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Abstract

Geometric reconstruction problems in computer vision are often solved by minimizing

a cost function that combines the reprojection errors in the 2D images. In this paper, we

show that, for various geometric reconstruction problems, their reprojection error functions

share acommonandquasiconvexformulation. Based on the quasiconvexity, we present a

novel quasiconvex optimization framework in which the geometric reconstruction problems

are formulated as a small number of small-scale convex programs that are ready to solve.

Our final reconstruction algorithm is simple and has intuitive geometric interpretation. In

contrast to existing random sampling or local minimization approaches, our algorithm is

deterministic and guarantees a predefined accuracy of the minimization result. Moreover, the

quasiconvexity provides an intuitive method to handle directional uncertainties and outliers

in measurements. We demonstrate the effectiveness of our algorithm by experiments on both

synthetic and real data.
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1 Introduction

Given measurements in 2D images, the goal of geometric reconstruction in computer vision

is to estimate the three-dimensional information about the scene and the camera motions.

Classical examples include triangulation [11], camera resectioning [4, 10], and structure from

motion (see [7] for a review). The Gold standard for these estimation problems is minimizing

Fs, theaverageof squared reprojection errors (model-fitting errors measured in 2D image

domain). MinimizingFs leads to maximum likelihood estimation when measurement noises

follow Gaussian distribution.

Due to the camera perspective effect, the cost functionFs is highly nonlinear and often

contains multiple local minima. MinimizingFs is therefore difficult. Hartley and Schaffal-

itzky [6] proposed using thepointwise maximumof the squared reprojection errors as the cost

function, which we denote asF∞. In contrast toFs, it was shown thatF∞ contains only one

single minimum value in its feasible domain. An approach using random line search in the

parameter space was used in [6] to minimizeF∞. The convergence behavior of random line

search remains unclear. As pointed out in [6], it is difficult to perform random line search

when the parameter space is high dimensional. Constrained minimization is also proposed

in [6] for minimizing F∞. However, the constraints are nonlinear and nonconvex, making

such constrained minimization a difficult problem by itself.

We can consider the model-fitting error as a function of the unknown parameters, which is

termedreprojection error functionin this paper. We show that the reprojection error functions

share acommonandquasiconvexformulation for the geometric reconstruction problems un-

der our consideration. As a result,F∞, the pointwise maximum of a family of quasiconvex

functions, is also a quasiconvex function. We then present an one-dimensional bisection al-

gorithm to minimize the quasiconvex functionF∞. Our algorithm consists of a small number

of small-scale convex programs, specifically linear programs (LP) or second-order cone pro-

grams (SOCP). Both LP and SOCP are well-studied and existing efficient algorithms and im-

plementations are ready to use. Compared to random line search in parameter space or local

minimization approaches, our minimization approach is efficient, even when the unknowns

are high dimensional. More importantly, our approach is deterministic and guarantees a pre-

defined accuracy of the minimization result.

It has been pointed out in [6] thatF∞ is sensitive to outliers. We present two approaches to

handling outliers. In the first approach, we useFm, the pointwisem-th smallest reprojection

error, as the cost function. In contrast toF∞ or Fs, the cost functionFm is highly robust to

outliers [18]. In spite of its complex formulation, in our casesFm is still a pointwise operator

of a family of quasiconvex functions. As a result, our algorithm to minimizeF∞ can be

extended to efficiently minimizeFm, again by solving small-scale convex programs (LP or
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SOCP). In the second approach, we show that the active constraints in the convex programs

must contain outliers (if they exist). As a result, we can remove outliers by simply removing

active constraints.

1.1 Background: geometric reconstruction problems

We present four classical examples of geometric reconstruction problems in computer vision.

1.1.1 Multi-view triangulation

We are given projection matrices ofN cameras, denoted by{Pi, i = 1, ..., N}, and the images

of the unknown 3D pointZ in theseN cameras, denoted by{xi, i = 1, ..., N}. The task of

triangulation is to estimateZ from {Pi} and{xi}. Triangulation is a necessary step in two-

or multi-view 3D reconstruction, and in structure from motion.

Note that optimal triangulation algorithms [11, 9] for two-view case are not generalizable

to multi-view case.

1.1.2 Camera resectioning

We are given 3D points{Zi, i = 1, ..., N} and their images{xi, i = 1, ..., N} in one camera.

The task is to estimate the camera projection matrixP from theseN corresponding pairs

{xi ↔ Zi}. Camera resectioning is used in camera calibration and in structure from motion.

1.1.3 Multi-view reconstruction with known rotations

In some cases the camera rotations are known, leaving only the camera positions and the 3D

of the scene to be estimated [6]. For example, in vision-aided inertial navigation, accurate

camera pose is available from modern gyroscopes, while the camera position information

from accelerometers is still noisy [3]. Another example is that there are reconstruction meth-

ods in which the camera rotation for each frame is estimated in a first step [17].

Denote theN intrinsically calibrated cameras as{Pi = (Ri,−RiCi), i = 1, ..., N}, where

for each camera the rotationRi is known, but its 3D positionCi is unknown. We are given

2D feature points{xij} over theN cameras. Herexij denotes the projection ofj-th 3D point

Zj onto thei-th camera. The task is to estimate{Zj} and{Ci} from the 2D points{xij} and

the camera poses{Ri}.
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1.1.4 Multi-view reconstruction using a reference plane

When a reference plane is visible in all images, the inter-image planar homography from

the given reference plane can be used to compensate the relative camera rotations. Then the

problem essentially reduces to the above case of reconstruction with known rotations.

1.1.5 Planar homography estimation

Two images of points on a 3D scene plane are related by a planar homographyH, a3×3 non-

singular matrix. GivenN correspondences{xi ↔ x′i, i = 1, ..., N}, the task is to estimateH

such thatx′i = Hx.

2 The cost function

In this section, we define the reconstruction error metric at each individual 2D measurement,

and the cost functions that combine reconstruction errors from individual 2D measurements.

2.1 Error metric for one 2D measurment

We use Triangulation as an example to illustrate three often-used error metrics for an indi-

vidual 2D measurement.

2.1.1 Algebraic distance

Denotex̃i = (xi; 1) the homogeneous coordinates of the 2D measurementxi, we have the

following linear equation:

kix̃i = PiZ (1)

HereZ is also expressed in homogeneous coordinates. The algebraic distance forxi is then

defined by:

fi(Z) = ‖kix̃i − PiZ‖2 (2)

Linear least-squares can be applied to estimateZ by minimizing the sum of squared algebraic

distances. Since the algebraic distance is not geometrically or statistically meaningful, the

algebraic reconstruction is not reliable (see [18, 6]).

2.1.2 Distance in 3D space

In the case of calibrated cameras,fi(Z) can be defined as the distance from the 3D pointZ

to the ray back-projected fromxi. In the case of two views, this distance function leads to
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Figure 1:Distance betweenx = (u, v) andx̂ = (û, v̂). The solid square shows the contour on which

theL1 norm errore1 = |eu|+ |ev| = α, while the dash line shows the contour on which theL2 norm

error e2 =
√

e2
u + e2

v = α. Hereeu = (u− û), andev = (v − v̂).

the midpoint estimation method whereZ is given by midpoint of the perpendicular between

the two rays.

When a camera is further away from the 3D pointZ, the camera has larger uncertainty on

Z. Distance metric in 3D space cannot take such uncertainty into account. As a result, the

reconstruction result is unstable when the 3D point is far away from cameras.

2.1.3 Reprojection error in the image

The reprojection error is defined as the distance in the 2D image domain betweenxi and its

reprojection̂xi = πi(Z):

fi(Z) = ‖xi − x̂i‖l = ‖xi − πi(Z)‖l (3)

wherex̂i = πi(Z) is the reprojection ofZ in the image of cameraPi, and‖ · ‖l denotes some

vector norm. Bothxi andx̂i are in 2D Cartesian coordinates.

We choose reprojection error metric since it has a well-defined geometric meaning and it

leads to maximum likelihood estimation. For example, whenL2 norm is used in Eq. (3), the

reprojection errorfi is theEuclidean distancebetweenxi andx̂i. We can also useL1 norm.

Its geometric meaning is shown in Fig. 1.

2.2 Generalized reprojection error function

Definition 1. The general formulation of reprojection error function:

f(X) =
p(X)

q(X)
(4)

where

• X ∈ Rn is the unknown vector to be estimated;

• p(X) is a convex function, andp(X) ≥ 0.

• q(X) is a linear function, andq(X) > 0;
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In the following we show that most reprojection error functions are special cases of the

above general formulation. For a geometric reconstruction problem, if its reprojection error

function conforms to the general formulation in Eq. (4), the algorithms we present in this

paper can be applied to solve such reconstruction problem.

2.2.1 Reprojection error function in the image plane

Result 1. For the reconstruction problems in Section 1.1, the reprojection error function

defined in the image domain conforms to the general formulation in Definition 1.

Proof. For the problems in Section 1.1, the reprojection ofx = (u, v) in the image can be

written as:

x̂ =

(
a>X

c>X
,

b>X

c>X

)>
(5)

HereX is the vector to be estimated.a,b, andc are known vectors. For example, in the

triangulation problem, they are the three rows of the camera matrixP, respectively.

The reprojection error function is:

f(X) = ‖x− x̂‖l = ‖ 1

q(X)
(pu(X), pv(X)) ‖l, (6)

where‖ · ‖l is the vector norm, and

pu(X) = (uc> − a>)X,

pv(X) = (vc> − b>)X, (7)

q(X) = c>X.

It is obvious thatq(X) is a linear function ofX.

In this paper, we consider affine or Euclidean reconstruction1. The cheirality constraint

(see [7] and appendix), which states that the 3D points visible in the image must be in front

of the camera, can then be expressed asc>X > 0. Therefore, we haveq(X) > 0. The

reprojection error function in Eq. (6) can then be rewritten as:

f(X) =
1

q(X)
‖ (pu(X), pv(X)) ‖l =

p(X)

q(X)
(8)

Any norm functiong(y) = ‖y‖l is a convex function ofy. The functionh(X) = (pu(X), pv(X))

is an affine function ofX. The composition of a convex functiong and an affine functionh,

denoted byg ◦ h, is a convex function. Therefore,p(X) = (g ◦ h)(X) is a convex function

of X. It is obvious thatp(X) ≥ 0.

1In a way similar to the method briefed in [6], our algorithm in this paper can be extended to projective

reconstruction.
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(b) (c)(a)

Figure 2: Uncertainty in feature point locations. (a): Scalar uncertainty with covariance matrix

Q = diag(σ, σ); (b): Directional but uncorrelated noises, with covariance matrixQ = diag(σ1, σ2);
(c): Directional and correlated noises, with covariance matrixQ a full 2× 2 matrix.

2.2.2 Uncertainty-weighted reprojection error function

When uncertainty on the location of each 2D feature point is available, it can be shown that

the uncertainty-weighted reprojection error function still conforms to the general formulation

in Definition 1.

Uncertainty of feature position

The accuracy of feature matching depends on the intensity pattern around each feature,

which often has strong directionality and is location-dependent. Such directional uncertainty

can be characterized by the following inverse covariance matrix (cf. [12, 13]:

Q−1 =
1

s

∑

(u,v)∈w

(
IuIu, IuIv

IuIv, IvIv

)
, (9)

wherew is a small window centered around the feature point in the imageI of the i-th

camera,s is determined by the intensity pattern insidew, andIu andIv are image gradients

alongu andv direction, respectively. A more accurate method to estimate feature position

uncertainty is presented in [13], which takes into account not only the image pattern but also

the image pixel noises.

Figure 2 shows the three different types feature uncertainty:

• Q = diag(σ, σ): scalar uncertainty that is feature-dependent, but is isotropic and there-

fore uncorrelated inu andv direction;

• Q = diag(σ1, σ2): directional (σ1 6= σ2) but uncorrelated inu andv direction;

• Q = full 2× 2 matrix: directional and correlated inu andv direction.

Covariance-weighted reprojection error function

The uncertainty in the location of each 2D feature pointx can be taken into account by

weighting the reprojection error appropriately using the covariance matrix. The covariance
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matrix Q for the 2D pointx is a symmetric positive semi-definite matrix, and can be de-

composed into the following form by the Singular Value Decomposition:Q = UΣU>, where

Σ = diag(σ1, σ2), andU is a2 × 2 orthonormal matrix. The inverse covariance matrix takes

the form of

Q−1 = UΣ−1U> (10)

DenoteB = Σ−1/2U>, which is an affine transformation that transforms the input data into

covariance-weighted data space where the noises at each feature become isotropic andi.i.d..

The transformed coordinates (in Euclidean) ofx andx̂ in the image plane are :

x′ = (u′, v′)> = B(u, v)> (11)

x̂′ = Bx̂ =
1

c>X
B

(
a>

b>

)
X (12)

wherea> andb> follow the notation in Eq. (5). The covariance matrix of the noise in the

covariance-weighted data space now becomes isotropic and takes the form ofdiag(1, 1).

Denote

A =

[
B

(
u

v

)
c> − B

(
a>

b>

)]
. (13)

The covariance-weighted reprojection error function is:

fw(X) = ‖x′ − x̂′‖ =

∥∥∥∥
AX

c>X

∥∥∥∥ (14)

Again, the cheirality constraint [5], which states that the 3D points visible in the image

must be in front of the camera, can then be expressed asc>X > 0. Therefore, Eq. (14) can

then be written as:

fw(X) =
1

c>X
‖AX‖ (15)

The norm functionp(X) = ‖AX‖ is convex, and the function in Eq. (15) conforms to the

general formulation in Definition 1.

When‖ · ‖ in Eq. (15) isL2-norm,fw(X) is the Mahalanobis distance betweenx andx̂.

2.2.3 Angular reprojection error function

When the camera is calibrated, the angleθ between the observed rayx and the reprojection

ray r = (a,b, c)>X can be used to define the reprojection error [9, 6]:

f(X) = |tan(θ)| =
∣∣∣∣
x× r

x>r

∣∣∣∣ (16)

where× denotes cross-product. We choosetan(θ) since it is a monotonically-increasing

function of θ whenθ ∈ [0, π/2). The cheirality constraint can be enforced by|θ| < π/2,
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which leads toq(X) = x>r > 0. It is easy to verify thatq(X) is a linear function of

X, andp(X) = |x× r| is convex inX. Therefore, the angular reprojection error function

f(X) = p(X)
q(X)

conforms to the general form in Definition 1.

2.3 Combining reprojection errors into cost function

The often used cost functionFs in geometric reconstruction is defined as the average of the

squaredL2-norm reprojection errors:

Fs =
1

M

∑
i

f 2
i (X) (17)

whereM is the total number of 2D measurements (points).Fs is difficult to minimize as it is

highly nonlinear and contains multiple local minima [6].

Hartley and Schaffalitzky [6] proposed using the pointwise maximum of the reprojection

errors as the cost function:

F∞(X) = max
i

fi(X) (18)

When the measurement uncertainties are available, the uncertainty-weighted cost function is

denoted by:

Fw
∞(X) = max

i
fw

i (X) (19)

It was shown in [6] thatF∞(X) contains only one single minimum value in its domain, and is

therefore easier to minimize thanFs(X). But as is also pointed out in [6],F∞(X) is sensitive

to outliers.

To deal with the outliers, we propose using thepointwisem-th smallest reprojection errors

as the cost function:

Fm(X) = mth
i

fi(X) (20)

It is obvious thatF∞ is a special case ofFm whenm = N . Fm is a highly robust function. For

example, whenm = bN/2c, it is the median operator. MinimizingFm leads to least-median

optimization [18], which can handle noisy measurements with up to50% of outliers.

3 Minimizing the cost function

Both F∞ andFm are constructed from pointwise operations on a family of functions. They

are not differentiable at many points. As a result, classical gradient-based approaches are not

applicable to minimizing them. Random line search in the parameter space was proposed

in [6] to minimize F∞, and random sampling [18, 15] is often used to detect outliers and
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to minimizeFm. These randomized approaches are not scalable when the unknowns are

high-dimensional. They do not guarantee convergence either.

In this section, we show that the general reprojection error function (Definition 1) is qua-

siconvex. Such quasiconvexity enables us to design a deterministic and efficient algorithm to

minimizingF∞ andFm.

3.1 Minimization by feasibility

Instead of random search or sampling, let us look at a minimization approach that uses the

classic bisection search in the range domain ofF∞ andFm.

For the vision problems in which we are interested, the image size is bounded. Therefore,

it is realistic to assume thatl ≤ F (X) ≤ h, whereF (X) is the cost function. Forα ∈ [l, h],

denoteSα theα-sublevel set ofF (X):

Sα = {X | F (X) ≤ α} (21)

If Sα is non-empty, then we know thatF ∗, the minimum value ofF (X), satisfiesF ∗ ≤ α.

Otherwise, we haveF ∗ > α. Determining whetherSα is empty or not can be achieved by

solving the following feasibility problem:

find X (22)

s.t. X ∈ Sα

Based on the above observation, we can use the bisection algorithm (see [2]) to pin down

the optimal value ofF (X) by solving a sequence of feasibility problems. Fig. 3 shows the

basic procedure of the algorithm. It starts with a range[l, h] that is known to containF ∗.

Then we solve the feasibility problem at its mid-pointα = (l + h)/2. If it is feasible, then

the optimal valueF ∗ is in the lower half of the interval and we can shrink[l, h] to [l, α].

Otherwise,F ∗ must be in the upper half of the interval and we shrink[l, h] to [α, h]. The

algorithm then continues on the identified half of the interval.

As we can see, at each iteration the range is shrunk by half, and the bisection algorithm

is guaranteed to converge indlog2((h − l)/ε)e iterations. For example,[0, 100] allows the

re-projection error to be as many as 100 pixels, which is guaranteed to contain the optimal

valueF ∗. If we chooseε = 0.5 pixel, the algorithm will converge in onlydlog2 200e = 8

iterations. Note that the number of iterations is independent of the dimension of the unknown

X, indicating that the algorithm is suitable for solving high dimensional problems. More

importantly, the optimal value we derive is guaranteed to be less thanε = 0.5 pixel away

from the true minimum value.
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Algorithm: minX F (X).

1: Givenl ≤ F ∗, h ≥ F ∗, and the toleranceε > 0.

2: while (h− l) > ε do

3: α = (h + l)/2.

4: Solve the feasibility problem (22).

5: if (22) is feasible,then h = α;

6: else l = α.

7: end while

Figure 3: Classical bisection algorithm to pin down the optimal value by searching in the one-

dimensional range domain.

A

B

x

f(x)

α

Sα

Figure 4:A quasiconvex function. All of itsα-sublevel sets{Sα} are convex. But this quasiconvex

function is not convex, as can be seen from the line segmentAB that lies below the function.

3.2 Quasiconvex functions

The bisection algorithm in Fig. 3 is simple, deterministic, and it converges in a small number

of iterations. It can even be applied to minimizing cost functions with multiple minima. The

critical step in the algorithm is solving the feasibility problem in Eq. (22), which could be

a hard problem by itself if theα-sublevel set ofF (X) is complicated. However, ifSα is

convex, then Eq. (22) is a convex feasibility problem [2] that can be solved efficiently. A

function with such convexα-sublevel set is called aquasiconvexfunction:

Definition 2. (see [2])A functionf : Rn → R is quasiconvexif its domaindom(f) and all

its sublevel sets

Sα = {x ∈ dom(f) |f(x) ≤ α},
for α ∈ R, are convex.

A convex function has convex sublevel sets, and therefore, is quasiconvex. The reverse is

not true in general. Fig. 4 shows an example of quasiconvex function that is not convex. The

dash-line segment that lies below the function indicates the non-convexity of the function.

The reprojection error functions are not convex due to camera perspective effect, but they

are quasiconvex:
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Result 2. A reprojection error function that conforms to the general form defined in Eq.(4)

is a quasiconvex function.

Proof. For anyα > 0, theα-sublevel set off(X) is:

Sα = {X | f(X) ≤ α}
= {X | p(X)− αq(X) ≤ 0, q(X) > 0}

From the definition of the general reprojection error function (Definition 1), we know that

p(X) is a convex function, and−αq(X) is a linear function and, therefore, a convex function.

The sum of these two convex functionsφ(X) = p(X) − αq(X) is still a convex function.

A sublevel set of a convex function is a convex set. As a result,Sα is a convex set since

it is the intersection of two convex sets: the zero sublevel set ofφ(X), and the half space

defined byq(X) > 0. Sincedom(f) = Rn andSα are all convex, we conclude thatf(X) is

quasiconvex.

3.3 Minimizing cost function F∞

Result 3.F∞(X), the pointwise maximum of quasiconvex reprojection error functionsfi(X),

is also quasiconvex.

Proof. Theα-sublevel setSα of F∞(X) is:

Sα = {X | max
i

fi(X) ≤ α}
= {X | fi(X) ≤ α, i = 1, 2, · · · , N}

=
N⋂

i=1

Si
α

HereSi
α is theα-sublevel set of the reprojection error functionfi(X). From Result 2, we

know that{Si
α} are all convex sets. As a result, their intersectionSα is also a convex set.

Therefore,F∞(X) is a quasiconvex function.

Due to its quasiconvexity,F∞ can be efficiently minimized by the bisection algorithm in

Fig. 3. The convex setSα =
⋂N

i=1 Si
α can be expressed as:

Sα = {X | qi(X) > 0; pi(X)− αqi(X) ≤ 0; i = 1, · · · , N}

The feasibility problem of the bisection algorithm in Eq. (22) can now be solved by the

following convexprogram:
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min
X,γ

γ (23)

s.t. −qi(X) + ε ≤ γ,

pi(X)− αqi(X) ≤ γ,

i = 1, ..., N.

Hereε is a small positive number. Denoteγ∗ the optimal value of (23). Ifγ∗ ≤ 0, thenSα of

F∞(X) is nonempty, and the problem in (22) is feasible; otherwise (22) is infeasible. Note

that we do not need to solve (23) with high accuracy. The algorithm terminates whenever

γ ≤ 0 is satisfied, or whenever a dual feasible point is found with positive dual objective

(which meansγ∗ > 0).

3.4 Minimizing robust cost function Fm

F∞(X) is sensitive to outliers [6]. To deal with outliers, we use the robust cost function

Fm(X), which is defined as them-th smallest reprojection error (see Eq. (20)).Fm(X) is not

a quasiconvex function, except form = N , in which caseFm becomesF∞.

However, sinceFm(X) is a pointwise function of a family of quasiconvex functions{fi(X)},
its α-sublevel set can still be represented by the convex sublevel sets of these quasiconvex

functions. As a result, we are able to extend the bisection algorithm to efficiently minimize

Fm.

3.4.1 Theα-sublevel set ofFm

A point X0 belongs to theα-sublevel set ofFm(X) if and only if there exists a group ofm

α-sublevel sets whose intersection contains the pointX0.

Result 4.DenoteSα theα-sublevel set ofFm(X). For anyX0, X0 ∈ Sα if and only ifX0 ∈m

{S1
α, S2

α, · · · , SN
α }. HereSi

α is theα-sublevel set offi(X). The symbol∈m means that there

existm sublevel sets in{S1
α, S2

α, · · · , SN
α } such thatX0 is inside the intersection of thesem

sublevel sets.

Proof. For anyX0, we sort theN reprojection errors

f1(X0), f2(X0), · · · , fN(X0)

into the nondecreasing order

f(1)(X0) ≤ · · · ≤ f(m)(X0) ≤ · · · ≤ f(N)(X0) (24)
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For the necessary condition, ifX0 ∈ Sα, then we haveFm(X0) = f(m)(X0) ≤ α. The first

m smallest reprojection errors{f(i)(X0), i = 1, · · · , m} in Eq. (24) must therefore satisfy

f(i)(X0) ≤ α. As a result,X0 belongs to the intersection of them α-sublevel sets of the first

m functions in Eq. (24).

For the sufficient condition, supposeX0 is in the intersection of the followingm sublevel

sets:{S(i)
α , i = 1, · · · ,m}, whereS

(i)
α is theα-sublevel set off (i). We must have:

f (i)(X0) ≤ α, i = 1, · · · ,m (25)

Now if Fm(X0) = f(m)(X0) > α, then from the sorted sequence in Eq. (24) we know

that the number of less-than-α reprojection errors is less thanm. This contradicts Eq. (25)

where there arem less-than-α reprojection errors. Therefore we haveFm(X0) ≤ α, i.e.,

X0 ∈ Sα.

3.4.2 Feasibility by convex program

From Result 4, the feasibility problem in the bisection algorithm to minimizingFm can be

rewritten as:

find X (26)

s.t. X ∈m {S1
α, S2

α, · · · , SN
α }

In other words, we need to determine if there existm α-sublevel sets whose common inter-

section is non-empty. A straightforward approach is to check the feasibility of every possible

group ofm sublevel sets, where for each group its feasibility can be exactly determined by

the convex program of Eq. (23). In worst case, this requires
(

N
m

)
convex programs to solve

Eq. (26), which is good for smallN . WhenN is large, we can use either integer program or

its convex approximation.

Integer program: minimizing number of infeasibility

Result 5. The feasibility problem in Equation(26) can be formulated exactly by integer

programming:

min
X,γ

γ1 + γ2 + · · ·+ γN (27)

s.t. −qi(X) < γi,

pi(X)− αqi(X) ≤ γi,

γi = {0, v},
i = 1, ..., N.

Herev > 0 is a large positive integer.
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Given optimal values(X∗,γ∗) of the above minimization problem, ifγi = 0, then the

i-th reprojection errorfi(X) ≤ α, i.e., X is inside thei-th α-sublevel set. On the other

hand, if γi = v, thenvX is outside thei-th α-sublevel set. Since the number of infeasi-

bility (γ1 + γ2 + · · · + γN) is minimized, we have a solution where the number feasible

constraints is maximized. In other words, we seek a solution which maximizes the number

of α-sublevel sets who have non-empty common intersection. If this number is large thanm,

then Equation (26) feasible, otherwise, it is infeasible.

Convex program: minimizing sum of infeasibility

Although integer programming is well-studied and existing efficient package is available, it

is in general more complicate than LP or SOCP.

Result 6. We can use sum of infeasibility as an approximation to estimate the number of

infeasible constraints:

min
X,γ

γ1 + γ2 + · · ·+ γN (28)

s.t. −qi(X) < γi,

pi(X)− αqi(X) ≤ γi,

γi ≥ 0,

i = 1, ..., N.

Denoteγ∗ = (γ∗1 , γ
∗
2 , · · · , γ∗N) the optimal value of the above convex program achieving at

X∗. Denoteg the number of zero elements inγ∗. If g ≥ m, then the problem defined by

Eq. (26)must be feasible; otherwise we consider Eq.(26) infeasible.

γ∗i is called the infeasibility offi(X
∗). For any sublevel setSi

α, if its corresponding in-

feasibility γ∗i = 0, thenX∗ is insideSi
α. As a result, the conditiong ≥ m is sufficient for

Eq. (26) to be feasible, since theseg sublevel sets contain the common pointX∗.

While g ≥ m is a sufficient condition, it is an approximated necessary condition for

Eq. (26) to be feasible. The exact conclusion about the infeasibility of Eq. (26) requires

checking the feasibility of
(

N
m

)
groups ofm sublevel sets, or using integer programming to

find the optimal pointX∗ that minimizes the number of infeasibilities (the number of nonzero

components inγ∗). Result 6 finds the minimum sum-of-infeasibilities
∑

i γ
∗
i , and uses it to

approximate the minimum number of infeasibilities. With such approximation, the bisection

algorithm gives an upper bound on the true minimum value ofFm. The sum of infeasibility

‖γ‖1 =
∑

i γi is by itself a robust metric (L1 norm is a robust metric), especially in our cases

where the magnitude of outliers in the 2D measurements is bound by the image size. As a

result, the bisection algorithm using Result 6 can usually achieve a tight upper bound on the

true minimum value ofFm.
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Figure 5: When the camera matrix is normalized appropriately, the infeasibilityγ∗i is the distance

from X∗ to theα-convex cone. For comparison purpose,di is the distance to the ray back-projected

from 2D measurementxi.

Fig. 5 illustrates the meaning ofγ∗i . When the camera matrix isnormalizedappropriately,

the infeasibilityγ∗i is the distance fromX∗ to the convex cone ifX∗ is outside the cone. IfX∗

is inside the coneSi
α, thenγ∗i = 0. The sum-of-infeasibilities

∑
i γ

∗
i is therefore the sum of

distances fromX∗ to the convex cones that do not containX∗. WhenX∗ goes further away

from the cameraCi, the cameraCi has larger uncertainty onX∗. Such varying uncertainty is

taken into account byγ∗i as it is the distance to the cone, and the cone becomes larger asX∗

goes further away from the cameraCi. This is in contrast to the distance to back-projected

ray in 3D space (see Fig. 5).

Minimizing sum of weighted infeasibility

We can further improve the result by using weighted sum of infeasibilityw>γ in Eq. (28),

wherew = (w1, · · · , wN) is the weight for each measurement, andwi ∈ [0, 1] can be set

according to its corresponding reprojection error to down-weight outliers.

min
X,γ

w1γ1 + w2γ2 + · · ·+ wNγN

s.t. −qi(X) < γi,

pi(X)− αqi(X) ≤ γi,

γi ≥ 0,

i = 1, ..., N.

A simple weighting scheme is the{0, 1} weighting where the weightswi corresponding

to active constraints are set to 0. Another scheme is to determine the weightwi according to

reprojection errorri =
∣∣∣xi − pi

qi

∣∣∣.

3.5 Feasibility by LP or SOCP

WhenL1- or L2-norm error metric is used in defining the reprojection error function, the

convex program for feasibility becomes small-scale linear programs (LP) or second-order
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convex programs (SOCP), respectively.

3.5.1 L1-norm error metric leads to LP

WhenL1-norm error metric is used, the convex program in Eq. (28) becomes the following

linear program:

min
X,γ

γ1 + γ1 + · · ·+ γN (29)

s.t. −qi(X) + ε ≤ γi,

−αqi(X) + pui(X)− pvi(X) ≤ γi,

−αqi(X) + pui(X) + pvi(X) ≤ γi,

−αqi(X)− pui(X)− pvi(X) ≤ γi,

−αqi(X)− pui(X) + pvi(X) ≤ γi,

γi ≥ 0, i = 1, ..., N.

Herepui, pvi, andqi are all linear functions ofX (see Eq. (7) for the definition).

3.5.2 L2-norm error metric leads to SOCP

WhenL2-norm error metric is used, Eq. (28) becomes:

min
X,γ

γ1 + γ1 + · · ·+ γN (30)

s.t. −qi(X) + ε ≤ γi,

‖AiX‖2 ≤ αqi(X) + γi,

γi ≥ 0, i = 1, ..., N.

Here

Ai =

(
uic

>
i − a>i

vic
>
i − b>i

)

is a2×3 matrix, anda,b, andc are known vectors (see Eq. (5) for the notation).αqi(X)+γi

is a linear function ofX. Therefore, the inequality

‖AiX‖2 ≤ αqi(X) + γi

defines a second order convex cone [2]. As a result, Eq. (30) is a second-order cone program-

ming (SOCP).
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3.6 Explicit outlier detection

In Section 3.4, we have discussed how to use equation (28) to minimize the cost functionFm,

them-th smallest reprojection error, for a robust geometric reconstruction. In this section,

we discuss how to explicitly detect outliers by examining the activeness of the constraints in

the convex program of equation (28).

3.6.1 Inliers and outliers

DenoteXT the ground truth value of the unknown geometric parameters we want to esti-

mate. For an inlier, its distance to the reprojection ofXT should follow zero-mean Gaussian

distribution. On the other hand, for an outlier, such distance is larger than some value (e.g.,

3σ, whereσ is the standard deviation of the Gaussian distribution of the inliers’ distance to

XT ).

Definition 3. A measurementxi is an inlier if and only if itsαT -sublevel set containsXT as

its interior point, i.e.,XT ∈ int(SαT
). HereαT is some predefined value.

From the above definition, we have:

Result 7. TheαT -sublevel sets of all inliers have a common intersection set that contains

XT as an interior point.

3.6.2 Outlier detection

For convenience, equation (28) is presented here again:

min
X,γ

γ1 + γ2 + · · ·+ γN

s.t. −qi(X) + ε ≤ γi,

pi(X)− αqi(X) ≤ γi,

γi ≥ 0,

i = 1, ..., N.

whereε is a small positive value.

The constraints in the convex program of Eq. (28) can be classified into active or inactive.

Definition 4. Denotehi(X) = pi(X)−αqi(X)−γi. Suppose(X∗,γ∗) is the optimal solution

of Eq. (28). If hi(X
∗) = 0, then the constrainthi(X) ≤ 0 is activeat X∗. If hi(X

∗) < 0,

then the constrainthi(X) ≤ 0 is inactiveat X∗.
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For an active constrainthi(X), the optimal solutionX∗ is either at the boundary ofSi
α

(whenγi = 0), or outside ofSi
α (whenγi > 0).

If there are outliers in the measurements, then for outlier detection we only care about the

case ofα > αT . Since if we can achieveα ≤ αT in the bisection algorithm, we know the

measurements are all inliers according to Definition 3.

Result 8. If there are outliers in the measurement{xi}, then the convex program(28)

achieves some positive optimal value1>γ∗ at (X∗, γ∗), givenα = αT − ε (Here ε is a

very small positive value). Moreover, at least one active constraint comes from some outlier.

Proof. From the definition, it is obvious that (28) will achieve some positive optimal value,

denoted byX∗. From Result 7, we know theα-sublevel sets of all inliers have a common

intersection that containsXT . Supposeall active constraints are from inliers. DenoteSI the

common intersection of theα-sublevel sets of these (active) inliers. Then from Result 7, we

know SI is a non-empty set that containsXT as an interior point. By choosing any point

X0 ∈ SI , we achieve a better objective value ofzerofor the convex program (28). This is in

contradiction to the condition that the convex program (28) achieves a positive optimal value.

Therefore, some active constraints must be from outliers.

Result 8 suggest a simple mechanism to detect outliers, i.e., in each iteration of the bisec-

tion algorithm (see figure 3), discard the measurements corresponding to active constraints,

until α < αT . But one should be aware that some of the inliers may be discarded as they

may be active. In some applications, the number of constraints is small (e.g., 3D triangu-

lation given only 3 or 4 views), minimizing theFm may be favorable to removing active

constraints.

3.7 Geometric interpretation

The minimization algorithm we presented in this section has intuitive geometric interpreta-

tion. We use multi-view triangulation as an example to illustrate. For each 2D measurement,

C2 CN…

C1

Figure 6: Geometric illustration of 3D reconstruction using quasiconvex optimization to minimize

Fm. HereL1 norm is used in the reprojection error function. The algorithm seeks the minimum cone

size with which at leastm cones have non-empty intersection.
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Figure 7: Geometric illustration of 3D reconstruction using quasiconvex optimization. Here,L2

norm is used in the reprojection error function. (a): The shape and size of each cone are determined

by α and covariance matrixQi; (b): The algorithm seeks minimumα such that the cones have non-

emptycommon intersectionS∞α . Note that cones have different shapes and sizes. The last coneCm

has large directional uncertainty and has little constraint on determiningS∞α in the direction that has

large uncertainty.

the camera optical center and the six linear inequalities in Eq.(29) form a convex coneSi
α in

front of the camera in the 3D space, as shown in Fig. 6. The cone size is determined byα.

For any point inside the convex coneSi
α, its reprojection error must be less thanα. If the

common intersection of at leastm convex cones is not empty, then we conclude that there

exists at least one pointX0 in the 3D space such that the cost functionFm(X0) ≤ α. Min-

imizing Fm(X) is therefore equivalent to adjustingα, the size of the convex cone, until we

find the minimumα with which the intersection of at leastm convex cones is non-empty.

Note that as a camera is further away from the 3D pointX0, it has weaker constraint, since

the convex cone size atX0 becomes larger. This is a nice property since the further away

from the camera, the larger uncertainty about the 3D position the camera has.

3.7.1 Geometric interpretation: covariance-weighted quasiconvex minimization

The covariance-weighted quasiconvex minimization algorithm also has an intuitive geometric

interpretation. We use triangulation as an example to illustrate.

For a feature pointxi, theα-sublevel setSw
i of the covariance-weighted reprojection error

functionfw
i (X) is a second order convex cone in the 3D space in front of the camera. The

shape and size of such convex cone are determined byα and the covariance matrixQi =

U diag(σ1, σ2)U
>, as shown in Fig. 7(a). The construction of convex coneSw

i is the following.

First a circle in the image plane with radiusα is scaled by
√

σ1 and
√

σ2 in u andv direction,

respectively. This results in an ellipse with axes ofα
√

σ1 andα
√

σ2 respectively. The ellipse

is then rotated by the rotation matrixU. The final convex cone, dubbed aselliptical cone, is
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formed by connecting the camera optical center and the rotated ellipse.

The α-sublevel setS∞α of the cost functionFw
∞(X) is the intersection of allα-sublevel

sets{Sw
i }. Minimizing the covariance-weighted costFw

∞(X) is therefore equivalent to de-

termining if there exists common intersection of the convex elliptical cones{Sw
i }, as shown

in Fig. 7(b). The bisection algorithm then seeks a minimum valueα such that the common

intersection of the convex elliptical cones{Sw
i } is non-empty.

Sinceα is common for all convex cones, the relative shape and size of each individual

cone is actually determined by its associated covariance matrix. Therefore the effect of each

convex cone constraint on the final estimationX is weighted by the inverse covariance matrix.

Consider an extreme case when uncertainty goes to infinity. In such case, the corresponding

convex cone is scaled to infinite size and does not have any constraint on the estimate of

X. On the other hand, if the uncertainty is zero, the convex cone becomes a ray, and we

must constraintX on the ray, which is a strong constraint. When directional uncertainty is

presented, the effect of constraints from different directions are determined byσ1 andσ2,

respectively.

3.8 Differences from algebraic method

Both the linear program in Eq. (29) and the algebraic approach in Section 2.1.1 are linear.

However, they have important differences.

The algebraic approach directly computes anapproximatedestimation of theunknown

parameters, while the linear program only determines thefeasibility in the bisection algo-

rithm. It is the overall bisection algorithm that produces the final estimation of the unknown

parameters.

The algebraic approach outputs anapproximatedestimation of the unknown parameters

from an over-constrained linear equation set. It minimizes the sum of squared algebraic dis-

tance that is neither geometrically nor statistically meaningful. The noise in every linear

equation affects the final estimation of the unknown parameters. In our approach, the noise

has been taken into account by the cone sizeα. Onceα is given, the resulting linear program

is considered to be noiseless in a sense that it givesexactsolution to determining the feasibil-

ity for bisection algorithm. The redundant constraints in the linear program will be inactive

and, therefore, do not affect its final solution.

4 Experiments

We apply our quasiconvex optimization algorithm to multi-view triangulation and sequential

structure from motion (SFM)(see [1]), and evaluate the performance using both synthetic and
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Figure 8: Multi-view triangulation: synthetic data. (a): The camera is rotating and translating,

imaging a 3D scene consists of 40 points; (b): Reconstruction errors (normalized by Eq.(31)) with

zero-mean Gaussian noises added to 2D point coordinates; (c): Reconstruction errors under both

Gaussian noises and outliers.

real data. We also show that using covariance-weighted error functions can greatly improve

the reconstruction results.

4.1 Multi-view triangulation: synthetic data

The synthetic scene contains forty 3D points, distributed at different depth, that are imaged

by a moving synthetic camera, as shown in Fig. 8(a). We use 10 consecutive views in the

triangulation. Controlled zero-mean Gaussian noises and outliers are added to the 2D points.

We apply our algorithm to minimize three cost functionsF∞, Fm, andFw
m. HereFw

m denotes

Fm with weighted sum-of-infeasibilities used in Eq. (28). The reconstruction results from

the algebraic approach (see Section 2.1.1) are included for comparison purpose.

Fig. 8 shows the average reconstruction errors, where (b) shows results when Gaussian

noises are added to the 2D positions at increasing variances, and (c) shows the results with

both Gaussian noises and 50% of outliers. The reconstruction error is normalized by

err =
‖Z− ZT‖2

‖ZT‖2

(31)

whereZT is the known ground truth of 3D position, andZ is the triangulation result. As we

can see, the algebraic approach has poor performance when there are noises or outliers, while

our quasiconvex optimization successfully minimizesF∞, Fm, andFw
m. Without outliers,

F∞, Fm, andFw
m have similar performance, withFm andFw

m better thanF∞ when the noises

become larger. When there are outliers, the performance ofF∞ degrades quickly.
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Figure 9: Multi-view triangulation: corridor sequence. (a): The first image of this 11-frame se-

quence; (b): Reconstruction errors (normalized by Eq.(31)) with added zero-mean Gaussian noises;

(c): Reconstruction errors with both Gaussian noises and outliers. For each feature track, the outliers

are added to 1 to 3 views, depending on the number of views in which the corresponding 3D point is

visible. (d): Reconstruction errors with increased strength of outliers (ranged from 5 to 40 pixels).

4.2 Multi-view triangulation: real data with “ground truth”

We use thecorridor sequence2 in which the camera is moving forward along the corridor.

Fig. 9(a) shows the first frame of this 11-frame sequence. Along with the sequence, the

2D feature tracks, camera projection matrices, and 3D points are also provided. We use 2D

feature tracks and camera matrices for triangulation, and compare the recovered 3D against

the provided “ground truth”.

Controlled zero-mean Gaussian and/or outliers are added to the 2D feature coordinates.

Fig. 9(b) and (c) show the reconstruction errors. The results are consistent with those from

the synthetic data experiment. Again, our quasiconvex optimization successfully minimizes

F∞, Fm, andFw
m.

We observed thatF∞ is determined by outliers. Its performance depends on the “strength”

of the outliers. Fig 9(d) shows the results where the strength of one outlier is increased. As

we can see, the performance fromF∞ degrades quickly when outlier strength is increased.

Fw
m performs better thanFm when outlier strength is large. When the 2D feature tracking

error is less than 25 pixels,Fm performs as well asFw
m, indicating that in real scenariosFm

is usually good enough.

2http://www.robots.ox.ac.uk/ ∼vgg/data1.html
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(a) (b)

Figure 10:Multi-view triangulation in sequential SFM. The camera is moved (largely forward mo-

tion) around inside the office. (a): The first, middle, and last frame of the 450-frame sequence (image

size360 × 240), with tracked points superimposed. (b): Top-down view of the reconstruction results

of camera trajectory and 3D points. The yellow lines show the optical axis of the recovered cameras.

The red circle indicates the 3D points corresponding to the chair.

4.3 Application: sequential structure from motion

Our target application is vision-aided small and micro aerial vehicle navigation, in which

sequential SFM is applied to estimate both the camera motions and the 3D. We apply our

multi-view triangulation usingFm minimization to the sequential SFM.

A 450-frame image sequence is taken by a mini camera that was moved around by hand

in an office. Fig. 10(a) shows the first, middle, and last frames in this sequence. The camera

is mostly moving forward, which is typical for a micro aerial vehicle. The forward motion

makes the 3D estimation very challenging. Moreover, the images captured by the mini cam-

era have low quality, resulting in noisy 2D feature tracking. We therefore seek to use as many

frames as possible in triangulating a 3D point.

Fig. 10(b) shows the final reconstruction result (without global bundle adjustment). The

red circle indicates the points from the chair visible both in the first and the last image. In the

3D view, the reconstruction of those points at the end of the sequence aligns very well with

their reconstruction at the beginning of the sequence, indicating a good estimation of both

the 3D and the camera motions.

4.4 Experiments: quasiconvex minimization with uncertainty

We use planar homography estimation and multi-view triangulation as two applications of

our algorithm, and use synthetic and real data to evaluate its performance. We compare

the performances of three algorithms: the quasiconvex minimization ofFw
∞ with uncertainty
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X

x

Figure 11: The set up for synthetic data generation for homography estimation. The camera is

looking at points on the ground plane. The image coordinates are normalized such that the camera

focal lengthf = 1.

model, the quasiconvex minimization ofF∞ without utilizing feature uncertainty, and the

normalized linear algorithm.

4.4.1 Homography estimation with uncertainty: synthetic data

Fig. 11 shows the setup to generate the synthetic data for homography estimation, where the

camera images the points on the ”ground plane”. This simulates the case where a camera

mounted on a vehicle is looking at the ground plane at some angle. Note that in this caseh33

in homographyHT may become very small. In all the algorithms being compared, we do not

assumeh33 = 1.

We randomly generate twenty 3D pointsXi on the ground plane, and compute the 2D im-

agesxi of these 3D points. We then add elliptical Gaussian noise toxi. The noise perturbed

points are denoted bỹxi. The ellipticity of the noise is measured byr =
√

σmax/σmin,

whereσmax andσmin are the major and minor axes of the uncertainty ellipse, respectively.

The orientation of the ellipse is randomly selected for each point.

We compare the performances using four criteria:

• Maximum reprojection error

F∞(X) = max
i

d(x̃i, HXi) (32)

whered(·, ·) denotes the Euclidean distance;

• Root of Mean Squares (RMS) of reprojection errors;

• Maximum covariance-weighted reprojection errorFw
∞(X) as defined in Eq. (19);

• Error inH defined as:

eH =

√√√√ 1

N

N∑
i=1

d2(xi, HXi) (33)
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Figure 12:Results from planar homography estimation. (a): RMS error; (b): Maximum of reprojec-

tion error; (c): Maximum of covariance-weighted reprojection error; (d): Error inH.

whered(xi, HXi) is the Euclidean distance between the ground truth 2D pointxi and

the reprojection pointHXi. This error metric compares the estimatedH to the ground

truthHT using ground truth points. If there is not error in the estimatedH, theneH = 0.

We apply our algorithm to estimateH from this synthetic data. We repeat the experiments

for 20 times, and report the above error measures using mean of these 20 runs. Fig. 12 shows

the results, where
√

σmin = 0.01 and
√

σmax varies from 0.01 to 0.2, i.e., the ellipticityr

varies from 1 (isotropic) to 20.

As we can see from (a), bothF∞ andFw
∞ have similar RMS error. Normalized linear

algorithm has similar RMS error whenr is small, but becomes unreliable whenr ≥ 10.

Fig. 12(b) shows that minimizingF∞ gives lowest maximum reprojection error, while

Fig. 12(c) shows that minimizingFw
∞ gives lowest maximum covariance-weighted reprojec-

tion error. This indicates that quasiconvex minimization indeed achieves the global minimum

of F∞ andFw
∞, respectively.

From Fig. 12(d), which compares the estimatedH against ground truthHT using the metric

eH , we can see thatFw
∞ performs the best, and its performance does not degrade at all with

the increase ofr. This indicates thatFw
∞ is the proper metric to minimize. We also find that

normalized linear algorithm performs better thanF∞ whenr is small, but whenr is large, its

performance becomes unreliable.
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Figure 13: Results from multi-view triangulation. (a): RMS error; (b): Maximum of reprojection

error; (c): Maximum of covariance-weighted reprojection error; (d): Reconstruction error compared

against ground truth 3D.

4.4.2 Mulit-view triangulation with uncertainty: synthetic data

We use the set up in Fig. 8(a) to generate the synthetic data for multi-view triangulation with

uncertainty. The camera is rotating and translating, and takes ten consecutive views of twenty

3D points located at different depth. Directional Gaussian noises are added to the locations

of image points.

Fig. 13 shows the average results of 20 runs. Again it shows that the covariance-weighted

reprojection error is the right metric to use, as can be seen by the fact thatFw
∞ gives the best

3D estimationZ when compared to the ground truthZT using the following metric:

e3D =
‖Z− ZT‖2

‖ZT‖2

(34)

4.5 Infinite elliptical uncertainty

The performance ofFw
∞ does not degrade even when the ellipticity of noisesr goes to es-

sentially infinity, as can be seen from Table 1. This fact indicates that the normal optical

flow can be modelled by directional (infinity) uncertainty. As a result, the point feature and

line feature can be simultaneously used in the quasiconvex optimization for many geometric

reconstruction problems.
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(a) (b)

Figure 14:Two input images. (a): First image, where elliptical uncertainties for some feature points

are shown; (b): Last image.

4.5.1 Homography estimation with uncertainty: real data

We apply our algorithm to estimate the inter-image homography using real image data.

Fig. 14 shows two input images. Here Fig. 14(a) shows the first image. The other images are

obtained by applying a known and gradually-changed planar homography to image (a). This

way we have the ground truth of the planar homography for evaluation purpose.

The features in the first image are tracked through the sequence, and the inverse covari-

ance matrix for each feature is computed by the Hessian matrix (Eq. (9)). The elliptical

uncertainties for some feature points are shown in Fig. 14(a).

Fig. 15 shows the image residual by applying the inverse-warping using the estimated

homographies. As we can see, minimizingFw
∞ gives the homography that has the lowest

intensity residual. It correctly down weight the features with large directional uncertainty on

the top of the box to produce a correct estimate ofH. On the other hand, both normalized

linear algorithm and the minimization ofF∞ give worse results, as can be seen by the large

residuals on the top of the box, where there exist features with large directional uncertainty.

Normalized linear algorithm performs better than minimizingF∞ in this case.

Homography Triangulation

Algebraic 833.8092 1.4380

F∞ 710.3891 3.1084

Fw∞ 0.0093 0.0146

Table 1:Results under infinite elliptical uncertaintyr = 105. The table showseH for homography

estimation ande3D for triangulation.
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(a) (b) (c)

Figure 15:Residual image by applying the estimated homography. Note that residuals are scaled

up for visibility. The average pixel residual is shown ase for each case too. (a): Normalized linear

algorithm,e = 15.0798; (b): MinimizingF∞, e = 28.2082; (c): MinimizingFw∞, e = 5.8896.

5 Conclusion

We have presented a novel quasiconvex optimization framework to geometric reconstruc-

tion problems. Our algorithm is an efficient bisection search in theone-dimensional range

domain, with each search step accomplished by a small-scale convex program that can be

efficiently solved. We derived the algorithm based on sound mathematical grounds, and

the algorithm is essentially free of parameter tuning. The final algorithm is simple, robust,

deterministic, and has very intuitive geometric interpretation. We have demonstrated the

effectiveness of our approach, using both synthetic and real data.

We identified the general quasiconvex formulation of the reprojection error functions,

therefore our quasiconvex optimization framework can be potentially applied to many other

estimation problems. We are investigating the applications of our approach to space carv-

ing [8], multi-baseline stereo reconstruction, and efficient bundle adjustment [16] in structure

from motion.

Appendix: Chierality constraint for homography estimation

The camera matrix appears in the first three problems in Section 1.1 and the Chierality

constraint is straightforward to be represented, for example, asp>3 X, wherep>3 is the third

row of the camera matrixP andX is the point in 3D space. But the camera matrix does not

appear in the problem of planar homography estimation. In such case we need to represent

the Chierality constraint in terms of the planar homographyH in stead of the camera matrix

P.

Result 9. For a 2D pointu = [u, v, 1]> in the first image, the chierality constraint for planar

homography estimation can be written ash>3 u > 0, whereh>3 is the third row of H.
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Proof. Assume that a planeπ>X = 0, with π = [v>, 1]>, is imaged by two camerasP =

[I | 0] andP′ = [A | b], where thei-th row of A is denoted asa>i , andb = [b1, b2, b3]
>. The

planar homography can then be written as [7]:

H = A− bv> (35)

Supposeu = [u, v, 1]> is the image (in the first camera) of the 3D point

X = [x>, 1]> = [X, Y, Z, 1]>.

Then we have

Zu = PX = x.

SinceX is on the planeπ. We have

X = [x>,−v>x]>.

The chierality constraint is:

p′>3 X = [a>3 , b3][x
>,−v>x]>

= (a>3 − b3v
>)x

= h>3 x

= Z h>3 u

> 0

whereZ is the depth of the 3D pointX. From the chierality constraint for the first cameraP,

we haveZ > 0. As a result,h>3 u > 0.
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