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Abstract

Geometric reconstruction problems in computer vision are often solved by minimizing
a cost function that combines the reprojection errors in the 2D images. In this paper, we
show that, for various geometric reconstruction problems, their reprojection error functions
share acommonand quasiconvexXormulation. Based on the quasiconvexity, we present a
novel quasiconvex optimization framework in which the geometric reconstruction problems
are formulated as a small number of small-scale convex programs that are ready to solve.
Our final reconstruction algorithm is simple and has intuitive geometric interpretation. In
contrast to existing random sampling or local minimization approaches, our algorithm is
deterministic and guarantees a predefined accuracy of the minimization result. Moreover, the
quasiconvexity provides an intuitive method to handle directional uncertainties and outliers
in measurements. We demonstrate the effectiveness of our algorithm by experiments on both
synthetic and real data.



1 Introduction

Given measurements in 2D images, the goal of geometric reconstruction in computer vision
Is to estimate the three-dimensional information about the scene and the camera motions.
Classical examples include triangulation [11], camera resectioning [4, 10], and structure from
motion (see [7] for a review). The Gold standard for these estimation problems is minimizing
F,, the averageof squared reprojection errors (model-fitting errors measured in 2D image
domain). MinimizingF; leads to maximum likelihood estimation when measurement noises
follow Gaussian distribution.

Due to the camera perspective effect, the cost funciiprs highly nonlinear and often
contains multiple local minima. Minimizing’ is therefore difficult. Hartley and Schaffal-
itzky [6] proposed using thpointwise maximurof the squared reprojection errors as the cost
function, which we denote ak,.. In contrast toFy, it was shown thaf,, contains only one
single minimum value in its feasible domain. An approach using random line search in the
parameter space was used in [6] to minimizg. The convergence behavior of random line
search remains unclear. As pointed out in [6], it is difficult to perform random line search
when the parameter space is high dimensional. Constrained minimization is also proposed
in [6] for minimizing F,,. However, the constraints are nonlinear and nonconvex, making
such constrained minimization a difficult problem by itself.

We can consider the model-fitting error as a function of the unknown parameters, which is
termedreprojection error functionn this paper. We show that the reprojection error functions
share a&commorandquasiconveformulation for the geometric reconstruction problems un-
der our consideration. As a resul,,, the pointwise maximum of a family of quasiconvex
functions, is also a quasiconvex function. We then present an one-dimensional bisection al-
gorithm to minimize the quasiconvex functiéf,. Our algorithm consists of a small number
of small-scale convex programs, specifically linear programs (LP) or second-order cone pro-
grams (SOCP). Both LP and SOCP are well-studied and existing efficient algorithms and im-
plementations are ready to use. Compared to random line search in parameter space or local
minimization approaches, our minimization approach is efficient, even when the unknowns
are high dimensional. More importantly, our approach is deterministic and guarantees a pre-
defined accuracy of the minimization result.

It has been pointed out in [6] th&t, is sensitive to outliers. We present two approaches to
handling outliers. In the first approach, we usg, the pointwisen-th smallest reprojection
error, as the cost function. In contrasti, or F}, the cost functior¥;, is highly robust to
outliers [18]. In spite of its complex formulation, in our cagesis still a pointwise operator
of a family of quasiconvex functions. As a result, our algorithm to minimize can be
extended to efficiently minimizé;,,, again by solving small-scale convex programs (LP or



SOCP). In the second approach, we show that the active constraints in the convex programs
must contain outliers (if they exist). As a result, we can remove outliers by simply removing
active constraints.

1.1 Background: geometric reconstruction problems

We present four classical examples of geometric reconstruction problems in computer vision.

1.1.1 Multi-view triangulation

We are given projection matrices 8f cameras, denoted p;, i = 1, ..., N}, and the images
of the unknown 3D poin¥ in theseN cameras, denoted Hy;,: = 1, ..., N}. The task of
triangulation is to estimaté from {P;} and{x;}. Triangulation is a necessary step in two-
or multi-view 3D reconstruction, and in structure from motion.

Note that optimal triangulation algorithms [11, 9] for two-view case are not generalizable
to multi-view case.

1.1.2 Cameraresectioning

We are given 3D point§Z;,: = 1, ..., N} and their image$x;,i = 1, ..., N} in one camera.
The task is to estimate the camera projection marixom theseN corresponding pairs
{x; « Z,}. Camera resectioning is used in camera calibration and in structure from motion.

1.1.3 Multi-view reconstruction with known rotations

In some cases the camera rotations are known, leaving only the camera positions and the 3D
of the scene to be estimated [6]. For example, in vision-aided inertial navigation, accurate
camera pose is available from modern gyroscopes, while the camera position information
from accelerometers is still noisy [3]. Another example is that there are reconstruction meth-
ods in which the camera rotation for each frame is estimated in a first step [17].

Denote theV intrinsically calibrated cameras &B; = (R;, —R;C;),i = 1,..., N}, where
for each camera the rotati®y is known, but its 3D positiorC; is unknown. We are given
2D feature pointgx;; } over theN cameras. Herg;; denotes the projection gfth 3D point
Z,; onto thei-th camera. The task is to estimdt&; } and{C,} from the 2D pointx;; } and
the camera pos€®,; }.



1.1.4 Multi-view reconstruction using a reference plane

When a reference plane is visible in all images, the inter-image planar homography from
the given reference plane can be used to compensate the relative camera rotations. Then the
problem essentially reduces to the above case of reconstruction with known rotations.

1.1.5 Planar homography estimation

Two images of points on a 3D scene plane are related by a planar homogtashy 3 non-
singular matrix. GivenV correspondencel; < x;,i = 1,..., N}, the task is to estimate
such thai = Hx.

2 The cost function

In this section, we define the reconstruction error metric at each individual 2D measurement,
and the cost functions that combine reconstruction errors from individual 2D measurements.

2.1 Error metric for one 2D measurment

We use Triangulation as an example to illustrate three often-used error metrics for an indi-
vidual 2D measurement.

2.1.1 Algebraic distance

Denotex; = (x;; 1) the homogeneous coordinates of the 2D measurememte have the
following linear equation:
kix; = P,Z (1)

HereZ is also expressed in homogeneous coordinates. The algebraic distargesftiren
defined by:
fi(Z) = ||kixi — PiZ|2 (2)

Linear least-squares can be applied to estirddtg minimizing the sum of squared algebraic
distances. Since the algebraic distance is not geometrically or statistically meaningful, the
algebraic reconstruction is not reliable (see [18, 6]).

2.1.2 Distance in 3D space

In the case of calibrated camergg,Z) can be defined as the distance from the 3D p&int
to the ray back-projected from,. In the case of two views, this distance function leads to



Figure 1:Distance betweer = (u,v) andx = (1, 9). The solid square shows the contour on which
the L; norm errore; = |e,| + |ey| = a, while the dash line shows the contour on which faenorm
error e; = /€2 + e2 = a. Heree,, = (u — @), ande, = (v — ).

the midpoint estimation method whefeis given by midpoint of the perpendicular between
the two rays.
When a camera is further away from the 3D pdithe camera has larger uncertainty on
Z. Distance metric in 3D space cannot take such uncertainty into account. As a result, the
reconstruction result is unstable when the 3D point is far away from cameras.

2.1.3 Reprojection error in the image

The reprojection error is defined as the distance in the 2D image domain betyaed its
reprojectionx; = m;(Z):

fiZ) = ||x; — %l = [|xi — mi(Z)]), ()

wherex; = 7;(Z) is the reprojection oZ in the image of camerg;, and|| - ||, denotes some
vector norm. Bothk; andx; are in 2D Cartesian coordinates.

We choose reprojection error metric since it has a well-defined geometric meaning and it
leads to maximum likelihood estimation. For example, whemorm is used in Eq. (3), the
reprojection errorf; is theEuclidean distanceetweenx; andx;. We can also usé; norm.

Its geometric meaning is shown in Fig. 1.

2.2 Generalized reprojection error function

Definition 1. The general formulation of reprojection error function:

_ X
F00 =155 @

where

e X € R" s the unknown vector to be estimated;
e p(X) is a convex function, ana X) > 0.

e ¢(X) is alinear function, and/(X) > 0;

5



In the following we show that most reprojection error functions are special cases of the
above general formulation. For a geometric reconstruction problem, if its reprojection error
function conforms to the general formulation in Eq. (4), the algorithms we present in this
paper can be applied to solve such reconstruction problem.

2.2.1 Reprojection error function in the image plane

Result 1. For the reconstruction problems in Section 1.1, the reprojection error function
defined in the image domain conforms to the general formulation in Definition 1.

Proof. For the problems in Section 1.1, the reprojectiorxof (u,v) in the image can be
written as:

_ 5
* c"X’ ¢™X )
Here X is the vector to be estimatech, b, andc are known vectors. For example, in the

triangulation problem, they are the three rows of the camera nigtrespectively.
The reprojection error function is:

) (aTX loTX>T

. 1
f(X) = ||X - X”l = ||@ (pu<X)apv<X)) ||la (6)

where|| - ||; is the vector norm, and
po(X) = (ve’ =b")X, (7)

It is obvious thay(X) is a linear function oX.

In this paper, we consider affine or Euclidean reconstructiofihe cheirality constraint
(see [7] and appendix), which states that the 3D points visible in the image must be in front
of the camera, can then be expresse¢ aX > 0. Therefore, we have(X) > 0. The
reprojection error function in Eq. (6) can then be rewritten as:

F(X) = @H (p(X), po(X)) [l = % @®)

Any norm functiong(y) = ||y||; is a convex function of. The functiom(X) = (p.(X), p,(X))
Is an affine function oX. The composition of a convex functignand an affine function,
denoted byy o h, is a convex function. Thereforg(X) = (g o h)(X) is a convex function
of X. Itis obvious thap(X) > 0. O

1In a way similar to the method briefed in [6], our algorithm in this paper can be extended to projective
reconstruction.
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Figure 2: Uncertainty in feature point locations. (a): Scalar uncertainty with covariance matrix
Q = diag(o,0); (b): Directional but uncorrelated noises, with covariance mattix diag(o1, 02);
(c): Directional and correlated noises, with covariance magia full 2 x 2 matrix.

(a)

2.2.2 Uncertainty-weighted reprojection error function

When uncertainty on the location of each 2D feature point is available, it can be shown that
the uncertainty-weighted reprojection error function still conforms to the general formulation
in Definition 1.

Uncertainty of feature position

The accuracy of feature matching depends on the intensity pattern around each feature,
which often has strong directionality and is location-dependent. Such directional uncertainty
can be characterized by the following inverse covariance matrix (cf. [12, 13]:

oty ( LI, Il ) | )
S e .1, 1,1,

wherew is a small window centered around the feature point in the imagé the i-th
cameras is determined by the intensity pattern insideand/, and/, are image gradients
alongu andwv direction, respectively. A more accurate method to estimate feature position
uncertainty is presented in [13], which takes into account not only the image pattern but also

the image pixel noises.
Figure 2 shows the three different types feature uncertainty:

e Q = diag(o,0): scalar uncertainty that is feature-dependent, but is isotropic and there-
fore uncorrelated im andv direction;

e Q = diag(oy,09): directional ¢y # o2) but uncorrelated im andv direction;
e Q= full 2 x 2 matriz: directional and correlated imandv direction.
Covariance-weighted reprojection error function

The uncertainty in the location of each 2D feature pairdan be taken into account by
weighting the reprojection error appropriately using the covariance matrix. The covariance



matrix Q for the 2D pointx is a symmetric positive semi-definite matrix, and can be de-
composed into the following form by the Singular Value Decompositipe: UZUT, where
L = diag(o1,09), andU is a2 x 2 orthonormal matrix. The inverse covariance matrix takes
the form of

Ql=uzlu’ (10)

DenoteB = ©~'/2UT, which is an affine transformation that transforms the input data into
covariance-weighted data space where the noises at each feature become isotropit.and
The transformed coordinates (in Euclideankandx in the image plane are :

x' = (u,v)" =B(u,v)" (11)

., . 1 al

wherea' andb' follow the notation in Eq. (5). The covariance matrix of the noise in the
covariance-weighted data space now becomes isotropic and takes the fdiny(@f 1).

Denote
T
A:[B(g)g_B@T)]. "

The covariance-weighted reprojection error function is:

(14)

cTX H
Again, the cheirality constraint [5], which states that the 3D points visible in the image

must be in front of the camera, can then be expressed X¥s> 0. Therefore, Eq. (14) can
then be written as:

fUX) =[x -

1
“(X) = 15
f ( ) CTX ( )
The norm functiorp(X) = ||AX]] is convex, and the function in Eq. (15) conforms to the
general formulation in Definition 1.

When|| - || in Eqg. (15) isLy-norm, f*(X) is the Mahalanobis distance betweeandx.

2.2.3 Angular reprojection error function

When the camera is calibrated, the angleetween the observed rayand the reprojection
rayr = (a, b,c)" X can be used to define the reprojection error [9, 6]:

XXr

f(X) = [tan(0)] =

(16)

x'r

where x denotes cross-product. We choase () since it is a monotonically-increasing
function of @ whend € [0,7/2). The cheirality constraint can be enforced [By < 7/2,
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which leads tog(X) = x'r > 0. Itis easy to verify thay(X) is a linear function of
X, andp(X) = |x x r| is convex inX. Therefore, the angular reprojection error function

f(X) = ’% conforms to the general form in Definition 1.

2.3 Combining reprojection errors into cost function

The often used cost functiah, in geometric reconstruction is defined as the average of the
squared.,-norm reprojection errors:

F= %;ffoc) (17)

whereM is the total number of 2D measurements (poinig)is difficult to minimize as it is
highly nonlinear and contains multiple local minima [6].
Hartley and Schaffalitzky [6] proposed using the pointwise maximum of the reprojection
errors as the cost function:
Flo(X) = max f;(X) (18)

When the measurement uncertainties are available, the uncertainty-weighted cost function is
denoted by:
F(X) = max f{*(X) (19)

It was shown in [6] thaf",,(X) contains only one single minimum value in its domain, and is
therefore easier to minimize thdf)(X). But as is also pointed out in [6F,, (X) is sensitive
to outliers.
To deal with the outliers, we propose using gwntwisem-th smallest reprojection errors
as the cost function:
Fyu(X) = mth fi(X) (20)

Itis obvious thatF, is a special case df,, whenm = N. F,, is a highly robust function. For
example, whemn = | N/2], it is the median operator. Minimizing,, leads to least-median
optimization [18], which can handle noisy measurements with W{9%6 of outliers.

3 Minimizing the cost function

Both F, and F;,, are constructed from pointwise operations on a family of functions. They
are not differentiable at many points. As a result, classical gradient-based approaches are not
applicable to minimizing them. Random line search in the parameter space was proposed
in [6] to minimize F,,, and random sampling [18, 15] is often used to detect outliers and



to minimize F;,,. These randomized approaches are not scalable when the unknowns are
high-dimensional. They do not guarantee convergence either.

In this section, we show that the general reprojection error function (Definition 1) is qua-
siconvex. Such quasiconvexity enables us to design a deterministic and efficient algorithm to
minimizing F,, and F,,,.

3.1 Minimization by feasibility

Instead of random search or sampling, let us look at a minimization approach that uses the
classic bisection search in the range domaif'gfand F,,,.

For the vision problems in which we are interested, the image size is bounded. Therefore,
it is realistic to assume that< F'(X) < h, whereF'(X) is the cost function. Faw € [l, i,
denoteS,, thea-sublevel set of'(X):

S. = {X | F(X) < a} (21)

If S, is non-empty, then we know tha&t*, the minimum value of'(X), satisfiesF™* < «.
Otherwise, we havé™ > «. Determining whethes,, is empty or not can be achieved by
solving the following feasibility problem:

find X (22)
st. X e S,

Based on the above observation, we can use the bisection algorithm (see [2]) to pin down
the optimal value of’'(X) by solving a sequence of feasibility problems. Fig. 3 shows the
basic procedure of the algorithm. It starts with a rafigg] that is known to contairF™*.

Then we solve the feasibility problem at its mid-point= (I + h)/2. If it is feasible, then
the optimal valueF™ is in the lower half of the interval and we can shrifikh] to [I, «].

Otherwise,F"* must be in the upper half of the interval and we shrjhk] to [a, h]. The
algorithm then continues on the identified half of the interval.

As we can see, at each iteration the range is shrunk by half, and the bisection algorithm
is guaranteed to converge jiog,((h — [)/¢)] iterations. For examplé(, 100] allows the
re-projection error to be as many as 100 pixels, which is guaranteed to contain the optimal
value F*. If we choosez = 0.5 pixel, the algorithm will converge in onlylog, 200] = 8
iterations. Note that the number of iterations is independent of the dimension of the unknown
X, indicating that the algorithm is suitable for solving high dimensional problems. More
importantly, the optimal value we derive is guaranteed to be lesscthar).5 pixel away
from the true minimum value.
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Algorithm: minx F'(X).

1: Givenl < F*, h > F*, and the tolerance > 0.
2: while (h —1) > edo

3 a=(h+1)/2.

4.  Solve the feasibility problem (22).

5. if (22) is feasiblethen h = «;
6: elsel=aq.
7: end while

Figure 3: Classical bisection algorithm to pin down the optimal value by searching in the one-
dimensional range domain.

f(x)

a

S, X

Figure 4: A quasiconvex function. All of its-sublevel set$S,,} are convex. But this quasiconvex
function is not convex, as can be seen from the line segmBrihat lies below the function.

3.2 Quasiconvex functions

The bisection algorithm in Fig. 3 is simple, deterministic, and it converges in a small number
of iterations. It can even be applied to minimizing cost functions with multiple minima. The
critical stepin the algorithm is solving the feasibility problem in Eq. (22), which could be

a hard problem by itself if thex-sublevel set ofF'(X) is complicated. However, if,, is
convex, then Eqg. (22) is a convex feasibility problem [2] that can be solved efficiently. A
function with such convex-sublevel set is called @uasiconvesfunction:

Definition 2. (see [2])A functionf : R" — R is quasiconvexif its domaindom/(f) and all
its sublevel sets

Sa = A{z € dom(f) |f(z) < o},

for o € R, are convex.

A convex function has convex sublevel sets, and therefore, is quasiconvex. The reverse is
not true in general. Fig. 4 shows an example of quasiconvex function that is not convex. The
dash-line segment that lies below the function indicates the non-convexity of the function.

The reprojection error functions are not convex due to camera perspective effect, but they
are quasiconvex:

11



Result 2. A reprojection error function that conforms to the general form defined in(4£q.
Is a quasiconvex function.

Proof. For anya > 0, thea-sublevel set off (X) is:
Sa ={X [ [(X) <}
= {X|p(X) — aq(X) <0, ¢(X) > 0}

From the definition of the general reprojection error function (Definition 1), we know that
p(X) is a convex function, and aq(X) is a linear function and, therefore, a convex function.
The sum of these two convex functiongX) = p(X) — aq(X) is still a convex function.

A sublevel set of a convex function is a convex set. As a resyltis a convex set since

it is the intersection of two convex sets: the zero sublevel sefXf), and the half space
defined byg(X) > 0. Sincedom(f) = R™ andS,, are all convex, we conclude thatX) is
guasiconvex. O

3.3 Minimizing cost function F,,

Result 3. F..(X), the pointwise maximum of quasiconvex reprojection error functigi3s),
Is also quasiconvex.

Proof. Thea-sublevel sef5, of F,(X) is:
So = {X | max fi(X) < a}

N
— ﬂ S
i=1

Here S’ is the a-sublevel set of the reprojection error functigiiX). From Result 2, we
know that{S’ } are all convex sets. As a result, their intersectianis also a convex set.
Therefore F,,(X) is a quasiconvex function. O

Due to its quasiconvexityt,, can be efficiently minimized by the bisection algorithm in
Fig. 3. The convex sef, = [, S’ can be expressed as:

Sa = {X | @:(X) > 0;pi(X) — aq;(X) < 0; i =1,--+ N}

The feasibility problem of the bisection algorithm in Eqg. (22) can now be solved by the
following convexprogram:
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min -y (23)

Xy

st. —qi(X) +e<,
pi(X) — ag;(X) <,
i=1,...,N.

Heree is a small positive number. Denoté the optimal value of (23). * < 0, thenS,, of
F..(X) is nonempty, and the problem in (22) is feasible; otherwise (22) is infeasible. Note
that we do not need to solve (23) with high accuracy. The algorithm terminates whenever
~v < 0 is satisfied, or whenever a dual feasible point is found with positive dual objective
(which meangy* > 0).

3.4 Minimizing robust cost function F;,

F..(X) is sensitive to outliers [6]. To deal with outliers, we use the robust cost function
F,,(X), which is defined as the:-th smallest reprojection error (see Eq. (2@),(X) is not
a quasiconvex function, except for = NV, in which caseF;,, becomed',..

However, sincd’,,(X) is a pointwise function of a family of quasiconvex functidn$(X)},
its a-sublevel set can still be represented by the convex sublevel sets of these quasiconvex
functions. As a result, we are able to extend the bisection algorithm to efficiently minimize
F,.

3.4.1 Thea-sublevel set off;,

A point X, belongs to thev-sublevel set of,,(X) if and only if there exists a group of
a-sublevel sets whose intersection contains the Pyt

Result 4. DenoteS,, thea-sublevel set of,,(X). For anyX,, X, € S, ifand only if X, €,,
{SL 82 ... SN1. HereS! is thea-sublevel set of;(X). The symbok,, means that there
existm sublevel sets igS!, S% ... SN such thatX, is inside the intersection of these
sublevel sets.

Proof. For anyX,, we sort theV reprojection errors

f1<X0)7f2(X0>7 U 7fN(X0)

into the nondecreasing order

fay(Xo) <+ < fon)(Xo) < -+ < fiv)(Xo) (24)

13



For the necessary condition, X, € S,, then we have’,, (X)) = fim)(Xo) < a. The first
m smallest reprojection errorsf;)(Xo),i = 1,--- ,m} in Eq. (24) must therefore satisfy
f)(Xo) < a. As aresultX, belongs to the intersection of the a-sublevel sets of the first
m functions in Eq. (24).

For the sufficient condition, suppo3g, is in the intersection of the following: sublevel
sets:{S, i =1,---,m}, whereS{” is thea-sublevel set of ). We must have:

f9Xo)<a, i=1,---.m (25)
Now if F,(Xo) = fun)(Xo) > a, then from the sorted sequence in Eq. (24) we know
that the number of less-than+eprojection errors is less than. This contradicts Eq. (25)

where there aren less-thana reprojection errors. Therefore we havg, (X,) < o, i.e.,
Xy € S,. OJ

3.4.2 Feasibility by convex program

From Result 4, the feasibility problem in the bisection algorithm to minimizifgcan be
rewritten as:

find X (26)

st.X €, {S1,82,... 5N
In other words, we need to determine if there existi-sublevel sets whose common inter-
section is non-empty. A straightforward approach is to check the feasibility of every possible
group ofm sublevel sets, where for each group its feasibility can be exactly determined by
the convex program of Eq. (23). In worst case, this reqbﬁ%convex programs to solve

Eqg. (26), which is good for smalV. WhenN is large, we can use either integer program or
its convex approximation.

Integer program: minimizing number of infeasibility

Result 5. The feasibility problem in Equatio(26) can be formulated exactly by integer
programming:

min 42+ (27)
st —q(X) <,

pi(X) — aqi(X) < v,

7 =10, v},

i=1,..N.

Herev > 0 is a large positive integer.
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Given optimal valuegX*, v*) of the above minimization problem, if; = 0, then the
i-th reprojection errorf;(X) < «, i.e., X is inside thei-th a-sublevel set. On the other
hand, ify; = v, thenvX is outside the-th a-sublevel set. Since the number of infeasi-
bility (1 + 72 + --- + 7n) is minimized, we have a solution where the number feasible
constraints is maximized. In other words, we seek a solution which maximizes the number
of a-sublevel sets who have non-empty common intersection. If this number is largexthan
then Equation (26) feasible, otherwise, it is infeasible.

Convex program: minimizing sum of infeasibility
Although integer programming is well-studied and existing efficient package is available, it
Is in general more complicate than LP or SOCP.

Result 6. We can use sum of infeasibility as an approximation to estimate the number of
infeasible constraints:

min71+72+--~+71v (28)
Xy
st —qi(X) <,
pi(X) — agi(X) <,
Vi 2 07
1=1,...,N.
Denotey* = (71,73, -+ ,vx) the optimal value of the above convex program achieving at

X*. Denoteg the number of zero elementsA4i. If ¢ > m, then the problem defined by
Eqg. (26) must be feasible; otherwise we consider E8) infeasible.

¢ is called the infeasibility off;(X*). For any sublevel set’, if its corresponding in-
feasibility v = 0, thenX* is insideS’,. As a result, the conditiop > m is sufficient for
Eq. (26) to be feasible, since thegsublevel sets contain the common paXit.

While ¢ > m is a sufficient condition, it is an approximated necessary condition for
Eq. (26) to be feasible. The exact conclusion about the infeasibility of Eq. (26) requires
checking the feasibility o(ﬁ) groups ofm sublevel sets, or using integer programming to
find the optimal poinX* that minimizes the number of infeasibilities (the number of nonzero
components iny*). Result 6 finds the minimum sum-of-infeasibiliti®s, v, and uses it to
approximate the minimum number of infeasibilities. With such approximation, the bisection
algorithm gives an upper bound on the true minimum valug,pf The sum of infeasibility
|vIli = >_, i is by itself a robust metricl{; norm is a robust metric), especially in our cases
where the magnitude of outliers in the 2D measurements is bound by the image size. As a
result, the bisection algorithm using Result 6 can usually achieve a tight upper bound on the
true minimum value of’,,,.
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Figure 5: When the camera matrix is normalized appropriately, the infeasibjfitys the distance
from X* to thea-convex cone. For comparison purpogdejs the distance to the ray back-projected
from 2D measurement;.

Fig. 5 illustrates the meaning of . When the camera matrix iormalizedappropriately,
the infeasibilityy; is the distance fronX* to the convex cone K* is outside the cone. K*
is inside the coné’,, theny; = 0. The sum-of-infeasibilitie ", ~; is therefore the sum of
distances fronX* to the convex cones that do not contairi. WhenX* goes further away
from the camerd;, the camerd’; has larger uncertainty aX*. Such varying uncertainty is
taken into account by; as it is the distance to the cone, and the cone becomes larer as
goes further away from the cameta This is in contrast to the distance to back-projected
ray in 3D space (see Fig. 5).

Minimizing sum of weighted infeasibility

We can further improve the result by using weighted sum of infeasibitityy in Eq. (28),
wherew = (wy,--- ,wy) is the weight for each measurement, ande [0, 1] can be set
according to its corresponding reprojection error to down-weight outliers.

r)r(ﬂn w1y + weye + -0 FWNYN
7’7

s.t. —qi(X) < i,
pi(X) — ag;(X) <,
’yi 2 07
i=1,.. N.

A simple weighting scheme is thi@, 1} weighting where the weights; corresponding
to active constraints are set to 0. Another scheme is to determine the weigttording to

reprojection error; = |x; — &

X, .
v

3.5 Feasibility by LP or SOCP

When L;- or Ly-norm error metric is used in defining the reprojection error function, the
convex program for feasibility becomes small-scale linear programs (LP) or second-order
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convex programs (SOCP), respectively.

3.5.1 L;-norm error metric leads to LP

When L,-norm error metric is used, the convex program in Eg. (28) becomes the following
linear program:

miny; +vy + -+ N8 (29)
X

sit. —qi(X) +e <,

7@207 221,,N

Herep.;, p.;, andg; are all linear functions oK (see Eq. (7) for the definition).

3.5.2 Ly-norm error metric leads to SOCP

When Ly-norm error metric is used, Eq. (28) becomes:

min71+71—|—-"+’yN (30)
Xy
st —qi(X) + €<,

1A X2 < ag;(X) + v,

>0, i=1,..N.

T T
P =
UZ‘CzT — b;r

is a2 x 3 matrix, anda, b, andc are known vectors (see Eq. (5) for the notation);(X) +;
is a linear function oiX. Therefore, the inequality

Here

[8:X]]2 < agi(X) +

defines a second order convex cone [2]. As aresult, Eq. (30) is a second-order cone program-
ming (SOCP).
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3.6 Explicit outlier detection

In Section 3.4, we have discussed how to use equation (28) to minimize the cost fungtion
the m-th smallest reprojection error, for a robust geometric reconstruction. In this section,
we discuss how to explicitly detect outliers by examining the activeness of the constraints in
the convex program of equation (28).

3.6.1 Inliers and outliers

DenoteX the ground truth value of the unknown geometric parameters we want to esti-
mate. For an inlier, its distance to the reprojectioXaf should follow zero-mean Gaussian
distribution. On the other hand, for an outlier, such distance is larger than some value (e.g.,
30, whereo is the standard deviation of the Gaussian distribution of the inliers’ distance to
X7).

Definition 3. A measurement; is an inlier if and only if itsa-sublevel set containX as
its interior point, i.e.. X, € int(S,,.). Hereas is some predefined value.

From the above definition, we have:
Result 7. The ar-sublevel sets of all inliers have a common intersection set that contains
X as an interior point.
3.6.2 Outlier detection

For convenience, equation (28) is presented here again:

min v, 92+ -+ + N
X,y

sit. —q;(X) +e <,
pi(X) — ag;(X) <,
Af/'i, Z Oa
i=1,.. N.

wheree is a small positive value.
The constraints in the convex program of Eq. (28) can be classified into active or inactive.

Definition 4. Denoteh;(X) = p;(X)—aq;(X)—~;. SupposéX*, v*) is the optimal solution
of Eq.(28). If h;(X*) = 0, then the constraink;(X) < 0 is activeat X*. If h;(X*) < 0,
then the constraink;(X) < 0 isinactiveat X*.
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For an active constrairit;(X), the optimal solutionX* is either at the boundary &’
(when~; = 0), or outside ofS? (when~; > 0).

If there are outliers in the measurements, then for outlier detection we only care about the
case ofa > ar. Since if we can achieve < ag in the bisection algorithm, we know the
measurements are all inliers according to Definition 3.

Result 8. If there are outliers in the measuremefi;}, then the convex prograr(28)
achieves some positive optimal valué~y* at (X*,~*), givena = ar — ¢ (Heree is a
very small positive value). Moreover, at least one active constraint comes from some outlier.

Proof. From the definition, it is obvious that (28) will achieve some positive optimal value,
denoted byX*. From Result 7, we know the-sublevel sets of all inliers have a common
intersection that containX,. Supposall active constraints are from inliers. Dendtethe
common intersection of the-sublevel sets of these (active) inliers. Then from Result 7, we
know S; is a non-empty set that contaids; as an interior point. By choosing any point

Xy € S7, we achieve a better objective valuezafrofor the convex program (28). This is in
contradiction to the condition that the convex program (28) achieves a positive optimal value.
Therefore, some active constraints must be from outliers. O

Result 8 suggest a simple mechanism to detect outliers, i.e., in each iteration of the bisec-
tion algorithm (see figure 3), discard the measurements corresponding to active constraints,
until @« < a. But one should be aware that some of the inliers may be discarded as they
may be active. In some applications, the number of constraints is small (e.g., 3D triangu-
lation given only 3 or 4 views), minimizing thé&;,, may be favorable to removing active
constraints.

3.7 Geometric interpretation

The minimization algorithm we presented in this section has intuitive geometric interpreta-
tion. We use multi-view triangulation as an example to illustrate. For each 2D measurement,

Figure 6: Geometric illustration of 3D reconstruction using quasiconvex optimization to minimize
F,,. Here L; norm is used in the reprojection error function. The algorithm seeks the minimum cone
size with which at least: cones have non-empty intersection.
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Figure 7: Geometric illustration of 3D reconstruction using quasiconvex optimization. Heye,

norm is used in the reprojection error function. (a): The shape and size of each cone are determined
by o and covariance matrix;; (b): The algorithm seeks minimumsuch that the cones have non-
emptycommonintersectionS:°. Note that cones have different shapes and sizes. The lastgpne

has large directional uncertainty and has little constraint on determirfiffgin the direction that has

large uncertainty.

the camera optical center and the six linear inequalities in Eq.(29) form a convextame
front of the camera in the 3D space, as shown in Fig. 6. The cone size is determined by
For any point inside the convex coi, its reprojection error must be less than If the
common intersection of at least convex cones is not empty, then we conclude that there
exists at least one poiX, in the 3D space such that the cost functign(X,) < «. Min-
imizing F,,,(X) is therefore equivalent to adjusting the size of the convex cone, until we
find the minimuma: with which the intersection of at least convex cones is non-empty.

Note that as a camera is further away from the 3D pXigtit has weaker constraint, since
the convex cone size &, becomes larger. This is a nice property since the further away
from the camera, the larger uncertainty about the 3D position the camera has.

3.7.1 Geometric interpretation: covariance-weighted quasiconvex minimization

The covariance-weighted quasiconvex minimization algorithm also has an intuitive geometric
interpretation. We use triangulation as an example to illustrate.

For a feature poing;, thea-sublevel set}” of the covariance-weighted reprojection error
function f*(X) is a second order convex cone in the 3D space in front of the camera. The
shape and size of such convex cone are determined &yd the covariance matrig; =
U diag(oy, 02)UT, as shown in Fig. 7(a). The construction of convex c8fiés the following.

First a circle in the image plane with radiass scaled by /o, and, /o, in v andv direction,
respectively. This results in an ellipse with axesQfo, anda,, /o, respectively. The ellipse
is then rotated by the rotation matiix The final convex cone, dubbed e@liiptical cone is
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formed by connecting the camera optical center and the rotated ellipse.

The a-sublevel set5$° of the cost function/”(X) is the intersection of alh-sublevel
sets{S}*}. Minimizing the covariance-weighted coBt (X) is therefore equivalent to de-
termining if there exists common intersection of the convex elliptical c§i5¢g, as shown
in Fig. 7(b). The bisection algorithm then seeks a minimum valgeich that the common
intersection of the convex elliptical conéS;’} is non-empty.

Since« is common for all convex cones, the relative shape and size of each individual
cone is actually determined by its associated covariance matrix. Therefore the effect of each
convex cone constraint on the final estimatiis weighted by the inverse covariance matrix.
Consider an extreme case when uncertainty goes to infinity. In such case, the corresponding
convex cone is scaled to infinite size and does not have any constraint on the estimate of
X. On the other hand, if the uncertainty is zero, the convex cone becomes a ray, and we
must constrainX on the ray, which is a strong constraint. When directional uncertainty is
presented, the effect of constraints from different directions are determineg &yd o,
respectively.

3.8 Differences from algebraic method

Both the linear program in Eg. (29) and the algebraic approach in Section 2.1.1 are linear.
However, they have important differences.

The algebraic approach directly computesagproximatedestimation of theunknown
parameterswhile the linear program only determines tteasibility in the bisection algo-
rithm. It is the overall bisection algorithm that produces the final estimation of the unknown
parameters.

The algebraic approach outputs approximatedestimation of the unknown parameters
from an over-constrained linear equation set. It minimizes the sum of squared algebraic dis-
tance that is neither geometrically nor statistically meaningful. The noise in every linear
equation affects the final estimation of the unknown parameters. In our approach, the noise
has been taken into account by the cone siz®ncec is given, the resulting linear program
Is considered to be noiseless in a sense that it givastsolution to determining the feasibil-
ity for bisection algorithm. The redundant constraints in the linear program will be inactive
and, therefore, do not affect its final solution.

4 Experiments

We apply our quasiconvex optimization algorithm to multi-view triangulation and sequential
structure from motion (SFM)(see [1]), and evaluate the performance using both synthetic and
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Figure 8: Multi-view triangulation: synthetic data. (a): The camera is rotating and translating,
imaging a 3D scene consists of 40 points; (b): Reconstruction errors (normalized K{gEB)Qwith
zero-mean Gaussian noises added to 2D point coordinates; (c): Reconstruction errors under both
Gaussian noises and outliers.

real data. We also show that using covariance-weighted error functions can greatly improve
the reconstruction results.

4.1 Multi-view triangulation: synthetic data

The synthetic scene contains forty 3D points, distributed at different depth, that are imaged
by a moving synthetic camera, as shown in Fig. 8(a). We use 10 consecutive views in the
triangulation. Controlled zero-mean Gaussian noises and outliers are added to the 2D points.
We apply our algorithm to minimize three cost functidns, £,,, andF. HereF¥ denotes
F,,, with weighted sum-of-infeasibilities used in Eq. (28). The reconstruction results from
the algebraic approach (see Section 2.1.1) are included for comparison purpose.

Fig. 8 shows the average reconstruction errors, where (b) shows results when Gaussian
noises are added to the 2D positions at increasing variances, and (c) shows the results with
both Gaussian noises and 50% of outliers. The reconstruction error is normalized by

2= 20,
2P

whereZ is the known ground truth of 3D position, aidis the triangulation result. As we

can see, the algebraic approach has poor performance when there are noises or outliers, while
our quasiconvex optimization successfully minimizeés, F,,, and F*. Without outliers,

F., F,,, andF" have similar performance, with,, and I} better tharn¥,, when the noises
become larger. When there are outliers, the performanég afegrades quickly.

(31)
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Figure 9: Multi-view triangulation: corridor sequence. (a): The first image of this 11-frame se-
qguence; (b): Reconstruction errors (normalized by E1.)) with added zero-mean Gaussian noises;

(c): Reconstruction errors with both Gaussian noises and outliers. For each feature track, the outliers
are added to 1 to 3 views, depending on the number of views in which the corresponding 3D point is
visible. (d): Reconstruction errors with increased strength of outliers (ranged from 5 to 40 pixels).

4.2 Multi-view triangulation: real data with “ground truth”

We use thecorridor sequencé in which the camera is moving forward along the corridor.

Fig. 9(a) shows the first frame of this 11-frame sequence. Along with the sequence, the
2D feature tracks, camera projection matrices, and 3D points are also provided. We use 2D
feature tracks and camera matrices for triangulation, and compare the recovered 3D against
the provided “ground truth”.

Controlled zero-mean Gaussian and/or outliers are added to the 2D feature coordinates.
Fig. 9(b) and (c) show the reconstruction errors. The results are consistent with those from
the synthetic data experiment. Again, our quasiconvex optimization successfully minimizes
Fo, F,,, andFY.

We observed that,, is determined by outliers. Its performance depends on the “strength”
of the outliers. Fig 9(d) shows the results where the strength of one outlier is increased. As
we can see, the performance frdry, degrades quickly when outlier strength is increased.

F' performs better tha,,, when outlier strength is large. When the 2D feature tracking
error is less than 25 pixeld;,, performs as well ag’%, indicating that in real scenarids,,
is usually good enough.

2http://www.robots.ox.ac.uk/ ~vgg/datal.html
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Figure 10:Multi-view triangulation in sequential SFM. The camera is moved (largely forward mo-
tion) around inside the office. (a): The first, middle, and last frame of the 450-frame sequence (image
size360 x 240), with tracked points superimposed. (b): Top-down view of the reconstruction results
of camera trajectory and 3D points. The yellow lines show the optical axis of the recovered cameras.
The red circle indicates the 3D points corresponding to the chair.

4.3 Application: sequential structure from motion

Our target application is vision-aided small and micro aerial vehicle navigation, in which
sequential SFM is applied to estimate both the camera motions and the 3D. We apply our
multi-view triangulation using,, minimization to the sequential SFM.

A 450-frame image sequence is taken by a mini camera that was moved around by hand
in an office. Fig. 10(a) shows the first, middle, and last frames in this sequence. The camera
Is mostly moving forward, which is typical for a micro aerial vehicle. The forward motion
makes the 3D estimation very challenging. Moreover, the images captured by the mini cam-
era have low quality, resulting in noisy 2D feature tracking. We therefore seek to use as many
frames as possible in triangulating a 3D point.

Fig. 10(b) shows the final reconstruction result (without global bundle adjustment). The
red circle indicates the points from the chair visible both in the first and the last image. In the
3D view, the reconstruction of those points at the end of the sequence aligns very well with
their reconstruction at the beginning of the sequence, indicating a good estimation of both
the 3D and the camera motions.

4.4 Experiments: quasiconvex minimization with uncertainty

We use planar homography estimation and multi-view triangulation as two applications of
our algorithm, and use synthetic and real data to evaluate its performance. We compare
the performances of three algorithms: the quasiconvex minimizatiét{ ofith uncertainty
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Figure 11: The set up for synthetic data generation for homography estimation. The camera is
looking at points on the ground plane. The image coordinates are normalized such that the camera
focal lengthf = 1.

model, the quasiconvex minimization éf, without utilizing feature uncertainty, and the
normalized linear algorithm.

4.4.1 Homography estimation with uncertainty: synthetic data

Fig. 11 shows the setup to generate the synthetic data for homography estimation, where the
camera images the points on the "ground plane”. This simulates the case where a camera
mounted on a vehicle is looking at the ground plane at some angle. Note that in thigcase

in homographyi; may become very small. In all the algorithms being compared, we do not
assumehs; = 1.

We randomly generate twenty 3D poirXs on the ground plane, and compute the 2D im-
agesx; of these 3D points. We then add elliptical Gaussian noise.td@ he noise perturbed
points are denoted by;. The ellipticity of the noise is measured by= \/W,
whereo,,., ando,,;, are the major and minor axes of the uncertainty ellipse, respectively.
The orientation of the ellipse is randomly selected for each point.

We compare the performances using four criteria:

e Maximum reprojection error
Fio(X) = maxd(%;, HX;) (32)
whered(-, -) denotes the Euclidean distance;
e Root of Mean Squares (RMS) of reprojection errors;
e Maximum covariance-weighted reprojection erfdt (X) as defined in Eq. (19);

e Error inH defined as:

N
1
en=\| % ; d?(x;, HX,) (33)
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Figure 12:Results from planar homography estimation. (a): RMS error; (b): Maximum of reprojec-
tion error; (c): Maximum of covariance-weighted reprojection error; (d): Errorin

whered(x;, HX;) is the Euclidean distance between the ground truth 2D pgiand
the reprojection poiniiX;. This error metric compares the estimatetb the ground
truth Hy using ground truth points. If there is not error in the estimatgtienc,; = 0.

We apply our algorithm to estimatefrom this synthetic data. We repeat the experiments
for 20 times, and report the above error measures using mean of these 20 runs. Fig. 12 shows
the results, wherg/o,,;, = 0.01 and/o,,,,, varies from 0.01 to 0.2, i.e., the ellipticity
varies from 1 (isotropic) to 20.

As we can see from (a), both,, and F have similar RMS error. Normalized linear
algorithm has similar RMS error whenis small, but becomes unreliable whe 10.

Fig. 12(b) shows that minimizing’,, gives lowest maximum reprojection error, while
Fig. 12(c) shows that minimizing’ gives lowest maximum covariance-weighted reprojec-
tion error. This indicates that quasiconvex minimization indeed achieves the global minimum
of F, andF¥, respectively.

From Fig. 12(d), which compares the estimaieabainst ground truthi; using the metric
er, We can see that! performs the best, and its performance does not degrade at all with
the increase of. This indicates that is the proper metric to minimize. We also find that
normalized linear algorithm performs better thdag whenr is small, but whemn is large, its
performance becomes unreliable.

26



s
s
<
=)
B
g
g
s
13
[2}
=
z

o
o

Maximum reprojection error

(b)

b
o

Max cov-weighted reproj error
g 2
u
o ~<
<]
+

+
+
Reconstruction error in 3D

0.15] +
, 7 i
o ot “ + i
02 o 01 pe® )\ o
o a + v F
Fx
o e s 10 1 1 15 18 2 o a6 8 10 12 14 1 18
elliptical uncertainty: r=c__ /c elliptical uncertainty: r=c,__ /o
max! Pmin max Omin

Figure 13:Results from multi-view triangulation. (a): RMS error; (b): Maximum of reprojection
error; (c): Maximum of covariance-weighted reprojection error; (d): Reconstruction error compared
against ground truth 3D.

4.4.2 Mulit-view triangulation with uncertainty: synthetic data

We use the set up in Fig. 8(a) to generate the synthetic data for multi-view triangulation with
uncertainty. The camera is rotating and translating, and takes ten consecutive views of twenty
3D points located at different depth. Directional Gaussian noises are added to the locations
of image points.

Fig. 13 shows the average results of 20 runs. Again it shows that the covariance-weighted
reprojection error is the right metric to use, as can be seen by the fadtthgives the best
3D estimatiornZ when compared to the ground trdfh using the following metric:

ozl
3D — T 7 I
[

(34)

4.5 Infinite elliptical uncertainty

The performance of¥ does not degrade even when the ellipticity of noisgges to es-
sentially infinity, as can be seen from Table 1. This fact indicates that the normal optical
flow can be modelled by directional (infinity) uncertainty. As a result, the point feature and
line feature can be simultaneously used in the quasiconvex optimization for many geometric
reconstruction problems.
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Figure 14:Two input images. (a): First image, where elliptical uncertainties for some feature points
are shown; (b): Last image.

4.5.1 Homography estimation with uncertainty: real data

We apply our algorithm to estimate the inter-image homography using real image data.
Fig. 14 shows two input images. Here Fig. 14(a) shows the first image. The other images are
obtained by applying a known and gradually-changed planar homography to image (a). This
way we have the ground truth of the planar homography for evaluation purpose.

The features in the first image are tracked through the sequence, and the inverse covari-
ance matrix for each feature is computed by the Hessian matrix (Eq. (9)). The elliptical
uncertainties for some feature points are shown in Fig. 14(a).

Fig. 15 shows the image residual by applying the inverse-warping using the estimated
homographies. As we can see, minimiziAf gives the homography that has the lowest
intensity residual. It correctly down weight the features with large directional uncertainty on
the top of the box to produce a correct estimatél.ofOn the other hand, both normalized
linear algorithm and the minimization df,, give worse results, as can be seen by the large
residuals on the top of the box, where there exist features with large directional uncertainty.
Normalized linear algorithm performs better than minimizig in this case.

Homography Triangulation‘
Algebraic 833.8092 1.4380
Fy 710.3891 3.1084
F¥ 0.0093 0.0146

Table 1:Results under infinite elliptical uncertainty= 10°. The table shows;; for homography
estimation anasp for triangulation.
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Figure 15:Residual image by applying the estimated homography. Note that residuals are scaled
up for visibility. The average pixel residual is showneaf®or each case too. (a): Normalized linear
algorithm,e = 15.0798; (b): Minimizing F, e = 28.2082; (c): Minimizing F¥, e = 5.8896.

5 Conclusion

We have presented a novel quasiconvex optimization framework to geometric reconstruc-
tion problems. Our algorithm is an efficient bisection search inotiedimensional range
domain, with each search step accomplished by a small-scale convex program that can be
efficiently solved. We derived the algorithm based on sound mathematical grounds, and
the algorithm is essentially free of parameter tuning. The final algorithm is simple, robust,
deterministic, and has very intuitive geometric interpretation. We have demonstrated the
effectiveness of our approach, using both synthetic and real data.

We identified the general quasiconvex formulation of the reprojection error functions,
therefore our quasiconvex optimization framework can be potentially applied to many other
estimation problems. We are investigating the applications of our approach to space carv-
ing [8], multi-baseline stereo reconstruction, and efficient bundle adjustment [16] in structure
from motion.

Appendix: Chierality constraint for homography estimation

The camera matrix appears in the first three problems in Section 1.1 and the Chierality
constraint is straightforward to be represented, for examplp, & wherep, is the third
row of the camera matrik andX is the point in 3D space. But the camera matrix does not
appear in the problem of planar homography estimation. In such case we need to represent
the Chierality constraint in terms of the planar homography stead of the camera matrix
P.

Result 9. For a 2D pointu = [u, v, 1]" in the firstimage, the chierality constraint for planar
homography estimation can be writtenlaSu > 0, whereh is the third row of H.
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Proof. Assume that a plane'X = 0, with 7 = [v',1]", is imaged by two cameras =
[I | 0] andP’ = [A | b], where thei-th row of A is denoted as., andb = [by, by, bs]". The
planar homography can then be written as [7]:

H=A—bv' (35)
Suppose1 = [u,v,1]" is the image (in the first camera) of the 3D point
X=[x"1"=[X,Y,21]".

Then we have

Zu=PX =x.
SinceX is on the planer. We have

X=[x"-vx"
The chierality constraint is:
pgsTX = [a;a b3HXT> _VTX]T

= (ag — b3v')x

= hgTX

=Zhju

>0

whereZ is the depth of the 3D poirX. From the chierality constraint for the first camera
we haveZ > 0. As a resulth; u > 0. O
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