Due to a peculiarity® of the operational semantics,
location labels will only occur as top-level placeholders for expressions. That
is, location labels will appear as a special form of process (l; : I;) but will not
themselves be expressions E. Hence location labels are accounted for in the
process configuration typing judgement, ¢ C : A.

FoC:A A=Ay L= A A,
Fo C;(lj 2l,’):A,lj+A

ploc

The typing rules for terms and expressions are extended in a straightforward
way to carry a label typing A. Of course the label context A will not interact
with term or expression typing except through the rule res.

4This property of location labels is a consequence of the particular evaluation strategy used,
and is not a logical necessity. However, treating location labels as expressions complicates the
operational semantics and the proof of a progress theorem.

4.4 Values and Canonical Forms

Although other interpretations can lead to increased concurrency during exe-
cution, we chose to treat box M and dia E as values. This leads to a less rich
runtime behavior, but simplifies the semantics considerably. Two judgements,
M tvalue and E evalue, define the form of term and expression values, re-
spectively.

V tvalue
Ax: A.M tvalue boxM tvalue diaFE tvalue r; tvalue {V} evalue

Note that the expression values are merely coerced term values {V'} in this
formulation of the language. The canonical forms principle for value typing is
as follows:

Vitvalue N FV:A—-B — V=Xx:A MV V=ry
V tvalue A FV:0O4 = V=boxM V V=r
V tvalue A FV:0A — V=diaFE V V=m

Vevalue AN FV + A = V={V'} A V' tvalueA FV: A

Note that term values do not have a unique canonical form. In any context
V : A we may encounter a result label (r;), as well as the usual canonical forms
for a value of type A. Expression values (V' + A) for any type A will have the
form {V'}.5

4.5 Definition of Substitution

Pfenning and Davies develop a substitution-based notion of reduction in their
paper [8]. Substitution of terms for ordinary and valid variables ([M/x]N and
[[M/u]]N respectively), were defined as one would expect, taking into account
restrictions on the scope of ordinary variables. However, they found that an un-
usual definition of substitution on expressions was necessary in order to maintain
type soundness. Substitution of expressions into expressions (including terms)
was defined as follows:

({M}/x)F = [M/[x]F
((let diay=M inE/x))F = 1let diay=M in((E/x))F
((let boxu=M inE/x))F = 1let boxu=M in((E/x))F

Note that the definition of ((E/x))F is inductive in the structure of E
rather than F. This form of substitution is applied to reduce ¢ introduc-
tion/elimination. An inspection of the typing rule O.E shows why substitution
must behave this way. Specifically, F' is well-formed under the assumption x : A,
that is, x is assumed to be a term. Simply replacing x with E would not, in
general, result in a well-formed expression.

5This property will, of course, cease to hold in a language extended with additional forms
of primitive expression.

We have extended the syntax of terms with result labels. Hence it is tech-
nically necessary to extend the definition of substitution as well. Result labels
are dealt with in the obvious way:

[M/X]T’i = T
[[M /a]]r:

T

Note that we need not define substitution of location labels I;, because they
are not formally expressions. In particular, we avoid having to define {{(I;/x))F'
which would be problematic.

4.6 Transition Rules

A single-step transition in the semantics is stated as C = C' for process con-
figurations C' and C'. Processes irrelevant to the transition are omitted; that
is, C;{l; : E);C" is abbreviated as (I; : E). We will be using the notation of
evaluation contexts S to reflect where (in a term or expression) reduction may
take place. In fact, evaluation contexts can be split into two definitions, term
and expression contexts.

Term Context R == [] | RM | VR
| let boxu=RinN
Expression Context S == [] | {R}

| let boxu=RinFE
| let diax=RinFE

Note that only terms M may appear in a context R[M]. Note also that
the structure of S implies we will only perform reductions on true expressions
(those which are not also terms) in the empty context (S = []).

Rules for reduction of terms will occur in pairs, one applicable to processes
of the form (r; : R[M]), the other for processes {I; : S[M]). We follow a
convention of naming these variants app, app’, etc.

Vi=(x:A.M") V, tvalue
(ri : R[V1 Va]) = (ri : R[[Va/x]M"])

app

Vi=Ax:A.M") V, tvalue
(i : SV Vo)) = (I : S[[Va/x]0']) PP

/

V tvalue
(rj V)i : R[]y = (rj V) {ri : R[V))

syncr

V tvalue
(rj : V)i {li : S[rj]) = (rj : V);{li : S[V])

syner’

The rules for function application are straightforward. Note that synchro-
nization on a result label r; may happen implicitly at any time, but it only
becomes necessary when the structure of a value is observed. For example, syn-
chronization is forced to occur before we may apply the app rule, because the
app rule requires that Vi have the form A\x : A. M'.

V =boxM r; fresh

(ri + Rl1et boxu=VinN) = (ry : M); {ri s L[y /Ny "%
V =boxM r; fresh
i letbox'
(Ii - S[1et boxu=VinN1) = {rj - M); {li : S[[[r;/w]IN])
Y =Dbox M v fresh letbox,,

(l; : let boxu=VinF) = (rj: M);(l; : [[r; /u]]F)

The letbox rules governing the use of [JA terms spawn an independent pro-
cess for evaluation of the boxed term M. Meanwhile, the result label r; is
substituted for u in V. Label r; will serve as a placeholder for the value of M,
allowing us to achieve some concurrency in evaluation. The rule letbox, defines
the behavior of the variant in which the body F' is an expression.

V =diaE [fresh

(i : let diax=VinF) = (I; : {E/x))F);{l; : 1;) letdia

Finally, the letdia rule defines the way in which we may make use of a
term QA. Recall that expressions proving Aposs are evidence that A is true
“somewhere”. To respect this logical interpretation, we choose the particular
world /; we had in mind when we made the judgement F + A. We then send the
code F' to be evaluated at that world (with E). The original process becomes
a placeholder of the form (I; : I;), and we effectively shift our perspective to
the world I;. By performing the substitution ((E/x))F, expression E is used to
validate the assumption x : A on which F' depends. The substitution is well-
defined, both E and F being expressions.® Note that no synchronization on /;
is permitted; such a synchronization principle would be an unsafe, non-logical
operation, corresponding to the (invalid) deduction A poss F Atrue.

It may seem strange that both the box and diamond constructs involve
making an arbitrary choice of where to run the enclosed term or expression.
In fact, for diamond elimination, the choice is not arbitrary. The requirement
that [; fresh is an approximation of the true, correct behavior. As noted
above, we should evaluate E + A at the particular world dictated by its typing.
Unfortunately, the proof language does not capture the particular world we

6Here we make use of the fact that location labels I; are not expressions, hence E # [;.

had in mind when making the judgement E + A. In a lower-level language
with explicit representation of worlds, it is likely possible to give a more precise
account of where particular expressions should be evaluated.

5 Properties of the Semantics

5.1 Substitution Properties

With some trivial generalization, namely the addition of a label typing context
A, the following substitution properties from [8] hold:

AMAT,x:BT'FN:A AN MATHM:
AMAT,x:BT'FF+A AN MNATHM:
AMAu:zBASTFN:A AN MA-FM:
AMAu:B,ASTFF+-A AN MNA--M:B

MA;x:BFF+-A N MATHESB

AN T H[M/x]N A
A AT H[M/x)F + A
AMA AT H[[M/WN - A
MA AT H[[M/))F + A
MNATE((E/x)F + A

Lrnel

Generally speaking, the substitution properties continue to hold in the pres-
ence of result labels because labels are closed values, insensitive to the contents
of A and T". Note that we may use weakening on label contexts A when required
to achieve matching contexts.

5.2 Evaluation Context Typing

We must now consider typing of terms and expressions of the form R[M] (or
S[M]). Although both forms simply denote a term (or expression), it is possible
to say more about the typing of the term used to fill the “hole” in the context.
A key property of evaluation contexts, as they have been defined, is that we
never evaluate below a binding construct. Hence we know that the term filling
the hole will be typed in the same combined context A; A; T as the surrounding
parts of the term (or expression). The following inversion principles apply:

(1) MATHFR[M:A = MATHM:B
(2) MATHESMI+A = MATHM:B
3) MATHSE]l+A = MATHE+A

Proof:

(1) By induction on the form of R. In the base case R =[], R[M] = M so
we are done. In the non-trivial cases, we apply inversion for the — E or
OF typing rules, obtaining a smaller term R'[M], which must be typed
under the same assumptions A; A; T

(2,3) Given an expression of the form S[E]+ A, we know S must have the form
[], so (3) is trivially true. Given an expression of the form S[M] + A,

10

either S = {R}, in which case we appeal to (1) immediately, or we can
apply inversion for the OE, or QE typing rules obtaining a context R[M]
on which (1) will apply.

In particular, this means that if we assume S[M] is closed (with respect to
A and T'), then M is closed as well. By analogy with a stack, it would also be
possible to give a frame-by-frame account of the typing of S[M], in which we
specify the form of type B which is required of M.

5.3 Type Preservation

The operational semantics preserves process typing. As the process configura-
tion evolves, new processes are created, but existing processes remain well-typed
(at the same type). Type preservation for the semantics is stated as:

FeC:A AN C=C" = FANDA. FcC':N

Proof: First note that each transition affects only one or two processes in
the configuration. We may focus our attention on those processes only; if type
preservation holds locally, and we can show A’ D A, then type preservation will
hold globally. The proof proceeds by cases on the C' = C' judgement.

app We may assume process (r; : R[Vi Va]) is well-typed, in the sense that
Ay;- ER[V1 V2] : C. Note that V3 = Ax: A. M'. By evaluation context
typing, we know Aj;-;- F V3 Vo @ B. Obviously, Vi V5 is syntactically
a function application. Therefore, we apply inversion to obtain Aj;-;x :
A+ M': B and Ay;-;- F Vs @ A. By the ordinary substitution property,
Ay;+ - B [Va/x]M' : B. No processes are spawned, so A’ = A.

app’ Similar to app, though in an expression context.

syncr By assumption, (r; : V);(r; : R[r;]) = (rj : V);({r; : R[V']). We may
also assume that both processes are well-formed, As;-;- F V @ A and
Ai,rj m A Ag; ;- = R[r;] : B. By weakening (w.r.t. A) we may replace
r; with V in R[r;]. Hence we conclude Aq,7; :: A, Ag;-5- F R[V] : B.
Also note that A’ = A.

syner’ Similar to syncr, though in an expression context.

letbor We assume process (r; : R[let boxu=V inN]) is well-typed. By as-
sumption, V = box M. By evaluation context typing and inversion on
OF and OI rules, we know that Ay;-;- F M : A. Hence the new process
(rj : M) is well-typed. By result label typing, Ay, r; = A, Ag; ;- 1) 0 A
By the properties of substitution, Aq,7; :: A, Ag; 5 -+ [[rj/u]]N : B. Hence
the original process remains well-typed. We have extended the process
typing, so A’ D A.

11

letboz’ Similar to letbox, though in an expression context.

letbox, We may assume process {l; : let boxu=V inF) is well-typed, that is,
Ai;+;- F let boxu=V inF + B. Also by assumption, V' = box M. We
apply inversion on the typing rules OF, and OI to obtain Ay;+;- F M : A.
Hence the new process (r; : M) is well-typed. By result label typing,
Ai,rj it A Ag; - 1+ A By the properties of substitution, Aq,r;
A, Ay; ;- + [[rj/u]]F + B. Hence the original process remains well-typed.
We have extended the process typing, so A’ D A.

letdia We assume process (I; : let diax=V inF) is well-typed. Also by as-
sumption, V = diaE. We may apply inversion on typing to obtain
Ay;5-F E+ A and Ay;5x 0 A F F + B. By a substitution property,
Ay; - B ((E/x))F + B, so the new process is well-formed. The original
process remains well-formed by the rule for typing processes of the form
(I; : ;). We have extended the process typing, so A’ D A.

5.4 Progress

A progress property for the semantics ensures that well-typed process configu-
rations do not get stuck in an erroneous, non-value, state. For purposes of the
progress theorem, we consider processes of the form (I; : [;) to be in an accept-
able terminal state. A process configuration C' is terminal iff all its processes
are terminal.

V evalue V tvalue
(l; - I;) terminal (l;: V) terminal (r;:V) terminal

A progress property for the semantics may be stated as follows:
FcC:A = C(Cterminal v 3C'.C = ('

Proof: If all processes are terminal, the statement is true. Assume this is
not the case. Then there is a process (r; : M) in which M is not a term value
or a process (l; : E) in which E is not an expression value. We may assume
that r; (or ;) is chosen to be the least such label in the order determined by
Fo C : A; that is, all 7; (or I;) prior to r; (or I;) refer to processes in terminal
form. By the definition of configuration typing, we can infer A;-;-+ M : A (or
A;- H E+ A). Now it will be sufficient to show that either progress can be
made on (r; : M) (alternately (I; : E)) or M is a term value (E is an expression
value) violating the original assumption that the process is non-terminal. Hence

12

the following lemma is sufficient for progress:

(1) FcC:A
A C terminal
AN N5 FM:A = 3C'3AM .Ci{ri: M) = C';(r; : M')
V M tvalue

and (2) ko C:A

A C terminal

AN N FE+A = 3FJC'3E .C;{;:E) = C';{;: E")
\% HC'.HZJ' . C; (l, : E) = C'; <l2 : lj)
V FE evalue

The proof is by induction on term and expression typing:

res

*

hyp
hyp
-1

— F

OoFr

OE

P

poss

OF

M = r; is a value (though we could also make progress by synchronizing).
M = u. Vacuously true, since u is not a closed term.

M = x. Vacuously true, since x is not a closed term.

M = Xx:A.M'is a value.

M = M; M>. By inversion on typing we know A;-;- F My : A - B
and A;-;- F My : A. We can then apply the induction hypothesis to the
two subterms, concluding that (1) progress can be made on M; or M,
(in suitable evaluation contexts) or (2) both M; and M, are values. If
progress can be made on either, we are done. If both M;,M, are values,
then we know by canonical forms that M; = Ax: A.M' or My =r;. In
the former case, we can apply rule app; in the latter case we can make
progress by synchronizing because we have assumed that all processes in
C' are terminal (and hence values).

M =1let boxu=M'in N'. We also know (by inversion) that A;-;- F M’ : OA.
If M’ is not a value, we make progress inductively (in a context R[M'],

for suitable R). If M’ is a value, then by canonical forms it must be either

M' =r;j or M' = box M". If M' = r; then we may make progress by
synchronizing. If M' = box M" then we may apply rule letboz.

E = let boxu=M'in F. Similar to the previous case, except if M’ is a
value of the form box M", we make progress through rule letboz,.

E = {M}. By inversion on typing, A;-;- F M : A. By the induction
hypothesis, we can conclude either progress is possible on M (in a suitable
context R), or M tvalue. In the former case, progress is also possible on
{M?} (in context S = {R}). In the latter case, we conclude {M} evalue.

E =1let diax=M in F. We also know (by inversion) that A;-;- = M : O A.
If M is not a value, we make progress inductively in context S[M] for
suitable S. If M is a value, then by canonical forms it must be either

13

M =rjor M =diaFE. If M = r; then we may make progress by syn-
chronizing. If M = dia E then we may apply rule letdia, producing a
terminal process (I; : I;).

6 Why Modal Types?

As noted earlier, the typing rules for box M and let diax=M in F', impose
restrictions on the occurrence of variables within M and F respectively. Our
project of demonstrating that modal logic naturally describes distributed com-
putation will not have been entirely successful unless we can justify these re-
strictions (and others). Why should we treat variables with suspicion? Why
not, for example, allow arbitrary mobility of code, supported by a mechanism
which can marshal closures under arbitrary environments? Why not permit
synchronization on location labels, bringing back to the spawning process the
value computed by an expression?

Unfortunately, in the presence of truly localized resources, the preceding
suggestions will fail. There may be certain localized values (such as heap ad-
dresses) or resources (hardware devices) which do not make sense at any other
world. Safely marshalling such localized values would be impossible, so we must
insist on these restrictions!

More fundamentally, the laws of modal logic are designed to characterize
models in which truth is relative to an underlying set of worlds. This includes
the possibility that certain propositions are true in some worlds but not in oth-
ers. In this way, localized resources arise inevitably from the logical definitions.
If this was not clear from the beginning, it is because the simplified proof lan-
guage we work with in this paper is somewhat underdeveloped with respect to
primitive expressions (E + A). The core language only allows formulation of
proofs (programs) which are generally valid in any model of modal logic. Addi-
tional primitive expressions impose more structure on the model, corresponding
to the presence of particular local resources in particular locations.

As we argued above, there are reasons to believe that the language of modal
logic is generally useful for writing programs which respect the locality of certain
resources. In this light, it is clear that the structure and behavior of expres-
sions is interesting in its own right, even in the absence of additional primitive
expressions. However, if one decides that programming with localized resources
is not necessary to support the sort of applications one has in mind, then it
is not mandatory to abide by these restrictions. Modal logic is not the proper
way to characterize systems in which everything is potentially mobile, nor can
modal logic be applied in domains for which there is no stable notion of “truth”
relative to locations.

However, modal logic is universal in the following sense: Any safe language
which claims to describe the behavior of and access to localized resources must
take similar precautions to prevent these localized entities from escaping the
context in which they are defined. Many ad-hoc solutions to this problem have
been devised. One typical approach is to make various restrictions on the types

14

of values which may be marshalled, only permitting mobility for certain “prim-
itive” types. Another is to cover up the existence of localized entities, making
a heroic effort to “copy everything” (even if this leads to semantic anomalies).
We hope this work makes it clear that it is not the “primitiveness” of some
value types or the amount of effort one wants to put into developing a language
runtime which should limit mobility of certain code and values. Mobility can
be understood purely on logical grounds. The localized expressions are simply
the things which are evidence for Aposs (A is true at some particular world).
If one admits at that such entities exist, then they must behave logically and
operationally as dictated by the language of modal logic.

7 Practical Programming with [0 & ¢

We must keep in mind that there are two kinds of reason to program with modal
types OA and QA — safety (logical consistency) and achieving concurrency (by
moving terms elsewhere for further evaluation).

From a logical point of view, box M, dia E and their elimination forms pro-
vide a safe way to work with mobile code and localized resources. In giving the
operational semantics, we restricted our attention to closed programs (closed
with respect to both A and I'). However, it is also reasonable to consider
programming in some initial environment Ag;Ty. For our purposes, valid hy-
potheses (in Ag) are the most useful. Hypotheses of the type ¢0A can be used
to represent a fixed set of local resources (of which we are aware a priori).

On the other hand, adopting a behavioral point of view, the use of A can
have the side effect of introducing concurrency. This may also be important
to the programmer, indeed, achieving concurrent evaluation may be the pri-
mary goal when using (JA. Mobility is somewhat intertwined with concurrency
because we assume each abstract “location” has the capability to compute in-
dependently of the others. However, this is really a secondary effect of the
logical/spatial interpretation.

7.1 Definition of Recursion

Many interesting programs require recursion to specify. These programs can
be characterized as having a variable degree of parallelism. That is, they may
“unroll” at runtime to a tree-structured computation, or any other form of
computation involving an unbounded number of worlds. To support recursion,
we add add the following fixpoint operators to the language, with typing as
follows:

A;T)x:AFM: A
A;THfix(x:A).M: A

fix

Ajuz=zA;-FM:A
A;TFfix, (u A).M: A

fizy

15

One may also consider recursion over expressions, but it is not clear how
this would be practically useful, since expressions are localized. Clearly, the
addition of fix (x : A). M disturbs the logical properties of the language, since
F fix(x: A).z : A for any type A. The usual caveats about recursion apply,
namely that ill-founded “proofs” of this sort will not terminate under evaluation.
At first it might seem that fiz, is a redundant derivable rule. Indeed, it is
possible to provide a definition for fix, as a proof schema:

fix, (v A).M = fix(y:0A).let boxu=yin(box M)

However, when one considers the behavior of such terms under evaluation,
it becomes clear that this is not a desirable way to define recursion over valid
terms. For example, the simple fixpoint fix, (v :: A - A). Ax: A. M would
never terminate. The problem is that the definition is too eager in unwinding
the recursion. Hence we must extend the operational semantics for each flavor
of recursion, defining it in such a way that the unwinding is performed lazily.

fiz

(W:S[fix(x: A). M]) = (W:S[[fix(x: A). M/x]M])

(W :S[fixy (u A). M]) = (W :S[[[fix, (u: A). M/u]]M]) fizy

Type preservation and progress proofs for the operational semantics can be
extended to account for fixpoint. In the case of the progress theorem, we note
that fixpoint is not a value, but that we can always apply one of the rules fix or
fiz,. In the case of the type preservation theorem, the substitution property (a
term for an ordinary or valid variable) will ensure proper typing of the result.

7.2 Axioms of Modal Logic

Below are reproduced the axioms of S4, together with their realizations as proof
terms:

F S=Xx:A—-B—->C.Ay:A—B.Xz: A.(x z)(y 2)

: (A->B—-C)»(A—-B)—>A->0C)

F K=Xx:A.\y:B.x

: (A= (B—=4))

F DB=Xx:0(A— B).Ay:0A.let boxu=xin(let boxv=yinbox (u v))
: 0O(A- B)— (0DA—-0OB)

F RB=Mx:0A.let boxu=xinu

: (OA— A)

F S4=MXx:0A.let boxu=xinboxboxu

. (OA — O0A)

F RD=)Xx:A.dia{x}

o (A—04)

F TD=MX:00A.dia(let diay=xin(let diaz=yin{z}))
(004 = 0A)

F DD =Xx:0(A — B).let boxu=xin(\y: Q0A.dia(let diaz=yin{u z}))
: O(A->B)— (0A—>90B)

16

These axioms can be generally useful in implementing various common pat-
terns of distributed computation. For example, axiom RB shows us how to
access a boxed, global resource “here”, and DD shows us how to make use of a
global resource in combination with a localized resource.

From a behavioral perspective, we may compose axioms DB and RB to
spawn a function application (u v). The axioms relating to ¢ do not exhibit
behavior immediately, because dia E is a value encapsulating a localized ex-
pression or computation. However, if we apply diamond elimination to these
values they may have interesting effects. Axiom T'D, for example, allows us to
shift perspective to a location two “hops” away to evaluate an expression.

7.3 Example (Local Resources)

As an example in which we may be forced to use local resources to solve a
problem, consider the problem of interaction with a user at a particular “home”
console. Assuming console :: {con represents such a localized resource, we
may program as follows:

let dia c = comnsole in
write ¢ ‘‘Enter a number:’’;
write ¢ ‘‘answer = ’7;

write ¢ ((A x : int . M) (read c))

At runtime, the body of the let-expression is evaluated at the location of
console, producing output on the user’s terminal.
The following solution would also be well-typed, but it delays the interactive
computation, by encapsulating it inside of a dia constructor.
dia
let dia ¢ = console in
write ¢ ‘‘Enter a number:’’;
write c ‘‘answer = ’’;
write ¢ ((A x : int . M) (read c))

To perform the same computation repeatedly, we use the fixpoint operator.
Note that we must use the closed, valid form of recursion fix, (u :: A). M
because the entire loop is required to be mobile. However, we will not take full
advantage of this mobility, since each instance of the loop body will be evaluated
at the same location (the console location).

fix, loop :: ¢ unit .
dia
let dia c = console in
write ¢ ‘‘Enter a number:’’;
write ¢ ‘‘answer = ’7;
write ¢ ((A x : int . M) (read c));

let dia 1 = loop in 1

17

Note the form (let dia 1 = loop in 1) of invocation required to produce
additional loop iterations. Essentially, this removes the dia constructor from
the freshly unrolled copy of the loop, resuming execution with the enclosed
expression.

7.4 Example (Local Resources of Another Kind)

Though the previous example made use of a resource console, tied a priori to
a particular location, it is also possible to model a situation in which values
or effects of a computation are localized, though the code of the program (as
written) is not. Consider, for example, the case of reference cells. We could
provide access to these storage locations through the following set of primitives:

ATHEFM:A 7 A;THM:ref A
A;THref M ~ref A ref A;THIYM:A

refE

A;THM:refA A;TENGA
A;TF M :=N :unit

refSet

Note that the ref M syntax is globally available. However, we choose to
make ref M an expression, not a term. The intuition behind this choice is that
ref M will have a localized effect during evaluation, and its meaning will become
dependent on the particular location at which the effect occurs. Specifically,
ref M will evaluate to a heap address a, with typing a +~ ref A (addresses will
be the canonical form for expressions of type E + ref A). The intuition behind
the elimination rule is that we may retrieve the value of a reference if that
reference is available “here”. Similarly, in order to update the contents of a
reference cell, we must have ref A available locally.

Effectively, the typing principles given above force us to use references in a
monadic style, encapsulating expressions which allocate and manipulate refer-
ences with . The form of QF only allows us to work with one reference cell
at a time; this precludes any conflict over two resources available at different
locations. With product types it is possible to work around this restriction to
some extent, by storing more than one value in a single reference cell.

References, being expressions, are protected by typing rules governing pos-
sibility. For example, we cannot make a reference mobile:

let box u = box (ref 0) in (* ill-typed *)
u = (lu + 1)

The only way to make the reference mobile (in an indirect sense) is to en-
capsulate it as dia(ref0). In this way, we can move the term dia(ref0)
anywhere, though the effect of the computation (allocation of a reference cell) is
delayed until ref 0 is revealed by diamond elimination and a particular location
is chosen.

18

let box u = box (dia (ref 0)) in

let dia x = u in (* allocate ref cell *)
x := (Ix + 1);
let dia y = u in (* a new ref cell, y # x *)
y := (ly + 1);
y (* attempt to ‘‘return’’ y *)

Although v is available at many locations, as dia (ref0), the operational
semantics of ¢I and QF dictate that x and y are distinct reference cells. Note
also that the value of y cannot “escape” the location at which it is allocated,
because the typing rules prevent us from relying on the results of evaluating
an expression. The occurrence of y in the final line of the program is perfectly
well-typed, but will not have any meaningful effect.

7.5 Example (Concurrency)

Finally, consider a program for computing the nth Fibonacci number recursively.
Additionally, we would like to have each recursive call evaluated at a different
world, achieving a degree of concurrency by distributing the work. A basic
implementation of £ib is given below:

fix fib : int — int .
An : int .
if (n < 2) then n
else (fib (n-1)) + (fib (n-2))

This term is well-typed, having type int — int. It does not, however, exhibit
the desired parallelism. To achieve the sort of arbitrary mobility that will allow
each recursive call to be evaluated independently, it is clear we should look to
box and let boxu=M in N. We will have to decorate the type of £ib with
O to achieve the proper effect. One way to achieve distributed evaluation is as
follows:

fix, fib :: Oint — int .
A n : Oint .
let box u = n in
if (u < 2) then u

else
let box a = box (fib (box (u - 1))) in
let box b = box (fib (box (u - 2))) in
a+b

This realization of f£ib is at type Oint — int. Note that it is necessary
to use recursion over valid terms (fix, (u :: A).M) because we want f£ib to
be available at any world we see fit to spawn (box (fib (box (u —1)))). Now
when £ib is applied to a boxed integer (fib (box 2)), the process configuration
evolves as follows:

19

(ro : £ib (box 2))
= * (rop:let boxu=box2in...)
= <T0 cif (Tl < 2)), <T1 :2>
= * (ro:7a+r3);{ry:2);{ra: £ib box (ry — 1));{rs : £ib box (r, — 2))
=% (ro:ra+rs);{ry:2);{ra s if (rg <2)..);(rs 1 if (r5 < 2)..);{(ra s — 1);(rs : 71 — 2)
=% (ro:ra4ra);(ry:2);{ra s if (rq < 2)..);{rs 1 if (r5 < 2)...);(rq : 1);{rs : 0)
= * <7‘0) +T3), <T1 : 2),(7‘2 : T4); r3: 7’5); <’I‘4 : 1); <T5 0)
=% (ro:ra+r3);(ry i 2);(ra: 1);(rs : 0);(rq : 1);(r5 : 0)
=% (ro:14+0);(ry : 2);(ra : 1);(r3 : 0); (ry : 1);{rs : 0)
= (ro:1);(r1:2);(ra 1 1);(r3 : 0);{ra : 1); (rs : 0)

Note that the pattern let boxa=box(fib ...)in... is used to spawn two
applications of fib for concurrent evaluation. The results of both branches must
be received (with the syncr rule) before evaluation of (a + b) can proceed.

8 Related Work

Most prior and ongoing related work seems to have taken, as a starting point,
a general process calculus, such as the Pi or join calculus. These sorts of calculi
model the connectivity of processes, but not location and localized resources.
They also typically permit arbitrary and dynamically changing communication
patterns between processes. Starting from such a calculus, a notion of location
is added to the operational semantics, the language is extended with one or
more primitives for mobility, and (optionally) restrictions are imposed on how
and where a process may safely move. The authors mentioned below have dealt
with many of the same issues that we address in this paper. But because they
start from a behavioral, process-oriented perspective, the issues and problems
present themselves in slightly different forms, so the solutions they arrive at are
naturally different.

However, on a deep level, both our work and theirs represent an attempt
to impose some logical structure on mobility and distributed computation. We
believe the critical questions are these: What are the local resources that dis-
tinguish locations from one another? And where may fragments of code (which
might depend on these resources) move to and from safely?

In our work, the local resources are expressions, and dependency on such
local resources is through variables (locally true hypotheses). In the related work
based on process calculi, channel and/or location names usually play both roles
simultaneously. However, it is crucial to note that process calculi typically allow
changing the scope of channel names (via a scope extrusion rule). This makes
it quite challenging to come up with a stable, coherent notion of what names
are in scope at each location. Hence mechanisms for enforcing or characterizing
the locality of channel names or processes can become quite complex.

20

8.1 Mobile Ambients

Mobile ambients, as developed by Cardelli and Gordon [3], are a novel way of
adding locality to a process calculus. The ambient notation nJ...] allows rep-
resentation of location in process configurations. Simultaneously, ambients also
facilitate communication by providing a space in which processes may exchange
messages (eliminating the need for primitive channels).

In subsequent papers [5, 1, 2], an “ambient logic” is developed to characterize
the behavior and spatial distribution of processes. Ambient logic is not intended
to be a system for assigning types to processes; it is a language for making
statements about a given process configuration (considered as a model for the
logic). These propositions are then either satisfied by the given model, or not,
according to the definitions of the logic. The logic includes modal operators
of both the spatial and temporal variety which are interpreted by reference
to spatial (hierarchical inclusion) and temporal (reduction steps) notions of
accessibility. The full ambient logic is very precise, and allows one to specify
undecidable properties of a program. Verifying a formula in decidable fragments
of ambient logic is typically accomplished by model-checking.

Notably, Cardelli and Gordon (in [4]) have extended ambient logic with
propositions expressing hiding, revelation, and freshness of names in order
to characterize the scope and mobility of names. However, since processes
in the ambient calculus are not inherently required to preserve “locality” of
names, most name-hiding properties must be formulated and proved (by model-
checking) relative to a particular implementation.

8.2 DPI and Process Typing

Hennessy, et. al. have developed another language for distributed computation
based on the Pi-calculus, called DPI. It extends the Pi-calculus with a notation
for process location, and a simple go [. P action which moves P to location [
where execution of P resumes.

The typing systems developed for this language are described in papers by
Hennessy, Riely, Yoshida, and others. [7, 9, 6] Their work is very closely related
to the contents of this report, seeking to achieve the same goals, but in the
context of a process calculus.

Their typing system restricts the scope of names so that processes in a
location [are only allowed to access names declared in /. Names may escape the
scope of their declaration, but only as “existential” values n@I, tagged with the
location in which they are valid. In this manner, the authors achieve a stable
notion of which resources are available at which locations. In fact, locations
are characterized by “location types” loc{u; : A,us : B, ...}, which effectively
internalize the set of bound names in scope at that location. The authors also
permit subtyping on location types which is similar to record subtyping.

Informally speaking, we can find counterparts to some modal types in the
scheme of location types. For example, a term of type (JA corresponds to a
process P which is well-formed in a location of type loc{} (the top type of the

21

location typing hierarchy). Such a process may move to any location, since it
depends on no local names. General terms of type OA do not have a direct
analogue in the DPI typing system, since processes cannot be removed from the
context in which they are well-formed, but for the special case of channel names,
QA corresponds to the use of existential types AQL (there exists a location L
in which A) to characterize channel names which “escape” their original scope
of definition.

Interestingly, the let diax=M in F construct defined in this paper is quite
similar to go [. P, in the sense that F' (and P) are being sent to a new location.
The difference is that let diax=dia E in F allows F access only to the value
of E, rather than all the resources in scope at E’s location. This is a natural
outcome, given that our language is oriented toward evaluation rather than
interaction.

9 Conclusion and Future Work

Starting from an intuitionistic formulation of modal logic, we considered the
proof terms for that logic as a programming language. We then developed
an operational semantics which realized the desired interpretation, that worlds
should correspond to locations where evaluation may occur. We have shown
that the modal types OA and QA are a safe and natural way to utilize both
global and local resources in a distributed computation. We have also argued
that restrictions on the scope of variables are essential to ensure safe mobility
in the presence of localized resources.

In future work, we plan to separate concurrency from distributed computa-
tion, hopefully in a way that preserves the logical structure of programs and
their types. A separate notion of concurrency leads to the possibility of colloca-
tion of processes, requiring an operational model in which locations are separate
from the notion of a process.

We also plan to investigate languages derived from an explicit-worlds formu-
lation of modal logic, in which worlds and connections (witnesses for accessibil-
ity) are embedded in types and terms. This should make it possible to give a
more fully-developed treatment of primitive expressions (representing local re-
sources). Additionally, making worlds explicit will allow us give a more precise
operational semantics for possibility, because terms of type ¢.A will be explicitly
labeled with the world at which they are valid.

We also believe it would be possible to address many interesting new ques-
tions in the explicit framework, such as the role of assumptions about network
topology in the construction of programs, the possibility of identifying and con-
straining communication patterns in distributed programs, and limiting resource
usage (in the coarse sense of the number of worlds participating in evaluation).
We also hope to find more examples and applications in which the modal typ-
ing discipline, while not logically mandatory, would have additional practical
benefits, such as a simpler or more efficient implementation of mobility.

22

References

[1]

[5]

[6]

[7]

(8]

[9]

Luis Caires and Luca Cardelli. A spatial logic for concurrency (part I). In
Theoretical Aspects of Computer Software (TACS), volume 2215 of LNCS,
pages 1-37. Springer, October 2001.

Lufs Caires and Luca Cardelli. A spatial logic for concurrency (part II). In
CONCUR, volume 2421 of LNCS, pages 209-225. Springer, August 2002.

Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations of
Software Science and Computation Structures (FOSSACS), volume 1378 of
LNCS, pages 140-155. Springer-Verlag, 1998.

Luca Cardelli and Andrew D. Gordon. Logical properties of name restric-
tion. In Samson Abramsky, editor, Typed Lambda Calculi and Applications,
volume 46-60 of LNCS, pages 46—-60. Springer, May 2001.

Luca Cardelli and Andrew D. Gordon. Ambient logic. Technical report,
Microsoft, 2002.

M. Hennessy, M. Merro, and J. Rathke. Towards a behavioural theory
of access and mobility control in distributed systems. Technical Report
2002/01, University of Sussex, 2002.

Matthew Hennessy and James Riely. Resource access control in systems of
mobile agents. Information and Computation, 173:82-120, 2002.

Frank Pfenning and Rowan Davies. A judgemental reconstruction of modal
logic. Mathematical Structures in Computer Science, 11(4):511-540, August
2001.

Nobuko Yoshida and Matthew Hennessy. Assigning types to processes (ex-
tended abstract). In IEEE Symposium on Logic in Computer Science, pages
334-348. IEEE Computer Society Press, June 2000.

23

