
An Algorithm for the Extraction of
DNA Fragments using Restriction Enzymes

Kaustav Das Pallab Dasgupta P.P. Chakrabarti
Dept. of Computer Science & Engineering

Indian Institute of Technology Kharagpur, INDIA
�pallab,ppchak�@cse.iitkgp.ernet.in

Abstract— Extraction of DNA fragments from existing base
sequences is an important step in genetic manipulation. Existing
tools for sequence alignment and creating the restriction map
of families of restriction enzymes do not give a solution to the
extraction problem. In this paper we explain why the task of
choosing the most suitable enzymes for an extraction is compu-
tationally non-trivial. We present an automated algorithm for
solving the extraction problem. Experimental results show that
our algorithm is capable of performing extraction from large
DNA sequences efficiently.

I. INTRODUCTION

Gene manipulation is one of the most exciting topics in
genetic engineering [6]. Recent advances in genetic engi-
neering have enabled new combinations of genetic material
to be artificially constructed in the laboratory by the con-
trolled insertion and manipulation of nucleic acid sequences.
Plasmids and viruses carry these new sequences into host
cells where they can be propagated and amplified. In various
cases this facilitates transcription into mRNA and subsequent
translation into proteins.

One of the main steps in genetic engineering is to extract
the desired DNA fragment from a given base sequence.
Once this extraction is done, the spliced DNA fragments are
incorporated into vectors (such as plasmids) and used for
transmission into host cells. Typically the task of cleaving a
DNA sequence to extract the target sequence is done using
restriction enzymes. These restriction endonucleases recog-
nize specific DNA nucleotide sequences (called recognition
sequences), and cleave the DNA double helix at or near these
specific sites. The task of extracting a target DNA sequence
from a given base sequence consists of two tasks, namely:

1) Finding out the sites in the base sequence that matches
the target sequence,

2) Cleaving the base sequence near the endpoints of the
match using appropriate restriction enzymes to extract
a DNA sequence that is similar to the target sequence.

Typically a match need not be exact, but must have a
high score based on a problem-defined matching function.
However, an exact match (if it exists) is usually preferred.

Example 1: Suppose the given base sequence is:

CATGACGCGCG

and the target sequence is CGCG. In this case, exact matches

of the target sequence can be found starting from the sixth
and the eighth positions of the base sequence. These matches
are denoted by �� � � � �� and �� � � � ���.

On searching the restriction enzyme database [4], we find
the following enzymes:

Enzyme Recognition Sequence
FnuDII CG.CG
NlaIII CATG.
HhaI GCG.C

The ‘dot’ indicates the position at which the cleavage takes
place. For example, NlaIII can cleave the base sequence
immediately after the fourth position, and HhaI can cleave
the base sequence immediately after the ninth position.
Therefore, by using these two enzymes the DNA fragment
�� � � � �� can be extracted, which contains the target sequence.

It is interesting to note that though FnuDII has two
cleavage sites in the given base sequence, it is not appropriate
since it cleaves the target sequence as well. �

There are several tools (such as BLAST [1]) for finding
matches for a target sequence in a base sequence. There are
also some tools for computing the restriction map of a given
base sequence [5], [7]. The restriction map of a base sequence
with respect to a set of enzymes indicates the cleavage
sites of those enzymes on the base sequence. However these
tools do not solve the extraction problem automatically and
currently the task of finding mutually compatible enzymes 1

for extracting the target sequence is solved manually. Since
there are about ���	 restriction enzymes (today), the problem
of finding out the best pair for a given problem instance is
a non-trivial problem.

In this paper, we present an algorithm for finding out
the best pair of enzymes for a given extraction problem.
We present the main features of this algorithm that provide
insights into the complexity of the problem. We have im-
plemented a tool that implements this algorithm considering
about ���	 restriction enzymes. We present experimental
results indicating the computational efficiency of the tool.

The paper is organized as follows. Section II presents
an outline of the proposed algorithm. Section III presents
our method for creating the restriction map of a given base

1In some cases a single enzyme can cleave at both ends of the target
sequence. In other cases, we require a pair.

sequence. Section IV presents the method of selecting the
best pair on enzymes for the extraction. Section V presents
experimental results.

II. OUTLINE OF THE ALGORITHM

The salient features of the proposed algorithm are as
follows:

� The algorithm uses the popular sequence alignment tool
BLAST [1] for finding the matching sites of the target
sequence in the base sequence. Since BLAST is a local
alignment tool, it will produce many matches (with
low score) that align only a small portion of the target
sequence with the base sequence. To eliminate these
matches we choose only those matches that have a score
greater than a threshold score of
�� times the score of
the perfect alignment.

� For computing the restriction map, we present an al-
gorithm which creates a finite automaton out of the
entire family of restriction enzymes. This automaton
acts as the acceptor for the recognition sequences of the
entire family. For a given family of restriction enzymes,
this automaton is created once. The extraction algorithm
creates the restriction map for a given base sequence by
a single co-simulation of this automaton with the base
sequence.

� We present several criteria for determining the compat-
ibility between pairs of restriction enzymes. These cri-
teria are used by our algorithm to create a compatibility
matrix between restriction enzymes for a given instance
of the extraction problem.

� The algorithm uses the compatibility matrix, the restric-
tion map, and the matching sites to compute the best
way to perform the desired extraction.

The following sections describe each of the above steps in
detail.

III. CONSTRUCTION OF THE RESTRICTION MAP

For constructing the restriction map for a given base
sequence, we create an acceptor for the recognition sequences
of the restriction enzymes. The automaton for the acceptor
is created in two steps:

1) We create the automaton for individual restriction
enzymes using the Knuth-Morris-Pratt (KMP) algo-
rithm [2].

2) We create the composite acceptor for the entire family
of enzymes by computing a product of the individual
automata.

The KMP algorithm involves pre-computing the following
prefix function � for a given pattern � :

���� � ���� � � � � and �� � ���

where �� denotes the prefix of � consisting of the first �
symbols of � , and � � 	 denotes that � is a suffix2 of 	.
In other words, ���� is the length of the longest prefix of P
that is a proper suffix of �� .

One difficulty in computing this function for the recogni-
tion sequences of restriction enzymes is due to the presence
of ambiguity characters [3] in some recognition sequences.
Each ambiguity character represents more than one nu-
cleotide base. We resolve the problem by forming all the
possible unambiguous recognition sequences represented by
it. We then compute the prefix function for each sequence
independently.

Example 2: The enzyme AccB1I has the recognition se-
quence GGYRCC, where Y and R are ambiguity characters.
Y represents C or T, and R represents G or A. The four
possible unambiguous sequences are:

GGCGCC
GGCACC
GGTGCC
GGTACC

We consider each sequence seperately and construct the
respective automatons. �

The length of the recognition sequence of the majority of
known restriction enzymes is between 4 and 10. Also the
typical number of ambiguity characters (where they exist)
are very few. Therefore the above method of expanding
ambiguous sequences into sets of non-ambiguous sequences
does not cause any serious combinatorial blow-up, except for
a few enzymes that have non-ambiguous characters at both
ends of the recognition sequence, but have a long run of N’s
in the middle.
 is an ambiguous character that represents
either of the four nucleotide bases.

Example 3: The restriction enzyme BcgI has the recogni-
tion sequence GACNNNNNNTGG. �

In these cases, the number of non-ambiguous sequences
generated for a sequence having � N’s would be ��. For ex-
ample, the number of non-ambiguous recognition sequences
for BcgI would be �� � �	��. Such sequences can thereby
significantly increase the number of states in the composite
automaton. To overcome this problem, we consider only the
non-ambiguous front and rear portions of these sequences
for creating their acceptors. We also set a special flag for
these sequences, so that when one of the end portions
matches with a base sequence, we return to the base sequence
to examine whether the whole sequence matches at that
particular position.

After computing the prefix function for each of the recog-
nition sequences, we proceed to create the composite automa-
ton that accepts occurences of these recognition sequences
in the given base sequence. Each state � in the composite

2A �-length suffix of a string is the sequence of the last � symbols of
the string.

automaton corresponds to a set of positions �	�� � � � � 	�� in
the individual recognition sequences �� �� � � � � � �� of the
enzymes, such that whenever we reach state � after scanning
a pattern , then for each � �, the first 	� symbols of ��
is the longest prefix of �� that is also a suffix of . The
starting state of the composite automaton corresponds to the
start of each recognition sequence. The following function
recursively constructs the entire automaton starting from the
composite start state.

Funtion RecursiveBuild(�)

1) Let the current state be � � ���� � � � � ���, where ��
denotes the local state of the ��� automaton.

2) For each �, if �� is an accepting state of the ���

automaton, then store the corresponding enzyme names
in the state description of �.

3) For each nucleotide � do the following:

a) Determine the next state � �

� for each �� in the
��� local automaton for input �. Therefore, the
composite next state is � � � ���

�
� � � � � ��

��.
b) If � � is already present in the composite automa-

ton, then add a transition from � to � � on input
�.

c) Otherwise, add the state � � in the composite
automaton, add a transition from � to � � on input
�, and recursively call RecursiveBuild(� �).

The following example shows the individual automata for a
couple of enzymes and their composite product.

Example 4: The Enzyme HindI has the recognition se-
quence CAC. Fig 1 shows the automaton that accepts this
sequence. From each state, the transitions corresponding
to the remaining inputs lead to state-1 (start state) of the
automaton.

1 2 3 4

A

C
C

C

C A

Fig. 1. Acceptor for the sequence CAC

The enzyme MboI has the recognition sequence GATC.
The acceptor for this sequence is shown in Fig 2.

G A T C

G

1 2 3 4 5

G

G
G

Fig. 2. Acceptor for the sequence GATC

The composite automaton computed by the function Re-
cursiveBuild() is shown in Fig 3.

A

1,1 1,2 1,3 1,4
C

C

C

C

4,13,12,1 5,2G

G

G

G

A

G

A

CT

G G G

C

C C

C A

Fig. 3. The composite automaton

The states of the composite automaton are shown as
doublets containing the local states of the two individual
automata. From each state, the transitions corresponding to
the remaining inputs lead to the start state of the composite
automaton. �

It may be noted that the construction of the composite
automaton is a one-time effort for a given family of enzymes.
The automaton may be saved and re-used many times for
creating the restriction maps of different base sequences.
Once the automaton is constructed, the restriction map for
a given base sequence can be constructed by simulating the
automaton with the base sequence as the input.

IV. FINDING THE ENZYMES FOR EXTRACTION

In general, we look for two enzymes for the extraction,
one each for the two ends of the match. The enzyme that
cleaves near the start of the match will be called the left-cut
enzyme and the one that cleaves near the end of the match
will be called the right-cut enzyme.

Example 5: Consider the base sequence:

GCAGCTTTAAATAATGCAGGTACCTT

Suppose we wish to extract the sequence AATAATGCA.
This sequence occurs in the base sequence at ��	 � � ����. The
enzyme AhaIII has the recognition sequence TTT.AAA, and
is therefore a candidate for the left-cut enzyme. The enzyme
AhaB8I has the recognition sequence G.GTACC, and is a
candidate for the right-cut enzyme. �

There are several constraints that influence the choice of
the left-cut and right-cut enzymes for a given base sequence
and a target sequence.

Admissibility:
The chosen enzyme should not have a cleavage
site between the start and the end of a match. In
Example 1 the enzyme FnuDII was rejected for this
reason.

Mutual compatibility:
An enzyme � will be called dependent on another
enzyme � if enzyme � cleaves the recognition
site of � in a given base sequence. � and �
are incompatible (for becoming the chosen pair of
enzymes) if each is dependent on the other 3.

Compatibility issues are highlighted through the following
example.

Example 6: Consider the base sequence:

CGCGCATCGCGA

Suppose the target sequence is CATCG. The target occurs in
the base sequence at �� � � � ��.

Let us again consider the enzymes FnuDII (having recog-
nition sequence CG.CG) and HhaI (having recognition se-
quence GCG.C). If we use the enzyme FnuDII, we can
extract the sequence �� � � � ��. Once we use FnuDII, it de-
stroys the recognition site of HhaI, rendering the enzyme
ineffective. However, if we use HhaI first and then FnuDII,
then we are able to extract the target sequence exactly. For
this base sequence, HhaI is dependent on FnuDII. �

Thus along with each occurrence of the recognition se-
quence of a particular enzyme, we also need to determine
the set of restriction enzymes (called dependency set) that
can cleave that occurrence of the recognition sequence and
make it ineffective at that position.

We now outline the method for choosing the best pair
of mutually compatible enzymes for an extraction. Let � �

denote the base sequence and � � denote the target sequence.
We use the notation ��� � � � �� to denote the subsequence of
� between the positions � and �.

Let ��������� � � � ����� and �� ������� � � � ���� � be the
respective fragments of the base and target sequence that
have been aligned against each other in the particular BLAST
alignment under consideration.

Let ���	�

���� denote the set of admissible enzymes
for the given alignment, that is, an enzyme � belongs to
���	�

���� iff � does not have a cleavage site between
������ and ����.

Each enzyme � � ���	�

���� may cleave the base
sequence at one or more positions, producing one or more
fragments. Consider the enzyme � and the fragment that
contains the matched portion of the sequence. ��� ��� is the
position of the left end (the end near ������) of the fragment
in ��. Similarly, �������� is the position of the right end (the
end near ����) of the fragment in � �. Formally,

3If the depedency is one-way, then we can apply the dependent enzyme
first to perform the extraction.

������� = max����� � ���� is a cleavage site of E in ��

and ���� � �������
��������� = min����� � ���� is a cleavage site of E in ��

and ���� � �����

We further define two quantities Left-overhang and Right-
overhang for each � � ���	�

���� for the given alignment:

Left-overhang(�) =

�
�
���������� � � � �������� �

��	 � � � ������ �
�

Right-overhang(�) =

�
�
������� � � � ���

�
������� �

������ � � � ���
�

where ����� ��� represents the cost of optimally aligning the
two sequences �� and �� , and �� is the length of the target
sequence. A low value of overhang signifies that the enzyme
has a cut near the corresponding end of the matching, and it
is to be preferred for cleavage at that end.

The method for choosing the enzyme pairs works as
follows:

1) Two ordered lists of the admissible enzymes are
formed, namely LeftCutList in ascending order of Left-
overhangs and RightCutList in ascending order of
Right-overhangs.

2) We choose the first � (for some constant �) enzymes
from both the lists as possible candidates for the left-
cut enzyme and the right-cut enzyme respectively. We
then form all the �� possible enzyme pairs ���� ���
and score the pairs as:

��������� ��� �

�
�
����������� � � � ���

��
������� �

� �	 � � � ���
�

3) The pairs are then sorted in ascending order of this
score. For each pair we determine if one enzyme is
present in the dependency list of the other. In case only
one is dependent on the other, we order the enzymes
in the pair such that the dependent enzyme is applied
prior to the other enzyme. In case both of them depend
on each other, we simply discard the pair4.

Finally, we output the enzyme pairs in this sorted list as the
best candidates for the extraction of the target sequence from
the base sequence.

V. EXPERIMENTAL RESULTS

We have implemented a prototype tool for the extraction
problem. The tool considers a set of 3660 restriction enzymes
whose recognition sequences were taken from the Rebase [4]
site. The composite automaton that can recognize these
sequences has 1588 states.

The test cases for the base sequences were taken as
fragments of the human chromosome-1 (as obtained from the

4In such cases, it might be possible to use a third enzyme to resolve the
dependencies, but that possibility is not considered here.

NCBI ftp site). The target sequences were taken as random
fragments of the base sequences. We have run the program
varying the size of the base sequence and the target sequence.

Table I shows the results of running our program on these
test cases. �� denotes the length of the base sequence, ��

denotes the length of the target sequence. The third column,
��, denotes the number of initial local alignments found by
BLAST, while the fourth column, �
, shows the number
of significant global alignments among the local alignments
found by BLAST. � denotes the total runtime (in seconds),
� denotes the time taken by the BLAST procedure calls,
and � denotes the time taken to identify the set of enzymes
including the creation of the restriction map.

�� �� �� �� �� (sec) �� (sec) �� (sec)

�� ��
� 20 8 5 0.40 0.04 0.31

50 7 1 0.15 0.04 0.05
100 17 1 0.18 0.05 0.07
200 27 1 0.16 0.04 0.06

�� ��
� 20 2 1 0.19 0.04 0.06

50 9 1 0.18 0.05 0.05
100 37 1 0.17 0.05 0.05

�� ��
� 20 6 1 0.22 0.06 0.06

50 602 1 0.49 0.21 0.16
100 38 1 0.23 0.06 0.10

�� ��
� 20 8 1 0.33 0.11 0.05

50 34 1 0.38 0.11 0.08
100 16 1 1.22 0.80 0.05

�� ��
� 20 10 3 0.70 0.17 0.23

50 26 1 0.53 0.18 0.06
�� ��

� 20 12 3 2.21 0.73 0.20
50 60 1 2.19 0.79 0.06

100 17 1 1.96 0.69 0.07
200 415 2 2.49 0.92 0.27
500 33 1 2.08 0.72 0.08

�� ��
� 20 62 11 4.48 1.29 0.86

50 44 1 3.70 1.29 0.07
100 41 1 3.60 1.26 0.07

1000 114 1 3.81 1.35 0.18
�� ��

� 20 17 1 10.25 3.10 0.12
50 30 1 9.02 3.15 0.06

200 40 1 9.04 3.19 0.06
�� ��

� 20 18 1 43.71 15.64 0.08
100 26 1 44.52 15.56 0.06

TABLE I

RESULTS OF THE EXTRACTION TOOL

For each base sequence we have randomly selected target
subsequences of length
	, �	, �		,
		 and �		 respectively.
We have omitted the results for which no enzyme set could
be found that can produce the target sequence. As the length
of the target sequence increases, it becomes more probable
that the enzymes that cut near the end also cut somewhere
in between, and therefore no enzyme may be found which
cuts only near the ends of the match. We see that in general
target sequences of length upto 200-500 can be extracted by
using restriction enzymes (by this method).

The difference between � and � + � is due to the time
required to read the base and the target sequence from the
disk.

VI. ACKNOWLEDGEMENTS

P.P. Chakrabarti acknowledges the support of CSIR
(NMITLI Bioinformatics Project) for this work.

VII. CONCLUSION

The current tool only provides the basic mechanism for
finding enzymes for a given extraction problem. In practice
however several other constraints dictate the choice of the
enzymes to be used in a wet lab. We feel that such constraints
may be suitably integrated into our tool to solve the problem
more effectively with little or no computational overhead.

VIII. REFERENCES

[1] Altschul, S.F., et al, Gapped BLAST and PSI-BLAST:
a new generation of protein database search programs.
Nucleic Acids Res., 25, 3389-3402, 1997.

[2] Knuth, D.E., Morris, J.H., and Pratt, V.R., Fast pat-
tern matching in strings. SIAM Journal of Computing,
6(2):323-350, 1977.

[3] Nomenclature Committee, 1985, European Journal of
Biochemistry, 150, 1-5, 1985.

[4] Rebase, http://rebase.neb.com
[5] Restriction Enzyme Site Mapper version 3

http://www.restrictionmapper.org
[6] Strickberger, M.W., Genetics, Prentice Hall, 1985.
[7] Webcutter,

http://www.firstmarket.com/cutter/cut2.html

