
Detecting Anomalous Records in Categorical Datasets

Kaustav Das, Jeff Schneider
Machine Learning Department, Carnegie Mellon University

Pittsburgh PA 15203
kaustav@cs.cmu.edu, schneide@cs.cmu.edu

ABSTRACT
We consider the problem of detecting anomalies in high ar-
ity categorical datasets. In most applications, anomalies
are defined as data points that are ’abnormal’. Quite of-
ten we have access to data which consists mostly of normal
records, along with a small percentage of unlabelled anoma-
lous records. We are interested in the problem of unsuper-
vised anomaly detection, where we use the unlabelled data
for training, and detect records that do not follow the defi-
nition of normality.

A standard approach is to create a model of normal data,
and compare test records against it. A probabilistic ap-
proach builds a likelihood model from the training data.
Records are tested for anomalousness based on the complete
record likelihood given the probability model. For categor-
ical attributes, bayes nets give a standard representation of
the likelihood. While this approach is good at finding out-
liers in the dataset, it often tends to detect records with
attribute values that are rare. Sometimes, just detecting
rare values of an attribute is not desired and such outliers
are not considered as anomalies in that context. We present
an alternative definition of anomalies, and propose an ap-
proach of comparing against marginal distributions of at-
tribute subsets. We show that this is a more meaningful
way of detecting anomalies, and has a better performance
over semi-synthetic as well as real world datasets.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining

General Terms: Algorithms, Performance, Experimenta-
tion

Keywords: Anomaly Detection, Machine Learning

1. INTRODUCTION
With the ever increasing amount of data being collected

universally, it gets more important and challenging to spot

This work is funded in part by CDC under award 8-R01-
HK000020-02 and by NSF under award IIS-0325581.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’07, August 12–15, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-609-7/07/0008 ...$5.00.

unusual or unexpected observations. Anomaly detection
aims to address this issue from a statistical datamining frame-
work.

Anomalies can be defined as anything that is ’different’
from ’normal’ behavior. Hence, we need to first define ’nor-
mality’. Usually this is specified as a probability model from
which observations are assumed to be drawn. We also need a
similarity measure to compare the observations with respect
to the model.

Detecting anomalies in observations is important in many
different respects. A traditional form of anomaly detection is
in industrial process control. Time-series data from various
sensors are monitored to detect out of control processes.
In most applications, we are interested in the detection of
emergence of new phenomena unexplained by the previous
model. For example, in astronomical datasets, astronomers
want to detect new interesting space objects. In applications
such as bio-surveillance and customs monitoring, detecting
suspicious activity in high dimensional data is the goal of
anomaly detection. Anomaly detection can also be used to
automatically detect data entry errors, which can then be
corrected.

However, forming a general framework for anomaly detec-
tion is a difficult challenge as the definition of normality is
typically very domain specific. This has led to independent
efforts for various domains.

First, we give a summary of the related work. We then
present the problem statement, along with our algorithms
for anomaly detection. We show ways of speeding up the
computation and making it more memory efficient. This is
followed by the experimental setup, where we describe the
datasets used, and the evaluation procedure. The results of
our algorithms on the datasets are presented next. We con-
clude with a discussion of possible extensions of the current
work.

2. RELATED WORK
Anomaly detection applied to network intrusion detection

has been an active area of research since it was proposed
by Denning [28]. Traditional anomaly detection approaches
build models of normal data and detect deviations from the
normal model in observed data. A survey of these techniques
is given in [31]. One approach is to use sequence analysis
to determine anomalies. A method of modeling normal se-
quences using look ahead pairs and contiguous sequences is
presented in [16], and a statistical method to determine fre-
quent sequences in intrusion data is presented in [15]. Lee
et al. [21] uses a decision tree model over normal data and

Ghosh et al. [13] uses a neural network to obtain the model.
Eskin [12] uses a probability distribution model from the
training data to determine anomalous data. They use a
mixture model to explain the presence of anomalies. A clus-
tering based approach to detecting anomalies in a dataset is
used in [22] and [11]. One-class SVMs [23, 14] and Genetic
Algorithms [29] have also been used to classify anomalies in
this context.

Anomaly detection is also commonly applied in time series
data to detect unusual fluctuations compared to past data
points [4, 18, 7, 26]. Another area of considerable recent
interest is spatial anomaly detection [19].

The methods described so far apply to real valued data or
work in a supervised setting when we have labeled training
data. We now describe methods that apply to the problem
of interest, i.e., on categorical datasets in an unsupervised
setting.

2.1 Unsupervised Methods Applied to
Categorical Datasets

2.1.1 Association Rule Based Approaches
The task of association rule mining has received consider-

able attention especially, in the case of market basket anal-
ysis [3]. An association rule is an expression of the form
X ⇒ Y , where X and Y are sets of items. Given a database
of records (or transactions) D, where each record T ∈ D is
a set of items, X ⇒ Y expresses that whenever a record T
contains X, then T probably also contains Y . The confi-
dence of the rule is the probability p(Y |X). The support of
the rule is the number of training cases where both X and
Y are present. Instead of sets of items, X and Y can also
be considered to be the events that an attribute of T takes
some particular values.

Association rule mining is commonly used in the analysis
of market-basket data, where the target of mining is not pre-
determined. Chan et al. [8] have developed a rule learning
method LERAD to detect anomalies. They consider rules
of the form X ⇒ Y , where X and Y are mutually exclusive
subsets of attributes taking on particular values. They seek
combinations of X and Y with large values of P (Y |X). The
anomaly score of a record depends on P (!Y |X), where Y ,
though expected, is not observed when X is observed. The
main disadvantage of this method is that it learns a very
small subset of all the possible rules. We have used this
method as one of the baseline methods for comparison of
our algorithms.

Balderas et al. [5] mine hidden association rules, or rules
that are not common, but confident. Such rules are assumed
to represent the rare anomaly class.

WSARE developed by Wong et al. [30] also uses rules
to identify anomalies. But in this case, the rules are learnt
from a historical dataset, and are applied on a collection
of records from the current time interval, to detect unusual
counts of various cases.

2.1.2 Likelihood Based Approaches
In these approaches, ‘normal’ data is modeled as a prob-

ability distribution. Any test record that has an unusually
low likelihood based on the probability model is flagged as
anomalous. For multivariate categorical data, dependency
trees and bayesian networks are common representations of
a probability density model. Dependency trees have been

used to detect anomalies in [27]. We choose a bayesian net-
work as the standard model against which we compare our
algorithm. Hence, we give an overview of this method next.

2.1.3 Anomaly Detection Using Bayes Network
A Bayesian network is a popular representation of a proba-

bility model over the attributes for categorical data because
of its parsimonious use of parameters, and efficient learn-
ing and inference techniques. Bayes Net have been used
for detecting anomalies in network intrusion detection [2,
33], detecting malicious emails [9] and disease outbreak de-
tection [32]. Any good structure and parameter learning
algorithm is appropriate to learn the model. For our ex-
periments, we used the optimal reinsertion algorithm [25]
to learn the structure, and then did a maximum likelihood
estimation of the network parameters. Once the model is
built, to test any record we find its complete record likeli-
hood given the probability model. Test records that have
unusually low likelihood are then flagged as anomalies.

Training

1. Construct a conditional AD Tree over the training
dataset (§3.1.6).

2. Determine the dependence between all attribute sets
up to size k by computing the mutual information
between them (§3.1).

3. Construct the cache for denominator counts (§3.2.2).

Testing: Scoring a test record t

1. For each mutually exclusive and dependent pair of
attribute sets A and B (§3.1):

(a) Compute r(at, bt) (§3.1).

2. Compute the overall conditional score of the record
t from all the r-values calculated above (§3.1.2).

Figure 1: Conditional Anomaly Test Algorithm.

Training

1. Construct a marginal AD Tree over the dataset
(§3.3.1).

2. Compute the marginal count histograms over the
training data (§3.3.1).

Testing: Scoring a test record t

1. For each attribute set A with up to k attributes:

(a) Compute qval(at) (§3.3).

2. Compute the overall marginal score of the record t
as the minimum q-value calculated above (§3.3).

Figure 2: Marginal Anomaly Test Algorithm.

3. APPROACH
Suppose we are given a set of records comprised of several

attributes. The data contains both normal and anomalous
records. However, we do not have any labeling of the data.
The problem is to identify the anomalous records among
them. First we need to define ’normality’ with respect to
the given data. Here, we make an assumption that in the
training data a majority of records are normal and there
are only a few anomalous records. This means we can build
a model of all the data with minimal harm caused by the
anomalous records. We discuss several ways of approaching
this problem in the following sections.

Figures 1 and 2 give an overview of the two proposed algo-
rithms used to test for anomalous records. We will explain
the steps in detail in the following sections.

Our current work is motivated by the need to detect un-
usual shipments among all imports into the country. Each
record corresponds to a container that is being imported. It
has attributes describing the container, its contents, and its
transport as outlined in Table 1.

Attribute Name Arity

Country 22
Foreign Port 42
US Port 16
Shipping Line 4
Shipper Name 4218
Importer Name 6412
Commodity Description 1649
Size 5
Weight 5
Value 5

Table 1: Features in Piers Dataset

3.1 Conditional Probability Tests
We will illustrate a problem using the likelihood based

approach to detect anomalies in this context. Consider the
attribute ShipperName, which has a very high arity of more
than 4000. In this case, as in many real world problems, the
distribution of values of high arity attributes is very skewed.
Some of the values are common, while a large number of
them are very rare. When we construct a probability dis-
tribution of the data, these rare attribute values contribute
to a skewed distribution. If a record has ShipperName as
one of the rare values, then the record’s likelihood is domi-
nated by this term. This means that rare values will cause
these records to look very unusual. But often, an attribute
having a rare value might not be useful information. In our
data, more than 20% of the instances, contain a value of
ShipperName that occurs only once in the training data.

Consider a particular test record t and the attributes Ship-
perName and Country. We define P (SNt, Ct) = P(Shipper-
Name =SNt, Country=Ct), where SNt and Ct are the Ship-
perName and Country of the test record t respectively. In
general, let A be a set of attributes. Define P (at) = P (A =
at), where at is the corresponding set of values of A in the
test record t.

We are interested in detecting unusual combinations of
attribute values. For example, say ShipperName = SN1 al-
ways occurs with Country=C1 and never with Country=C2.

Then a record t having ShipperName=SN1 and Country=C2

is considered unusual or anomalous. This corresponds to
the probability P (SN1, C2). But we have to be careful in
interpreting this. Consider a situation where Country=C2

occurs very rarely in the data. In this case, the fact that
ShipperName=SN1 has never occurred with Country=C2

can be explained by the rarity of seeing records from Coun-
try=C2. It might not mean that for shipments coming from
Country=C2, it is unusual to see ShipperName=SN1. Here,
we do not have enough data to support the hypothesis that
this is really anomalous. To take care of this fact, we can
normalize the joint probability of these attributes with the
marginal probability P (Countryt). Now, if P (Countryt)

has a low value, the ratio P (ShipperNamet,Countryt)
P (Countryt)

will no

longer be small. But, the same argument applies to the
attribute ShipperName, and hence, we also normalize with
respect to P (ShipperNamet). The quantity we now con-

sider is the ratio P (ShipperNamet,Countryt)
P (ShipperNamet)P (Countryt)

.

In general, we consider the ratio r(at, bt) = P (at,bt)
P (at)P (bt)

for

attributes A and B. An unusually low value of this ratio sug-
gests a strong negative dependence between the occurrences
of at and bt in the training data. When we observe them
together in the test record t, we can reasonably say that it is
anomalous. This also ensures we have seen enough cases of
at and bt in the training data to support the hypothesis of
negative dependence. We quantify this notion of minimum
support in §3.2.1.

To generalize this idea to more than two attributes, we
can consider attribute sets instead of single attributes. For
example, we can consider whether the combination of at-
tribute set A = {ShipperName, Weight} and the attribute
set B = {Country, Commodity} is unusual. The ratio that
we consider here is:

r(at, bt) =
P (at, bt)

P (at)P (bt)

=
P (ShipperNamet, Weightt, Countryt, Commodityt)

P (ShipperNamet, Weightt)P (Countryt, Commodityt)

Similarly, we can compare any two subsets of attributes,
the only constraint being that there should be no common
attribute among them. Let us call this ratio the r-value of
the record t for the attribute sets A and B. Considering all
possible subsets would require computation time exponen-
tial in the number of attributes. Therefore, we only consider
subsets up to size k. Also, we want to avoid comparing at-
tribute sets that are completely independent. We compute
the mutual information µ(A, B) between two attribute sets
A and B, and calculate r(at, bt) only if the mutual informa-
tion is greater than a threshold. We define A and B to be
dependent if,

µ(A, B) ≥ βµ (1)

where, βµ is a threshold parameter, set to 0.1 in our exper-
iments.

Thus, for a given record, we consider all pairs of dependent
and mutually exclusive subsets having up to k attributes,
and calculate the corresponding r-values.

A ratio of the form r = P (A,B)
P (A)P (B)

has been proposed as a

measure of suspicious coincidence by Barlow [6]. It states
that two candidate fragments A and B should be combined
into a composite object AB if the probability of their joint
appearance P (A,B) is much higher than the probability ex-

pected in case of statistical independence P (A)P (B). It has
also been used to investigate unsupervised learning of com-
plex visual stimuli by human subjects [10]. Here large values
of r are interesting as it signifies a suspicious coincidence of
the events co-occurring. We are interested in exactly the op-
posite situation, where low r values signify that the events
do not co-occur naturally. If they are observed together,
then we treat it as an anomaly.

3.1.1 Partitioning the training data
A further generalization is to use a ratio of the form:

rval(at, bt|ct) = P (at,bt|ct)
P (at|ct)P (bt|ct)

, where A,B and C are mutu-

ally exclusive subsets of attributes with at most k elements.
This ratio is similar to the previous formula, but here we
consider the probabilities conditioned on a set of attributes.
It is equivalent to partitioning the training data and consid-
ering only a subset to estimate the probabilities, consisting
only of records that match the test record t in a subset of
attributes, C.

3.1.2 Combining evidence across different attribute
sets

One disadvantage of our method is that it considers only
a subset of attributes at a time. The final score of a record is
the minimum score obtained over all such subsets. But, the
score reflects the behavior of only a particular subset of size
up to 2k, ignoring the values of other attributes. Here, we
make an assumption that maximum of 2k attribute values
indicate anomalous behavior. In many practical problems
this assumption is reasonable.

But, as shown in the results using artificial anomalies,
when the number of anomalous attributes is larger than 2k,
comparing against a joint distribution might give more ac-
curate results.

To solve this problem, we can combine the evidence across
different attribute sets. We use the following heuristic to
score the record t:

1. Order the r-values in ascending order. Consider only
the ordered values r1 to rq which are less than a thresh-
old α (described in the next section).

2. Initialize: Score = 1, and U = φ.

3. For i = 1 to q

(a) If there is any common attribute between the at-
tributes defining ri and U , then skip to the next
value of i.

(b) Else, Score = Score ∗ ri, and include the at-
tributes defining ri in U .

This heuristic computes the product of the selected r-
values corresponding to mutually exclusive sets of attributes.
The intuition is that if the attribute subsets were not only
disjoint, but also independent, then this would be the r-value
for the larger combined set of attributes.

r(at, bt) × r(ct, dt) =
P (at, bt)P (ct, dt)

P (at)P (bt)P (ct)P (dt)

=
P (at, bt, ct, dt)

P (at, ct)P (bt, dt)

= r([at, ct], [bt, dt]) (2)

Here, we assume (A ⊥ C) and (B ⊥ D). In general, this
assumption does not hold, but the heuristic gives a reason-
able strategy to combine evidence from multiple r-values.

3.1.3 User specified pruning of the search space
In many applications we can use domain information to re-

strict our search space. For example, consider the attributes
Country and City. Given the value of City, the value of
Country is fixed. We do not need to test if there is a rare
combination of these two attributes. In general, if there is
a hierarchical structure of the attributes, we do not want
to compare between the higher and lower level attributes.
One exception is the case of searching for data entry errors,
which is another potential application of our algorithm.

A user may simply be uninterested in some combinations
of attributes. For example, a medical diagnosis tool may
not care about an anomalous combination of patient demo-
graphic features. It may only be interested in anomalous
sets of symptoms or symptoms in combination with demo-
graphics.

In either case, our algorithms can easily ignore special
combinations of attributes. This improves computational
speed by reducing the search space, and will produce results
that are more meaningful to the end user.

3.1.4 Estimating the probability values
For calculating the r-value r(at, bt) of a test record t, we

need to estimate the marginal probability values from the

training data. The MLE estimate is P (at) = C(at)
N

, where
C(at) is the count of training cases where A = at. N is
the total number of training records. A problem with this
estimator is that when C(at, bt) = 0, then r(at, bt) = 0.
Regardless of the threshold α, all such cases will be flagged
as anomalies.

To avoid this problem, we calculate the expected value of
pA = P (at) with a Bayesian prior. Given the record t, each
attribute behaves as binary. The attribute set A can have
two possible values at and ’not at’.

P (Data|pA) = Binomial(N, pA) (3)

P (pA|Data) =
P (Data|pA) ∗ P (pA)

P (Data)
(4)

P (pA|Data) ∼ p
C(at)
A (1 − pA)N−C(at) (5)

P (pA|Data) ∼ Beta(C(at) + 1, N − C(at) + 1) (6)

Here we assume an uniform prior over pA. Hence E[pA] =
C(at)+1

N+2
.

3.1.5 Bound on the counts
From eqn. 6 above, we can calculate:

r(at, bt) = P (at,bt)
P (at)P (bt)

= C(at,bt)+1
N+2

× N+2
C(at)+1

× N+2
C(bt)+1

.

To compute this ratio we need the counts C(at), C(bt) and
C(at, bt). We use a caching technique to cache these counts
as described in §3.2.2. To make this caching tractable, we
compute a lower bound for C(at) and C(bt).

The record t is interesting when r(at, bt) ≤ α.

=⇒
C(at, bt) + 1

N + 2
×

N + 2

C(at) + 1
×

N + 2

C(bt) + 1
≤ α

=⇒
C(at, bt) + 1

N + 2
×

N + 2

C(at) + 1
< α

[because, (N + 2) > (C(bt) + 1)]

=⇒
C(at, bt) + 1

C(at) + 1
< α

=⇒
1

C(at) + 1
< α

[because, C(at, bt) ≥ 0]

=⇒C(at) >
1

α
− 1 (7)

Similarly, C(bt) > 1
α
− 1. Hence, we need to consider

only the cases where C(at) and C(bt) are greater than this
bound.

3.1.6 Using AD Trees for computing counts
The required counts are conjunctive counting queries on

the dataset, and can be efficiently queried using an AD Tree
[24]. The AD Tree building algorithm scans the dataset
once, and precomputes information needed to answer every
possible query in time independent of the number of records.
The parameter leaflist size can be adjusted to obtain a trade-
off between the memory used and the query response time.
Note that for our algorithm, we will never need an AD Tree
of depth greater than 2k.

3.2 Computational Speedup

3.2.1 Reducing arity
The memory required to build an AD Tree significantly

depends on the arity of the attributes. We use the result
from eqn. 7 to reduce the arity of each attribute. Con-
sider an attribute value lt of attribute L in test record t.
Let A and B be two attribute sets, such that L ∈ A (or
equivalently it could belong to B), and we want to calcu-
late the value of r(at, bt). The r-value will be of interest
only when C(at) > 1

α
− 1 and C(bt) > 1

α
− 1. Since L ∈ A,

C(lt) ≥ C(at). This implies C(lt) > 1
α
−1. So we can ignore

all values li of L where C(li) < 1
α
− 1. All such values are

called rare values of attribute L. All other values are called
common values of attribute L. Any r-value that includes
the attribute L corresponding to a rare value, will always
be greater than α. So, we can replace all rare values by a
generic rare value. While computing the r-value of attribute
sets A and B we skip the computation if either at or bt con-
tains any rare value. We can ignore missing values originally
present in the dataset in a similar fashion. This scheme of
keeping only the common values significantly reduces the
arity of each attribute and drastically reduces the memory
required to build the AD Tree. This also ensures that if
any ratio r(at, bt) is anomalous, then there is a minimum
support of 1

α
training cases corresponding to the attribute

values at and bt.

3.2.2 Caching values
Even though the AD Tree structure retrieves the counts

quite efficiently, it has some overhead because it tries to
store the results for all possible queries, whereas, we are

interested only in some special cases as described below.
We can improve the query response time by building an
additional cache that is more specialized for the task. We
build an AD Tree as the base query module. We then build
a more specialized cache as described below, by obtaining
the relevant counts from the AD Tree. This caching scheme
gives 1.5 to 2 times speedup in computation.

Caching the Denominator values

Let there be M attributes in the dataset, numbered from
1 to M . There are S =

`

M

1

´

+
`

M

2

´

+ ... +
`

M

k

´

attribute
combinations, considering up to k attributes in each combi-
nation. We call these S composite attributes. We create a
tree data structure where each node represents a composite
attribute, i.e., a set of attributes. The root node represents
the null set. It has M children, each representing the unary
set of the corresponding attribute. Let q be the highest at-
tribute number in the set represented by node n. Then n has
M -q children, child i corresponding to the union of the set
represented by n, and attribute number q+i. We limit the
depth of the tree to k. The complete tree has S+1 nodes,
corresponding to each composite attribute and the null set.

Now, for each composite attribute, we find the common
values (§3.2) present in the dataset. We store the count of
the number of occurrences for each common value of each
composite attribute in the corresponding node. As noted
above, the counts C(at) and C(bt) are needed only when
they are greater than 1

α
− 1 (i.e., when they are common).

Hence all the counts that we need to compute the denomi-
nator of any r-value, are precomputed in our cache. It takes
O(k) time to retrieve any count stored in the cache.

Caching the Numerator values

Unlike the denominator counts, the numerator counts can
correspond to rare value combinations (i.e., C(at, bt) can be
as small as zero). It becomes infeasible to store counts for
all possible combinations of values for all attributes (as a
caching scheme, it is actually equivalent to the full blown AD
Tree, which does the job more efficiently). However, given a
test record t, it is possible to cache the corresponding counts
for all attribute combinations, as each combination now rep-
resents a fixed set of values. We see that we can reuse the
computation of probability values P (at, bt). For example, we
compute P (Countryt, Shippert, F oreignPortt, Weightt) when
A={Country, Shipper} and B={Foreign Port, Weight}. We
have the same value for A={Country, Shipper, Foreign Port}
and B={Weight}. Therefore, each time before computing
the value of P (at, bt), we first check if it has been already
calculated. If not, we compute its value, obtaining relevant
counts from the AD Tree. We then cache this value in our
tree cache structure for future use. This reduces the number
of (relatively) expensive AD Tree queries.

Note that the cached values are useful only for a particular
test record. For a new test record we clear the cache and
start over.

3.3 Marginal Probability Tests
While computing the r-value, we normalize with respect

to the marginal probabilities. This means that an unusually
low marginal probability value will not be detected by this
method. That is fine because we want to detect unusual
pairings of sets of attributes, rather than just detecting a
rare combination. But in some cases, detecting rare combi-
nations might also be useful.

We define qval(at), the q-value of an attribute set A for
the test record t as the sum of P (A = at) and all values of
P (A) that are smaller or equal to P (A = at). Here at is the
corresponding set of values of the attributes in A in the test
record t.

qval(at) =
X

x∈X

P (x) where, X ≡ {x : P (x) ≤ P (at)} (8)

This is parallel to the standard definition of p-value for
continuous variables, which sums over values that are more
extreme than the current value. In our definition for the
case of categorical attributes, more extreme corresponds to
values that have a probability less than the current value.

The q-value of an attribute gives an indication of rarity of
its occurrence. An attribute set A is considered anomalous
in record t if qval(at) ≤ αm, where αm is a predetermined
threshold.

3.3.1 Implementation
Computing the qval(at) of an attribute set A in test record

t is somewhat more complicated than calculating the r-value.
To calculate qval(at), we not only need to know C(at), but
also the counts for all other possible values ai of A such that,
C(ai) ≤ C(at). When dealing with composite attributes,
the number of possible values it can have becomes exponen-
tially large. Even if all the counts are cached, going through
each of them for every test becomes prohibitive.

Instead, for every composite attribute A, we store the his-
togram h of the number of times different values occur in the
training dataset. For example we precompute the fact that
A has h(1) values occurring only once, h(2) values occurring
twice and in general, h(i) values occurring i times. When
testing attribute set A in record t, we compute C(at), and
compare that to the precomputed histogram. We compute
the quantity Crarer =

P

i≤C(at)
i ∗ h(i). Normalizing with

respect to the number of data-points N , gives the desired
qval(at). We still need to get the count C(at), and unlike
the conditional method, we are especially interested in rare
values. Hence, we cannot reuse the AD Tree constructed
for the conditional method. We construct another AD Tree
without any reduction of arity from the original dataset. We
call this the marginal AD Tree. We use a bigger leaf-list size
to keep the size of the tree manageable [24].

Note that all the information in the conditional AD Tree
is also contained in the marginal AD Tree. But, we still
maintain the conditional AD Tree separately as it is faster
to query from the smaller tree for the conditional method.

4. EXPERIMENTAL SETUP

4.1 Datasets

4.1.1 Piers Dataset
Our first dataset consists of records describing containers

imported into the country. Each record consists of 10 at-
tributes. Most of the attributes are categorical, such as the
country of origin, the departing and arriving ports, Ship-
ping line etc. There are three real valued attributes, the
size, weight and value of the container. We have catego-
rized these to five discrete levels.

Since there were no labels in the original data, we create
synthetic anomalies by randomly flipping attribute values.

We first partition the dataset into training and testing sets.
We randomly choose 10% of the data as a test set, and the
remaining 90% is the training set. The dataset used for gen-
erating these results has 100,000 records so the training set
has 90,000 records and the test set has 10,000. We mod-
ify a random 10% (i.e. 1000) of the test set records to be
anomalies. For each record that is modified, a random set of
up to l attributes is chosen. The values for these attributes
are reassigned by drawing from the corresponding attribute
marginals. The higher the value of l, greater the degree of
anomaly.

Apart from randomly flipping attribute values, we use an-
other method to create anomalies in the test data. The
training data is from the month of June 2002. We randomly
pick 1000 records from a different month (June 2003), and
replace 1000 randomly chosen records in the test set. We
deliberately do not include records from June 2003 that have
attribute values not present in the training data. Otherwise,
detecting those anomalies is a trivial task.

4.1.2 KDD Cup 99 Network Connections Dataset
We have used a network connection records dataset from

KDD Cup 1999 [1], which contained a wide variety of in-
trusions simulated in a military network environment. Each
record is a vector of extracted feature values from a con-
nection record obtained from the raw network data. The
extracted features included the basic features of an indi-
vidual TCP connection such as its duration, protocol type,
number of bytes transferred etc. Other features of an indi-
vidual connection were obtained using some domain knowl-
edge, and included the number of file creation operations,
number of failed login attempts, whether root shell was ob-
tained, and others. Finally there were a number of features
computed using a two second time window. These included
the number of connections to the same host as the current
connection, the number of connections to the same service,
etc. In total there are 41 features, most of them taking con-
tinuous values. The continuous features were discretized to
5 levels.

The goal of the KDD dataset was to produce a good train-
ing set for learning methods that use labeled data. Hence,
the proportion of attack instances to normal ones is very
large. To create more realistic data, we have reduced the
number of attack records to about 10% of the test dataset.
There are a total of 24 types of attack. Some of the attacks
which are Denial of Service or probing attacks are much
easier to detect than other attacks. We have selected four
kinds of attacks - mailbomb, guess password, warezmaster
and apache2. Correspondingly, we created four test sets con-
taining 10% records of the particular attack type, and 90%
normal records. We used other normal records for training
our model.

4.2 Training
We build our model, which includes the conditional AD

Tree, the marginal AD Tree, the mutual information matrix,
cache for the denominator counts §3.2.2 and the marginal
count histograms using the training data. Building these
comprise the training phase.

4.3 Testing
For each test record t, we consider every possible pair of

composite attributes, that are mutually exclusive and depen-

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Detection Rate

D
et

ec
tio

n
P

re
ci

si
on

Conditional Method
Bayes Net Method
Marginal Method
LERAD

(a) Algorithm performances for l = 1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Detection Rate

D
et

ec
tio

n
P

re
ci

si
on

Conditional Method
Bayes Net Method
Marginal Method
LERAD

(b) Algorithm performances for l = 3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Detection Rate

D
et

ec
tio

n
P

re
ci

si
on

Conditional Method
Bayes Net Method
Marginal Method
LERAD

(c) Algorithm performances for l = 7

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Detection Rate

D
et

ec
tio

n
P

re
ci

si
on

Conditional Method
Bayes Net Method
Marginal Method
LERAD

(d) Algorithm performances for inserted records from differ-
ent month

Figure 3: Comparison of algorithm performances for the Piers dataset. The x axis is the fraction of the true

anomalies found by the algorithm. The y axis is the fraction of predicted anomalies that were true anomalies.

The curves are created by varying the threshold parameter α. Curves that are higher and farther to the

right are better.

dent (see eqn.1). For each such pair, A and B, we compute
r(at, bt). The minimum r-value is assigned as the score of
the record t. In some cases we have used the combining
evidence heuristic (§3.1.2) to assign score to a record. For
the KDD dataset, we have also considered the partitioning
method described in §3.1.1. Here we consider all possible
mutually exclusive subsets A, B and C to compute the ratio
rval(at, bt|ct).

4.4 Evaluation
We evaluate our methods against a likelihood based ap-

proach using a bayes network representation and associa-
tion rule based learner LERAD [8]. The conditional and
marginal models are evaluated separately. For the condi-
tional and marginal methods, we vary the value of α between
0.001 to 0.02 to generate points on the curve. For the bayes
network method, we vary the likelihood threshold. In our

plots, the x-axis represents the detection rate, i.e., the pro-
portion of total true anomalies that are detected. The y-axis
gives the corresponding precision of detection, i.e., the ratio
of number of true positives to the total number of predicted
positives. A higher curve denotes better performance.

5. RESULTS

5.1 Containers Dataset
In Figure 3 we show the comparison our methods (condi-

tional and marginal) against the bayes net likelihood method
and LERAD [8] on the CBP dataset. The data points corre-
spond to particular threshold parameter values. The points
denote the average performance over 20 randomly generated
test sets for each algorithm. The 95% confidence error bars
are much smaller than the marker sizes. Hence any differ-
ence that appears in the plots is statistically significant.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Detection Rate

D
et

ec
tio

n
P

re
ci

si
on

Conditional Method
Conditional Method − Combining Evidence
Bayes Net Method

(a) Apache2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Detection Rate

D
et

ec
tio

n
P

re
ci

si
on

Conditional Method − Combining Evidence
Conditional Method − Combining Evidence & Partitioning
Bayes Net Method

(b) Mailbomb

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Detection Rate

D
et

ec
tio

n
P

re
ci

si
on

Conditional Method − Combining Evidence
Conditional Method − Combining Evidence & Partitioning
Bayes Net Method

(c) Snmpguess

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Detection Rate

D
iff

er
en

ce
 o

f D
et

ec
tio

n
P

re
ci

si
on

snmpguess
snmpgetattack
neptune
apache2
mailbomb
guess password

(d) Comparison for all attack types

Figure 4: Performance over the Network Connections KDD Cup 99 dataset

In Figure 3(a) we see the performance of the methods
when l = 1, i.e., the anomalies are generated by flipping
just one attribute value. For the conditional method, we set
k = 3 for all the experiments. This means we consider up to
three attributes in each composite attribute. We see that the
conditional method performs best, followed by the marginal
method. Both these methods outperform the bayes net and
LERAD significantly.

Figures 3(b) and 3(c) shows the performance when l = 3
and l = 7 respectively. Our methods outperform the bayes
net method and LERAD. As mentioned previously, we take
k = 3 for the conditional method. This means that we con-
sider up to six attributes while computing a r-value. Even
though the bayes net models the likelihood of all the at-
tributes combined together, the conditional and marginal
methods still perform better.

Figure 3(d) shows the performance when the anomalies
are actually records inserted from a different month. We see
that the marginal method performs the best, followed by
the conditional method. The bayes net method and LERAD
perform very poorly in comparison. The superlative perfor-

mance of the marginal method can be explained by the fact
that records from the other month have combinations of at-
tribute values that are not present in the training set. The
conditional method ignores these values, while the marginal
method takes advantage of this fact.

5.2 KDD Cup 99 Network Connections Dataset
On the network connections dataset, we see that some at-

tack types are easier to detect than others. Figure 4 shows
the performance comparison of the different methods for
some of the attack types. As number of attributes is quite
large, we have used up to k = 2 attribute combinations. This
means that up to four attribute values are considered at a
time. For the conditional method, we have used the heuris-
tic to combine evidence (§3.1.2) from different attribute sets.
Here, we have also compared the performance of the parti-
tioning method §3.1.1.

The marginal method performs very poorly in this case
and starts with a large number of false positives even at the
lowest sensitivity level. Since this dataset has a very large
number of attributes, there is a high chance that even for

Dataset Training Size Test Size Number of Training Testing Memory
Attributes Time (secs) Time (secs) (MB)

Piers 500,000 10,000 10 6.9 4.7 4.5
KDD Cup 99 500,000 10,000 41 297 1.6 152

Table 2: Time and Space requirement for Bayes Network Method

Dataset Training Size Test Size Number of k Training Testing Memory Marginal
Attributes Time (secs) Time (secs) (MB) Memory (MB)

Piers 500,000 10,000 10 1 7.6 16.8 337 334
2 7.8 133 338 340
3 9.3 790 341 489

KDD Cup 99 500,000 10,000 41 1 10.2 15 323 222
2 44 7145 332 2618

Table 3: Time and Space requirement for Conditional and Marginal Methods

normal records, there is a value of an attribute combination
that is not present in the training data. This leads to flag-
ging of a large number of records as maximally anomalous.
Hence, we haven’t shown the marginal algorithm curve for
the plots as it performs very poorly.

We have evaluated the performance of each algorithm over
20 randomly chosen test sets of size 10,000 each. We show
the average performance for each attack type. For attack
types mailbomb and snmpguess we also show the 95% con-
fidence error bars.

For attack type apache2 in Figure 4(a), the original con-
ditional method performs worse than the bayes net likeli-
hood approach. But using the combining evidence heuristic
results in a much better accuracy. Here, the conditional
method is able to detect almost all the attacks with a very
high precision rate.

For attack types mailbomb and snmpguess, the conditional
method performs slightly better than the bayes net method.
Using the partitioning of training data in the conditional
method results in similar or better performance to the basic
method. Here we see that the error bars are quite large. Fig-
ure 4(d) gives a better comparison of performance between
the methods. This plots the difference of detection precision
between the conditional method and the bayes net method.
A positive difference means that the conditional method has
higher precision. We see that for five of the attack types
considered, the difference is mostly above zero. But, for the
attack type guess password the bayes net method performs
significantly better. Here, the error bars represent 95% con-
fidence intervals.

6. FUTURE WORK

The current work focuses on finding single records that
are anomalous. Sometimes in real world applications we are
more interested in detecting groups of unusual records that
deviate from the norm, rather than detecting the records
separately. For example, in astronomical datasets, we might
be more interested in an unusual phenomenon if it keeps re-
peating at some interval. Just observing one such instance
may not be significant, as it could be attributed to some
measurement error. In biosurveillance, we might be inter-
ested in the emergence of a new disease by detecting a group
of unusual but similar cases. It is especially relevant in net-
work security monitoring, as we can detect a new pattern

of user behavior from a group of records. This can signal
possible malicious behavior.

An important challenge here is to define what can be con-
sidered as a group. We need to specify a similarity measure,
and group records on the basis of it. If the data has temporal
and/or spatial components, they provide a natural measure
for grouping. For temporal analysis, we propose to group
records on the basis of a temporal unit such as a day. We
can extend the method of comparison of marginal and con-
ditional probability distributions of all records in the current
day, to the historical data. Similarly, for a spatial analysis,
grouping can be predetermined such as by zip code or area.
It can also be computed dynamically similar to spatial scan.
Apart from this, we can also use the association based dis-
similarity measures such as methods presented in [20, 17]
for grouping records.

Another possible improvement is the way we deal with
real valued attributes. Since we deal with actual probabil-
ity values P rather than probability densities p, all the real
values are discretized to perform the analysis. But by dis-
cretizing the values we lose some information, such as the
ordering of values. While estimating counts to determine
the P values, we can borrow information from neighboring
bins in case of discretized attributes.

Currently, we have a fixed number of levels for discretiza-
tion. It is conceivable that different real attributes have
varying characteristics, and discretizing into the same num-
ber of levels is not the best solution. We can use different
clustering techniques to determine appropriate levels.

7. REFERENCES
[1] The third international knowledge discovery and data

mining tools competition dataset kdd99-cup, 1999.

[2] Bronstein A., Das J., Duro M., Friedrich R., Kleyner
G., Mueller M., Singhal S., and Cohen I. Bayesian
networks for detecting anomalies in internet-based
services. In International Symposium on Integrated
Network Management, 2001.

[3] Rakesh Agrawal, Tomasz Imielinski, and Arun N.
Swami. Mining association rules between sets of items
in large databases. In Proceedings of the 1993 ACM
SIGMOD International Conference on Management of
Data, 1993.

[4] Rich Tsui Andrew Moore, Greg Cooper and Mike
Wagner. Summary of biosurveillance-relevant
technologies.

[5] M.-A. Balderas, F. Berzal, J.-C. Cubero, E. Eisman,
and N. Marn. Discovering hidden association rules. In
Proc. International Workshop on Data Mining
Methods for Anomaly Detection (KDD 05), 2005.

[6] H. B. Barlow. Unsupervised learning. In Neural
Computation, volume 1, page 295311, 1989.

[7] R. Borisyuk, M. Denham, F. Hoppensteadt,
Y. Kazanovich, and O. Vinogradova. An oscillatory
neural network model of sparse distributed memory
and novelty detection. In BioSystems, pages 265–272,
2000.

[8] P. K. Chan, M. V. Mahoney, and M. H. Arshad. A
machine learning approach to anomaly detection.

[9] Shih Dong-Her, Chiang Hsiu-Sen, Chan Chun-Yuan,
and Binshan Lin. Internet security: malicious e-mails
detection and protection. Industrial Management and
Data Systems, 104:613 – 623, Sep 2004.

[10] S. Edelman, B. P. Hiles, H. Yang, and N. Intrator.
Probabilistic principles in unsupervised learning of
visual structure: human data and a model. In
Advances in Neural Information Processing Systems
14, 2002.

[11] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and
S. Stolfo. A geometric framework for unsupervised
anomaly detection: Detecting intrusions in unlabeled
data, 2002.

[12] Eleazar Eskin. Anomaly detection over noisy data
using learned probability distributions. In Proc. 17th
International Conf. on Machine Learning, pages
255–262. Morgan Kaufmann, San Francisco, CA, 2000.

[13] A. Ghosh and A. Schwartzbard. A study in using
neural networks for anomaly and misuse detection. In
In Proceedings of the 8th USENIX Security
Symposium, 1999.

[14] K.A. Heller, K.M. Svore, A. Keromytis, and S.J.
Stolfo. One class support vector machines for detecting
anomalous windows registry accesses. In Proc. of the
workshop on Data Mining for Computer Security.

[15] P. Helman and J. Bhangoo. A statistically base
system for prioritizing information exploration under
uncertainty. In IEEE Transactions on Systems, Man
and Cybernetics, Part A: Systems and Humans,
volume 27(4), pages 449–466, 1997.

[16] S. A. Hofmeyr, Stephanie Forrest, and A. Somayaji.
Intrusion detect using sequences of system calls. In
Journal of Computer Security, volume 6, pages
151–180, 1998.

[17] E. Keogh, S. Lonardi, and C. A. Ratanamahatana.
Towards. parameter-free data mining. In Proc. of the
tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 206 –
215, 2004.

[18] Eamonn Keogh, Stefano Lonardi, and Bill Chiu.
Finding surprising patterns in a time series database
in linear time and space. In Proc. ACM Knowledge
Discovery and Data Mining, pages 550–556, 2002.

[19] M. Kulldorff. A spatial scan statistic. pages
1481–1496, 1997.

[20] Si Quang Le and Tu Bao Ho. An association-based
dissimilarity measure for categorical data. In Pattern
Recognition Letters archive, volume 26, pages 2549 –
2557, 2005.

[21] Wenke Lee and Salvatore Stolfo. Data mining
approaches for intrusion detection. In Proceedings of
the 7th USENIX Security Symposium, 1998.

[22] Kingsly Leung and Christopher Leckie. Unsupervised
anomaly detection in network intrusion detection
using clusters. In Proc. 28th Australasian CS Conf.,
volume 38 of CRPITV, 2005.

[23] Kun-Lun Li, Hou-Kuan Huang, Sheng-Feng Tian, and
Wei Xu. Improving one-class svm for anomaly
detection. In Proc. of International Conference on
Machine Learning and Cybernetics, 2003.

[24] Andrew Moore and Mary Soon Lee. Cached sufficient
statistics for efficient machine learning with large
datasets. Journal of Artificial Intelligence Research,
8:67–91, March 1998.

[25] Andrew Moore and Weng-Keen Wong. Optimal
reinsertion: A new search operator for accelerated and
more accurate bayesian network structure learning. In
Proceedings of the 20th International Conference on
Machine Learning (ICML ’03), pages 552–559, August
2003.

[26] P. Patel, E.Keogh, J.Lin, and S.Lonardi. Mining
motifs in massive time series databases. In Proceedings
of IEEE International Conference on Data Mining
(ICDM’02), pages 370–377, December 2002.

[27] Dan Pelleg. Scalable and practical probability density
estimators for scientific anomaly detection. In Doctoral
Thesis, Carnegie Mellon University, 2004.

[28] Denning PJ. Working sets past and present. In IEEE
Transactions on Software Engineering, volume 6, 1980.

[29] T. Shon, Y. Kim, C. Lee, and J. Moon. A machine
learning framework for network anomaly detection
using svm and ga. In Proc. from the Sixth Annual
IEEE Systems, Man and Cybernetics (SMC)
Information Assurance Workshop, pages 176– 183,
2005.

[30] G. Cooper W-K Wong, A. W. Moore and M. Wagner.
Rule-based anomaly pattern detection for detecting
disease outbreaks. In Proceedings of the 18th National
Conference on Artificial Intelligence. MIT Press, 2002.

[31] Christina Warrender, Stephanie Forrest, and Barak A.
Pearlmutter. Detecting intrusions using system calls:
Alternative data models. In IEEE Symposium on
Security and Privacy, pages 133–145, 1999.

[32] Weng-Keen Wong, Andrew Moore, Gregory Cooper,
and Michael Wagner. Bayesian network anomaly
pattern detection for disease outbreaks. In Proceedings
of the Twentieth International Conference on Machine
Learning, pages 808–815. AAAI Press, August 2003.

[33] Nong Ye and Mingming Xu. Probabilistic networks
with undirected links for anomaly detection. In IEEE
Systems, Man, and Cybernetics Information Assurance
and Security Workshop, pages 175–179, June 2000.

