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ABSTRACT
Surveillance systems have long been used to monitor in-
dustrial processes and are becoming increasingly popular in
public health and anti-terrorism applications. Most early
detection systems produce a time series of p-values or some
other statistic as their output. Typically, the decision to
signal an alarm is based on a threshold or other simple al-
gorithm such as CUSUM that accumulates detection infor-
mation temporally.

We formulate a POMDP model of underlying events and
observations from a detector. We solve the model and show
how it is used for single-output detectors. When dealing
with spatio-temporal data, scan statistics are a popular method
of building detectors. We describe the use of scan statistics
in surveillance and how our POMDP model can be used to
perform alarm signaling with them. We compare the re-
sults obtained by our method with simple thresholding and
CUSUM on synthetic and semi-synthetic health data.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search

General Terms
Algorithms, Experimentation

Keywords
Probabilistic Model, Scan Statistic, Signaling Alarms, Surveil-
lance Systems

1. INTRODUCTION
Automatic surveillance systems are becoming more pop-

ular and are increasingly using data mining methods to
perform detection. The observation of industrial manu-
facturing processes is one traditional application of these
systems. Another application is public health monitoring,
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which has the goal of detecting new disease outbreaks as
early as possible. Searching for terrorist activity or attacks
is also becoming important. Applications in that area in-
clude monitoring human health and behavioral data to de-
tect a chemical or biological attack, or searching for signs
of radiation to detect development or deployment of nuclear
devices. The RODS lab at the University of Pittsburgh (see
www.health.pitt.edu/rods/) is focused both on public health
monitoring and detection of biological attacks. This paper
is based on our work in the RODS lab and thus focuses on
these applications, but the algorithms we present are not
specific to them. They are appropriate for a variety of mon-
itoring tasks.

Modern surveillance systems are characterized by the need
to analyze many variables simultaneously – in some cases
hundreds or thousands of variables. Because of this fact,
the traditional method of setting upper and lower bounds
for a single variable are no longer appropriate. Data mining
methods are used that must address the complex interac-
tions between variables, the dangers of multiple hypothesis
testing, and the computational issues caused by large data
sets. See [9] for an overview of detection methods.

Typically, a detection algorithm will take a time-series
of many variables as input and produce a time-series of p-
values, or some other indication of alarm level, as output.
Many of the detection algorithms use sophisticated means
such as randomization testing and additional correction for
multiple hypothesis testing to make their outputs as accu-
rate as possible. Often, these outputs are followed up with
simple thresholding to determine whether to signal an alarm
and call for further investigation. Since the outputs are gen-
erated as a time series it makes sense to combine the infor-
mation provided by them temporally in order to make bet-
ter decisions about signaling alarms. One popular method
of doing this is CUSUM and we describe that algorithm in
the next section.

In this paper, we propose a probabilistic model of the pro-
cess being monitored and the detection algorithm watching
it. Based on those models we can determine the correct be-
lief state for the underlying process and the optimal decision
when considering the costs of signaling and alarm and allow-
ing an event to go undetected. We compare this method to
CUSUM and thresholding on synthetic data and show its
superior performance. Secondly, we describe scan statistics
and how they are used to construct detection algorithms on
spatio-temporal data. We then show how our probabilis-
tic model is used with scan statistics and present empirical



Figure 1: Two state model of Biological attack

results on synthetic and semi-synthetic health data.

2. CUSUM
Before presenting our algorithm, we describe a popular

method used in signaling alarms. CUSUM was originally
developed to detect changes in the quality of output of con-
tinuous production process. It can quickly detect a shift
in the mean of a process. As the name suggests, CUSUM
maintains a cumulative sum of deviations from a reference
value r. Let us consider a time series where at time i we
have measurement Xi. The one-sided CUSUM calculation
is as follows:

C0 = 0

Cm = max(0,Xm − (µ0 + K) + Cm−1)

µ0 is the in-process mean. From the equations above, if
the Xm values are close to the mean, then the Cm values will
be some small value. However once a positive shift from the
mean occurs, the Cm value will increase rapidly. K is known
as the slack value or allowance. In the equation above, any
values within K units of µ0 will be effectively ignored. The
allowance K is usually set to be the midpoint between the
in control process mean µ0 and the out-of-control process
mean µ1.

Alerts are raised whenever Cm exceeds a threshold de-
cision interval H. The Average Run Length (ARL) is con-
trolled by this parameter. The ARL is the average number
of timesteps before an alert is raised.

The CUSUM algorithm described here has been exten-
sively used in biosurvelliance systems. It has been used
for influenza survellience [8], detection of salmonella out-
breaks [3] and in the Early Aberration Reporting system [2].
CUSUM algorithms have also been extended to incorporate
spatial information such as [6] and [7].

3. POMDP MODEL OF AN ATTACK
We assume a Markov Decision Process model for a ter-

rorist attack scenario. Again, we note that the model is
not specific to this type of monitoring application. Fig 1
shows the two state model considered for the attack. The
first state represents a situation when there is no attack and
the second state represents the situation when there is an
attack. There are two possible actions at each state, either
to investigate or to not investigate. These are represented
by the block arrows. If we are in the clear state and choose

Figure 2: The clear (solid) and attak (dashed) state
distributions of the underlying variable s and p-
values

not to investigate then there is a prior probability p0 of an
attack occurring on that day. At any state if we choose to
investigate, we return to the clear state. This action can be
thought of as a reset action where the state is reset to clear.
And of course, in the attack state if we do not investigate,
we remain in that state.

There is a cost associated with each action. There is a
cost of investigation which is same for both the states. If
we are in the attack state, and we do not investigate, then
there is an associated cost (cost of false negative). In the
clear state, if we choose not to investigate, we do not incur
any cost.

The problem stems from the fact that at a particular in-
stant of time, we do not know our current state. Instead, at
each time instant we percieve an observation which is depen-
dent on the underlying state. The observation in our case is
some informative statistic that is the output of a detection
algorithm. This makes the system a Partially Observable
MDP (POMDP) (see [4]). In order to fully characterize the
POMDP, we need to know the exact distribution of this
statistic under each state.

For our purposes we use the p-value that is usually output
by a detection algorithm. By definition, the distribution of
the p-values under the null hypothesis (there is no attack)
should be a uniform 0-1 distribution. Let fclear(p) be this
distribution. We need to determine fattack(p), the distri-
bution of p-values under the alternate hypothesis, ie., in
the case when there is an attack. For our experiments we
have derived this distribution by assuming some form of an
underlying distribution. First consider that there is some
underlying variable s that is normally distributed. Under
the null hypothesis (clear state), it has mean 0, and vari-
ance 1. Under the alternate hypothesis (attack state), it
has mean M and variance 1. These two distributions are
shown in Fig 2. It is possible to derive the distribution of
p-values under the alternate hypothesis from these distribu-
tions. fclear(p) and fattack(p) distributions obtained from
the gaussian assuption is shown in Fig 2. The parameter M
can be varied to obtain different distributions of fattack(p).
As M increases, the distribution fattack(p) becomes more
skewed towards p=0. Apart from using the normal distri-
bution, we also consider the gamma distribution for the un-
derlying variable.

3.1 Belief state representation
We now solve this POMDP using value iteration over the

belief states. The POMDP is first converted into a belief



state MDP. Each state of the MDP represents a particular
belief that we are in the attack state. Since the belief is a real
value ranging from 0 to 1, we have a continuous state MDP.
To use value iteration, we discretize this state space into N
discrete states labelled 0 to N-1. The state i represents a
belief i

N−1
that we are in the attack state. Typically we use

N=100 in our experiments.

3.2 Belief state update equation
We start with a particular belief that we are under attack.

At each time step, we get an observation p, and we update
our belief state. Let us assume that at time instant t we
are in the belief state it, where xt=i

N−1
is the belief that we are

under attack. From our model, we know that there is a prior
probability p0 of there being an attack on that day. So our
apriori belief that we are under attack is x′ = xt+(1−xt)∗p0.

The posterior belief xt+1 = x′fattack(p)
x′fattack(p) + (1−x′)fclear(p)

.

3.3 Estimating the Transition Probabilities
The transition probability matrix is determined by a ran-

dom simulation as follows:

• We start in the belief state i, and randomly choose a
p value from the distribution Pi(clear) ∗ fclear(p) +
Pi(attack) ∗ fattack(p). Here Pi(attack) is the belief
that we are in the attack state in the belief state i, and
Pi(clear) is the belief that we are in the clear state.

• Then we update our belief state according to the up-
date equation.

• The proportion of time we reach state j starting from
state i gives an estimate of pij , the probability of tran-
sition from state i to j.

• We repeat this procedure for each belief state to de-
termine all the pij values

The cost function for the belief state MDP can be defined
as

C(b(x),Aj) = (1 − x) ∗ C(Clear,Aj) + x ∗ C(Attack,Aj)

Here b(x) is the belief state where our belief that we are
under attack is x. Aj is the action, either to investigate, or
to not investigate.

3.4 Solving the MDP
We now use the standard value iteration algorithm to solve

the MDP. Due to the structure of our two state POMDP,
the optimal solution of the belief state MDP has a particular
property. There exists a threshold belief bthreshold, such that
in all the states corresponding to a belief less than bthreshold,
the optimal action is to not investigate. And the optimal
action is to investigate in all the states that correspond to
a belief more than bthreshold.

4. EXTENSIONS TO THE MODEL
In our model we have assumed a fixed distribution of the

observation parameter once an attack has occured. But in
case of an actual attack we might expect that after the at-
tack has occured, the distribution of the observed parameter
keeps changing with time. For example the symptoms get
more pronounced with time, and the deviation from the clear
state distribution becomes more marked. Also the cost of

Figure 3: Three state model of Biological attack

not detecting the attack might not vary linearly with the
number of days the attack is not detected. These consider-
ations led us to introduce additional states in our basic two
state model. The difference between two successive days
when an attack has occured is going to be most pronounced
in the case of the first day as compared to the later days. So
we split the attack state into two states. One corresponds
to the first day of the attack, and the other corresponds to
when the attack is in progress for more than a day. This
model is shown in Fig 3.

We have assumed different distributions of the p-values
for the three states. Also the cost of not investigating while
under attack is different in the two cases. Here we have
assumes a lower false negatve cost for the first day than the
cost when it is underway for more than a day.

It is also possible to extend this model by introducing ad-
ditional states for the 2nd day and so on. The complexity of
solving the POMDP increases exponenially with the num-
ber of states. So we have done empirical tests only upto 3
states.

5. SIMULATION OF THE MODEL
We simulate the two state model starting from the clear

state and going to the attack state with a probability p0 on
any day. Once in the attack state, we remain there until
alarm is signalled. The state is then reset to clear. The
observations (p-values) are generated from either of the two
distributions fattack(p) or fclear(p) depending on the current
state.

We use Thresholding, CUSUM and the MDP based so-
lution independently to signal alarm. In order to evaluate
the performance of the algorithms, we measure the number
of false positives and the number of days till the attack was
detected. To obtain this AMOC curve, we need to control
the false positive rate of the differnt procedures through a
parameter. In Thresholding, we vary the Threshold p-value
below which alarm is signalled. In CUSUM, we vary the
decision interval H to obtain different false positive rates.
And in the case of the MDP solution, we vary the ratio of
the cost of false negative to the cost of investigation.

The simulation is carried on for a 100 year period with 1
day as the unit of time. We have done 100 random runs of
this stretch to determine the confidence intervals. The num-
ber of false positives per year is plotted against the average
number of days required to detect an attack.

6. RESULTS
These results from the simulated data indicate that CUSUM



Figure 4: Plot of Detection Time vs False Positives
assuming p0 = 0.005

Table 1: Area under the AMOC curves for 2 state
model with 95% confidence intervals

Distr. pselect POMDP CUSUM Thresholding
gaussian 0.01 213.68

±1.023
282.48
±2.30

323.28 ±2.389

gaussian 0.005 219.10
±1.056

292.56
±2.355

337.08 ±2.467

gamma 0.01 205.81
±0.985

265.94
±2.156

280.52 ±2.061

Table 2: Area under the AMOC curve for 3 state
model with 95% confidence intervals

Distr. pselect POMDP CUSUM Thresholding
gamma 0.01 208.39

±0.981
264.51
±2.145

280.64 ±2.062

performs better than p-value thresholding. The MDP based
approach outperforms both the other methods. For all the
experiments using gaussian distribution for the underlying
variable, we have fixed the mean in the clear state meanclear

= 0. Also the standard deviations are set to 1. Fig 4 shows
the result when the prior probability of attack p0 = 0.005
and the mean for the underlying variable in the attack state
meanattack = 0.2.

In our second experiment, we used all the same values for
the parameters as in the previous case, but increased the
prior probability of attack (p0) to 0.01. We then calculated
the area under the corresponding AMOC curves. The values
are shown in row 2 of Table 1.

In our third experiment we used a Gamma distribution
for the underlying variable. The parameters for the clear
state distribution are taken as α = 2, β = 1, and those for
the attack state are α = 2, β = 0.85. Row 3 of Table 1 gives
the area under the AMOC curves.

In the final experiment we used the three state model
described in section 4. The underlying variable is assumed to
have gamma distribution. For the clear state the parameters
are α = 2, β = 1. fattack1(p) has the parameters α = 2, β
= 0.9, and those for fattack2(p) are α = 2, β = 0.85. The
results are shown in Table 2.

Figure 5: Sample scan statistic application.

7. APPLICATION TO SCAN STATISTICS
Consider the plot in Fig 5. Each point shows the loca-

tion of a patient arriving in the emergency department1.
The crosses mark points with a particular symptom of in-
terest such as respiratory problems. We are interested in
determining whether there is some region within this data
(such as the circle shown in the plot) that has a higher in-
cidence rate of the symptom of interest. This is a typical
spatial scan statistic application. Studies of this sort are
common in the field of public health and are used to deter-
mine whether environmental factors are causing higher dis-
ease rates in certain areas. In our case, we are interested in
early detection of a bio-terrorist attack, which under several
delivery mechanisms including airborne, may be clustered
spatially. The algorithm for computing the scan statistic is
as follows (adapted from [1, 5]):

1. Compute the likelihood of the data given the hypoth-
esis that the incidence rate is uniform everywhere. If
we assume that the marks are Bernoulli random vari-
ables having exactly the probability that appears in
the data, then the likelihood of the data is as follows:

L0 =

(
N+

N

)N+

∗
(

N−

N

)N−

(1)

where N is the total number of data points and N+

and N− are the number of positive and negative in-
stances respectively.

2. For each candidate region, W , compute the likelihood
that the incidence rate has one uniform value inside
that region and another outside it. For Bernoulli ran-
dom variables, the likelihood of the data is as follows:

LW =

(
N+(W )

N(W )

)N+(W )

∗
(

N−(W )

N(W )

)N−(W )

∗
(

N+(W )

N(W )

)N+(W )

∗
(

N−(W )

N(W )

)N−(W )

(2)

1This data comes from emergency departments in the Pitts-
burgh area. The data has been anonymized and the loca-
tions have significant noise added for further privacy protec-
tion.



where the W and W in parentheses indicate the re-
spective counts of points inside and outside the region
W . The space of regions to be considered will be dis-
cussed later.

3. For each region, compute the likelihood ratio: LW /L0.

4. Find the largest likelihood ratio. This is the scan
statistic, which we call SW . Also report the region,
W , which yielded the maximum likelihood ratio.

Having computed the scan statistic for this example, we
now turn to the question of what the null distribution of the
statistic is under the assumption that there truly is a single
uniform incidence rate over the whole data set. We simulate
the null distribution by randomly shuffling the marks on the
dataset and recomputing the scan statistic.

We can also calculate the p-value of each region by com-
paring its likelihood ratio with the samples obtained in step
3 of the randomization. In our experiments we choose a set
of random nregions number of regions.

This is a spatial version of scan statistics. During survel-
lience, we obtain new emergency department data each day.
We can run this algorithm daily on that data. The simplest
way to detect if an attack has occured is to signal an alarm
whenever the p-value of any region is below a particular
threshold value pthreshold. This corresponds to the p-value
thresholding as described in the introduction.

Alternatively, we can use CUSUM to signal alerts. This
can be done in two ways. Each day, we obtain a p-value
for each region under consideration. We choose the mini-
mum p-value pmin as the p-value for that day. We then run
CUSUM with these p-values as the observations. We call
this plain CUSUM. Another possibility is to run CUSUM
in parallel for each region. We have nregions instances of
CUSUM, where each corresponds to a particular region.
The p-value of a region on any day is the observation Xi

used by CUSUM. We signal an alert when any one of these
CUSUM values goes above the predetermined threshold.
This method will be refered to as regionwise CUSUM.

We also apply our belief state based approach on these
p-values. Similar to the regionwise CUSUM, we maintain
nregions different belief values, each corresponding to the
belief that a particular region is under attack. Each day,
these belief values are updated using the p-value of that
region on that day.

8. EMPIRICAL TESTS
The base data set used for these experiments has the fol-

lowing attributes:

• HOME LAT RND, HOME LONG RND: Longitude and
latitude of the patient’s home (again note that coarse
rounding and significant noise was added to these val-
ues to protect the patient’s privacy).

• ADMIT DAY INDEX: Date on which the patient was
admitted.

• PRODROME: The main category of the patient’s com-
plaint upon arrival at the emergency department.

We used two datasets for the experiments.

1. The first is a purely synthetic dataset. We randomly
generate the HOME LAT RND, HOME LONG RND,
ADMIT DAY INDEX values for a point. The PRO-
DROME value is then randomly assigned such that
with 0.1 probabily it is equal to PRODROMEV ALselect.
PRODROMEV ALselect is the particular PRODROME
value that is of our current interest. This dataset spans
over 150 days.

2. The second dataset is a real emergency department
dataset from the regions around Pittsburgh. The data
spans about 500 days.

These data contain no unnatural outbreaks. So in order to
test our algorithms we must introduce aritificial outbreaks.
In this section we use an outbreak simulation based on mod-
ified versions of our data set that matches the modeling as-
sumptions we make in the previous section.

We use the two state model described in section 3. We
start from the clear state and on any day there is a proba-
bility p0=0.08 that there is an attack. Once in the attack
state, we remain there until alarm is signalled. The state
is then reset to clear. In the clear state, we use the part of
the original data corresponding to that day. If we are in the
attack state, the data is modified as follows:

1. Select the part of the original data set that corresponds
to that day. Make a copy retaining only the location
attributes (HOME LAT RND, HOME LONG RND and
ADMIT DAY INDEX).

2. Choose a region, W , at random. The region is chosen
only once for each attack. We do not change the attack
region for successive days under attack.

3. For each data point, choose a data point from the
original data set whose PRODROME attribute will be
copied over to this point in the new data set.

The selection strategy is to select with some proba-
bility, pselect, a data point that has a particular value,
PRODROMEV ALselect of the PRODROME attribute.
With probability 1 − pselect select a data point uni-
formly at random. This selection strategy will be ap-
plied with different parameters for points inside and
outside the chosen region W , in order to create a dif-
ferent distribution for each.

For CUSUM and belief state approach, we need to de-
termine the fclear(p) and fattack(p) distributions. In the
clear state, the p-values generated for each region does not
correspond to the true p-value under the null hypothesis.
This is because, we compare the likelihood of each region
against the likelihood of the most significant region under
the randomizations. So in this case fclear(p) is not an uni-
form distribution, but is heavily skewed towards p=1. These
distributions are learnt from the data. We make an initial
pass on the data when we output the p-values of the clear
and attacked regions. We estimate the distributions from
these values. In a real scenario, historical data can be used
to learn these distributions.

For the purpose of our experiments, we need not solve
the POMDP explicity. The solution to the POMDP model
gives a belief threshold, bthreshold as described in section
3.4. To plot the AMOC curves shown here, we can vary this
threshold to obtain different points on the curve.



Figure 6: Plot of Detection time vs False Positives
for Dataset 1, with pselect=0.1

Figure 7: Plot of Detection time vs False Positives
for Dataset 2, with pselect=0.2

The results involving dataset 1 are shown in Fig 6 and
Table 3. Table 3 gives the area under corresponding AMOC
curves for different values of pselect. Fig 7 and Table 4 shows
the corresponding results for dataset 2.

The results for dataset 1 indicate that the detection time
for the belief state based approach is significantly smaller
than that for the other approaches. We see that the region-
wise CUSUM does not perform any better than threshold-
ing, and the plain CUSUM approach actually does much
worse than thresholding. This might be because of the
fact that the distribution of the observed p-values is heavily
skewed. CUSUM works better when these distributions can
be approximated by the normal distribution.

The results obtained on dataset 2 are similar. The POMDP
approach again outperforms all the other approaches. CUSUM
does not give much improvement over thresholding.

9. FUTURE WORK
We have assumed that successive p-values are indepen-

Table 3: Area under the AMOC curves with 95%
confidence intervals for Dataset 1
pselect POMDP Regionwise

CUSUM
Plain
CUSUM

Thresholding

0.1 25.69
±23.26

36.20
±31.70

42.03
±30.04

32.83 ±25.18

0.2 3.05
±2.96

4.46 ±3.35 5.21
±4.10

3.76 ±3.52

Table 4: Area under the AMOC curves with 95%
confidence intervals for Dataset 2
pselect POMDP Regionwise

CUSUM
Plain
CUSUM

Thresholding

0.1 119.31
±21.98

143.37
±21.32

120.07
±24.65

131.22 ±30.73

0.2 76.10
±14.27

161.82
±24.31

102.54
±21.18

81.79 ±19.32

0.4 43.31
±7.68

68.85
±10.13

87.43
±17.97

58.35 ±12.67

dent. But, this assumption might not hold for many detec-
tion algorithms. In that case we need to take the dependency
into account. Since the nature of dependency will depend
heavily on the actual algorithm used for detection, this issue
has to be addressed with regard to specific algorithms.

The procedure described here can be extended to include
multiple detection algorithms. It might be used to consoli-
date the output of many detection algorithms to determine
when to signal an alarm.

Also, while developing this method, we have assumed
some definite distributions for an underlying variable. We
need to evaluate the performance of the method if our as-
sumption is not correct. As already mentioned, in a real life
scenario, we might learn the underlying distribution from
historical data.
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