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Abstract

Geometric reconstruction problems in computer vision are often solved by minimizing a cost

function that combines the reprojection errors in the 2D images. In this paper, we show that, for

various geometric reconstruction problems, their reprojection error functions share acommon

andquasiconvexformulation. Based on the quasiconvexity, we present a novel quasiconvex

optimization framework in which the geometric reconstruction problems are formulated as a

small number of small-scale convex programs that are ready to solve. Our final reconstruction

algorithm is simple and has intuitive geometric interpretation. In contrast to existing random

sampling or local minimization approaches, our algorithm is deterministic and guarantees a

predefined accuracy of the minimization result. Moreover, the quasiconvexity provides an

intuitive method to handle directional uncertainties and outliers in measurements. We demon-

strate the effectiveness of our algorithm by experiments on both synthetic and real data.

Keywords: multi-view geometry, geometric reconstruction, convex programming, directional

uncertainty, robust

1 Introduction

Given measurements in 2D images, the goal of geometric reconstruction in computer vision is to

estimate the three-dimensional information about the scene and/or the camera motions. Classical

examples include triangulation [5], camera resectioning [4,14], and structure from motion (see [8]
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for a review). The Gold standard for these estimation problems is minimizingFs, theaverageof

squared reprojection errors (model-fitting errors measured in 2D image domain). MinimizingFs

leads to maximum likelihood estimation when measurement noises follow Gaussian distribution.

Due to the camera perspective effect, the cost functionFs is highly nonlinear and often contains

multiple local minima. MinimizingFs is therefore difficult. Hartley and Schaffalitzky [7] proposed

usingL∞, thepointwise maximumof the squared reprojection errors, as the cost function, which we

denote asF∞. In contrast toFs, it was shown thatF∞ contains only one single minimum value in

its feasible domain. An approach using random line search in the parameter space was used in [7]

to minimizeF∞. The convergence behavior of random line search remains unclear. As pointed out

in [7], it is difficult to perform random line search when the parameter space is high dimensional.

Constrained minimization is also proposed in [7] for minimizingF∞. However, the constraints are

nonlinear and nonconvex, making such constrained minimization a difficult problem by itself.

We can consider the model-fitting error as a function of the unknown parameters, which is

termedreprojection error functionin this paper. We show that the reprojection error functions

share acommonandquasiconvexformulation for the geometric reconstruction problems under our

consideration. As a result,F∞, the pointwise maximum of a family of quasiconvex functions, is

also a quasiconvex function. We then present an one-dimensional bisection algorithm to minimize

the quasiconvex functionF∞. Our algorithm consists of a small number of small-scale convex

programs, specifically linear programs (LP) or second-order cone programs (SOCP). Both LP and

SOCP are well-studied and existing efficient algorithms and implementations are ready to use.

Compared to random line search in parameter space or local minimization approaches, our mini-

mization approach is efficient, even when the unknowns are high dimensional. More importantly,

our approach is deterministic and guarantees a predefined accuracy of the minimization result.

Previously, global optimal estimates can be achieved only in rare instances, such as two-view

triangulation usingL2-norm [5] orL1-norm [12], three-view triangulation by solving six-degree

polynomial equation set [17], and affine reconstruction using matrix factorization [18]. Minimiz-

ing F∞ by quasiconvex optimization provides a framework to achieve global optimal estimation
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in many multi-view geometric reconstruction problems, without the limitation on the number of

views and/or the use of affine camera model.

It has been pointed out in [7] thatF∞ is sensitive to outliers. We present two approaches

to handling outliers. In the first approach, we useFm, the pointwisem-th smallest reprojection

error, as the cost function. In contrast toF∞ or Fs, the cost functionFm is highly robust to

outliers [22]. In spite of its complex formulation, in our casesFm is still a pointwise operator of

a family of quasiconvex functions. As a result, our algorithm to minimizeF∞ can be extended

to efficiently minimizeFm, again by solving small-scale convex programs (LP or SOCP). In the

second approach, we show that the active constraints in the convex programs must contain outliers

(if they exist). As a result, we can remove outliers by simply removing active constraints.

Our quasiconvex minimization framework can also take directional uncertainty into account

in an intuitive way. Cost functions (e.g.,Fs andF∞) are meaningful objectives to minimize only

when the measurement noises are isotropic andi.i.d. (independent and identically distributed) at

every 2D feature. In real data, this is rarely the case since the quality of feature matching depends

on the image intensity pattern around the feature, which often varies at different feature points and

has strong directionality to it. To account for the feature-dependent directional uncertainty, one

should minimize the covariance-weighted reprojection error (the Mahalanobis distance), instead

of the Euclidean distance. We incorporate the directional uncertainty model into the quasiconvex

optimization framework. The directional uncertainty can be characterized by the covariance matrix

at each 2D feature, as has been used in matrix factorization for affine reconstruction [9, 11]. We

show that the point-wise maximum of covariance-weighted reprojection errors is still a quasicon-

vex function, and therefore its global minimum can be obtained by the quasiconvex minimization

framework. Moreover, since a line feature can be modeled as a feature point with infinite uncer-

tainty along the line direction, point and line features can be used simultaneously for geometric

reconstruction in a common quasiconvex optimization framework.
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1.1 Background: geometric reconstruction problems

We present some classical examples of geometric reconstruction problems in computer vision.

These geometric reconstruction problems can all be solved using our method presented in this

paper.

1.1.1 Multi-view triangulation

We are given projection matrices ofN cameras, denoted by{Pi, i = 1, ..., N}, and the images of

the unknown 3D pointZ in theseN cameras, denoted by{xi, i = 1, ..., N}. The task of triangula-

tion is to estimateZ from {Pi} and{xi}. Triangulation is a necessary step in two- or multi-view

3D reconstruction, and in structure from motion. Note that optimal triangulation algorithms [5,13]

for two-view case are not generalizable to multi-view case.

1.1.2 Camera resectioning

We are given 3D points{Zi, i = 1, ..., N} and their images{xi, i = 1, ..., N} in one camera. The

task is to estimate the camera projection matrixP from theseN corresponding pairs{xi ↔ Zi}.
Camera resectioning is used in camera calibration and in structure from motion.

1.1.3 Multi-view reconstruction with known rotations

In some cases the camera rotations are known, leaving only the camera positions and the 3D of the

scene to be estimated [7]. For example, in vision-aided inertial navigation, accurate camera pose

is available from modern gyroscopes, while the camera position information from accelerometers

is still noisy [3]. Another example is that there are reconstruction methods in which the camera

rotation for each frame is estimated in a first step [21]. Denote theN intrinsically calibrated

cameras as{Pi = (Ri,−RiCi), i = 1, ..., N}, where for each camera the rotationRi is known, but

its 3D positionCi is unknown. We are given 2D feature points{xij} over theN cameras. Here

xij denotes the projection ofj-th 3D pointZj onto thei-th camera. The task is to estimate{Zj}
and{Ci} from the 2D points{xij} and the camera poses{Ri}.
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1.1.4 Multi-view reconstruction using a reference plane

When a reference plane is visible in all images, the inter-image planar homography from the given

reference plane can be used to compensate the relative camera rotations. Then the problem essen-

tially reduces to the above case of reconstruction with known rotations.

1.1.5 Planar homography estimation

Two images of points on a 3D scene plane are related by a planar homographyH, a 3 × 3 non-

singular matrix. GivenN correspondences{xi ↔ x′i, i = 1, ..., N}, the task is to estimateH such

thatx′i = Hx.

2 The cost function

In this section, we define the reconstruction error metric at each individual 2D measurement, and

the cost functions that combine reconstruction errors from individual 2D measurements.

2.1 Error metric for one 2D measurment

We use Triangulation as an example to illustrate three often-used error metrics for an individual

2D measurement.

2.1.1 Algebraic distance

Denotex̃i = (xi; 1) the homogeneous coordinates of the 2D measurementxi, we have the follow-

ing linear equation:
kix̃i = PiZ (1)

HereZ is also expressed in homogeneous coordinates. The algebraic distance forxi is then defined

by:
fi(Z) = ‖kix̃i − PiZ‖2 (2)

Linear least-squares can be applied to estimateZ by minimizing the sum of squared algebraic dis-

tances. Since the algebraic distance is not geometrically or statistically meaningful, the algebraic

reconstruction is not reliable (see [7,22]).
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Figure 1:Distance betweenx = (u, v) and x̂ = (û, v̂). The solid square shows the contour on which the
L1 norm errore1 = |eu| + |ev| = α, while the dash line shows the contour on which theL2 norm error
e2 =

√
e2
u + e2

v = α. Hereeu = (u− û), andev = (v − v̂).

2.1.2 Distance in 3D space

In the case of calibrated cameras,fi(Z) can be defined as the distance from the 3D pointZ to the

ray back-projected fromxi. In the case of two views, this distance function leads to the midpoint

estimation method whereZ is given by midpoint of the perpendicular between the two rays.

When a camera is further away from the 3D pointZ, the camera has larger uncertainty onZ.

Distance metric in 3D space cannot take such uncertainty into account. As a result, the reconstruc-

tion result is unstable when the 3D point is far away from cameras.

2.1.3 Reprojection error in the image

The reprojection error is defined as the distance in the 2D image domain betweenxi and its repro-

jectionx̂i = πi(Z):
fi(Z) = ‖xi − x̂i‖l = ‖xi − πi(Z)‖l (3)

wherex̂i = πi(Z) is the reprojection ofZ in the image of cameraPi, and‖ · ‖l denotes some vector

norm. Bothxi andx̂i are in 2D Cartesian coordinates.

We choose reprojection error metric since it has a well-defined geometric meaning and it leads

to maximum likelihood estimation. For example, whenL2 norm is used in Eq. (3), the reprojection

error fi is theEuclidean distancebetweenxi and x̂i. We can also useL1 norm. Its geometric

meaning is shown in Fig. 1.

2.2 Generalized reprojection error function

Definition 1. The general formulation of reprojection error function:
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f(X) =
p(X)

q(X)
(4)

where

• X ∈ Rn is the unknown vector to be estimated;

• p(X) is a convex function, andp(X) ≥ 0.

• q(X) is a linear function, andq(X) > 0;

In the following we show that most reprojection error functions are special cases of the above

general formulation. For a geometric reconstruction problem, if its reprojection error function

conforms to the general formulation in Eq. (4), the algorithms we present in this paper can be

applied to solve such reconstruction problem.

2.2.1 Reprojection error function in the image plane

Result 1. For the reconstruction problems in Section 1.1, the reprojection error function defined

in the image domain conforms to the general formulation in Definition 1.

Proof. For the problems in Section 1.1, the reprojection ofx = (u, v) in the image can be written

as:

x̂ =

(
a>X

c>X
,

b>X

c>X

)>
(5)

HereX is the vector to be estimated.a,b, andc are known vectors. For example, in the triangu-

lation problem, they are the three rows of the camera matrixP, respectively.

The reprojection error function is:

f(X) = ‖x− x̂‖l = ‖ 1

q(X)
(pu(X), pv(X)) ‖l, (6)

where‖ · ‖l is the vector norm, and

pu(X) = (uc> − a>)X,

pv(X) = (vc> − b>)X, (7)

q(X) = c>X.

It is obvious thatq(X) is a linear function ofX.
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In this paper, we consider affine or Euclidean reconstruction1. The cheirality constraint [6,8],

which states that the 3D points visible in the image must be in front of the camera, can then be

expressed asc>X > 0. Therefore, we haveq(X) > 0. The reprojection error function in Eq. (6)

can then be rewritten as:

f(X) =
1

q(X)
‖ (pu(X), pv(X)) ‖l =

p(X)

q(X)
(8)

Any norm functiong(y) = ‖y‖l is a convex function ofy. The functionh(X) = (pu(X), pv(X))

is an affine function ofX. The composition of a convex functiong and an affine functionh,

denoted byg ◦ h, is a convex function. Therefore,p(X) = (g ◦ h)(X) is a convex function ofX.

It is obvious thatp(X) ≥ 0.

2.2.2 Uncertainty-weighted reprojection error function

When uncertainty on the location of each 2D feature point is available, the reprojection error at

each feature should be weighted by its corresponding uncertainty. In this subsection, we show that

such uncertainty-weighted reprojection error function still conforms to the general formulation in

Definition 1. As a result, our algorithm in this paper can handle (directional) uncertainties.

Uncertainty of feature position

The accuracy of feature matching depends on the intensity pattern around each feature, which often

has strong directionality and is location-dependent. Such directional uncertainty can be character-

ized by the following inverse covariance matrix (cf. [15,16]:

Q−1 =
1

s

∑

(u,v)∈w




IuIu, IuIv

IuIv, IvIv


 , (9)

wherew is a small window centered around the feature point in the imageI of the i-th camera,s

is determined by the intensity pattern insidew, andIu andIv are image gradients alongu andv di-

1In a way similar to the method in [7], our algorithm in this paper can be extended to projective reconstruction.
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(b) (c)(a)

Figure 2: Uncertainty in feature point locations. (a): Scalar uncertainty with covariance matrixQ =
diag(σ, σ); (b): Directional but uncorrelated noises, with covariance matrixQ = diag(σ1, σ2); (c): Direc-
tional and correlated noises, with covariance matrixQ a full 2× 2 matrix.

rection, respectively. A more accurate method to estimate feature position uncertainty is presented

in [16], which takes into account not only the image pattern but also the image pixel noises.

Figure 2 shows the three different types feature uncertainty:

• Q = diag(σ, σ): scalar uncertainty that is feature-dependent, but is isotropic and therefore

uncorrelated inu andv direction;

• Q = diag(σ1, σ2): directional (σ1 6= σ2) but uncorrelated inu andv direction;

• Q = full 2× 2 matrix: directional and correlated inu andv direction.

Covariance-weighted reprojection error function

The uncertainty in the location of each 2D feature pointx can be taken into account by weighting

the reprojection error appropriately using the covariance matrix. The covariance matrixQ for the

2D point x is a symmetric positive semi-definite matrix, and can be decomposed by Singular

Value Decomposition into the following form:Q = UΣU>, whereΣ = diag(σ1, σ2), andU is a2×2

orthonormal matrix. The inverse covariance matrix takes the form of

Q−1 = UΣ−1U> (10)

DenoteB = Σ−1/2U>, which is an affine transformation that transforms the input data into covariance-

weighted data space where the noises at each feature become isotropic andi.i.d.. The transformed

coordinates (in Euclidean) ofx andx̂ in the image plane are :

x′ = (u′, v′)> = B(u, v)> (11)

x̂′ = Bx̂ =
1

c>X
B




a>

b>


X (12)
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wherea> and b> follow the notation in Eq. (5). The covariance matrix of the noise in the

covariance-weighted data space now becomes isotropic and takes the form ofdiag(1, 1). Denote

A =


B




u

v


 c> − B




a>

b>





 . (13)

The covariance-weighted reprojection error function is:

fw(X) = ‖x′ − x̂′‖ =

∥∥∥∥
AX

c>X

∥∥∥∥ (14)

Again, the cheirality constraint [6,8], which states that the 3D points visible in the image must

be in front of the camera, can then be expressed asc>X > 0. Therefore, Eq. (14) can then be

written as:

fw(X) =
1

c>X
‖AX‖ (15)

The norm functionp(X) = ‖AX‖ is convex, and the function in Eq. (15) conforms to the general

formulation in Definition 1. When‖ · ‖ in Eq. (15) isL2-norm,fw(X) is the Mahalanobis distance

betweenx andx̂.

2.2.3 Angular reprojection error function

When the camera is calibrated, the angleθ between the observed rayx and the reprojection ray

r = (a,b, c)>X can be used to define the reprojection error [7,13]:

f(X) = |tan(θ)| =
∣∣∣∣
x× r

x>r

∣∣∣∣ (16)

where× denotes cross-product. We choosetan(θ) since it is a monotonically-increasing function

of θ whenθ ∈ [0, π/2). The cheirality constraint can be enforced by|θ| < π/2, which leads to

q(X) = x>r > 0. It is easy to verify thatq(X) is a linear function ofX, andp(X) = |x× r|
is convex inX. Therefore, the angular reprojection error functionf(X) = p(X)

q(X)
conforms to the

general form in Definition 1.
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2.3 Combining reprojection errors into cost function

The often used cost functionFs in geometric reconstruction is defined as the average of the squared

L2-norm reprojection errors:

Fs =
1

M

∑
i

f 2
i (X) (17)

whereM is the total number of 2D measurements (points).Fs is difficult to minimize as it is highly

nonlinear and contains multiple local minima [7].

Hartley and Schaffalitzky [7] proposed using the pointwise maximum of the reprojection errors

as the cost function:

F∞(X) = max
i

fi(X) (18)

When the measurement uncertainties are available, the uncertainty-weighted cost function is de-

fined by:

F∞(X) = max
i

fw
i (X) (19)

It was shown in [7] thatF∞(X) contains only one single minimum value in its domain, and is

therefore easier to minimize thanFs(X). But as is also pointed out in [7],F∞(X) is sensitive to

outliers.

To deal with the outliers, we propose using thepointwisem-th smallest reprojection errors as

the cost function:
Fm(X) = mth

i
fi(X) (20)

It is obvious thatF∞ is a special case ofFm whenm = N . Fm is a highly robust function. For

example, whenm = bN/2c, it is the median operator. MinimizingFm leads to least-median

optimization [22], which can handle noisy measurements with up to50% of outliers.

3 Minimizing the cost function

BothF∞ andFm are constructed from pointwise operations on a family of functions. They are not

differentiable at many points. As a result, classical gradient-based approaches are not applicable

to minimizing them. Random line search in the parameter space was proposed in [7] to minimize
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F∞, and random sampling [19, 22] is often used to detect outliers and to minimizeFm. These

randomized approaches are not scalable when the unknowns are high-dimensional. They do not

guarantee convergence either.

In this section, we show that the general reprojection error function (Definition 1) is quasicon-

vex. Such quasiconvexity enables us to design a deterministic and efficient algorithm to minimizing

F∞ andFm.

3.1 Minimization by feasibility

Instead of random search or sampling, let us look at a minimization approach that uses the classic

bisection search in the range domain ofF∞ andFm.

For the vision problems in which we are interested, the image size is bounded. Therefore, it is

realistic to assume thatl ≤ F (X) ≤ h, whereF (X) is the cost function. Forα ∈ [l, h], denoteSα

theα-sublevel set ofF (X):

Sα = {X | F (X) ≤ α} (21)

If Sα is non-empty, then we know thatF ∗, the minimum value ofF (X), satisfiesF ∗ ≤ α. Other-

wise, we haveF ∗ > α. Determining whetherSα is empty or not can be achieved by solving the

following feasibility problem:

find X (22)

s.t. X ∈ Sα

Based on the above observation, we can use the bisection algorithm (see [2]) to pin down the

optimal value ofF (X) by solving a sequence of feasibility problems. Fig. 3 shows the basic

procedure of the algorithm. It starts with a range[l, h] that is known to containF ∗. Then we solve

the feasibility problem at its mid-pointα = (l + h)/2. If it is feasible, then the optimal value

F ∗ is in the lower half of the interval and we can shrink[l, h] to [l, α]. Otherwise,F ∗ must be in

the upper half of the interval and we shrink[l, h] to [α, h]. The algorithm then continues on the

identified half of the interval.
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Algorithm: minX F (X).

1: Givenl ≤ F ∗, h ≥ F ∗, and the toleranceε > 0.

2: while (h− l) > ε do

3: α = (h + l)/2.

4: Solve the feasibility problem (22).

5: if (22) is feasible,then h = α;

6: else l = α.

7: end while

Figure 3:Classical bisection algorithm to pin down the optimal value by searching in the one-dimensional
range domain.

As we can see, at each iteration the range is shrunk by half, and the bisection algorithm is guar-

anteed to converge indlog2((h − l)/ε)e iterations. For example,[0, 100] allows the re-projection

error to be as many as 100 pixels, which is guaranteed to contain the optimal valueF ∗. If we

chooseε = 0.5 pixel, the algorithm will converge in onlydlog2 200e = 8 iterations. Note that

the number of iterations is independent of the dimension of the unknownX, indicating that the

algorithm is suitable for solving high dimensional problems. More importantly, the optimal value

we derive is guaranteed to be less thanε = 0.5 pixel away from the true minimum value.

3.2 Quasiconvex functions

The bisection algorithm in Fig. 3 is simple, deterministic, and it converges in a small number of

iterations. It can even be applied to minimizing cost functions with multiple minima. Thecritical

stepin the algorithm is solving the feasibility problem in Eq. (22), which could be a hard problem

by itself if the α-sublevel set ofF (X) is complicated. However, ifSα is convex, then Eq. (22)

is a convex feasibility problem [2] that can be solved efficiently. A function with such convex

α-sublevel set is called aquasiconvexfunction:

Definition 2. (see [2])A functionf : Rn → R is quasiconvexif its domaindom(f) and all its

sublevel sets,
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Sα = {x ∈ dom(f) |f(x) ≤ α} (23)

for α ∈ R, are convex.

A convex function has convex sublevel sets, and therefore, is quasiconvex. The reverse is not

true in general. Fig. 4 shows an example of quasiconvex function that is not convex. The dash-line

segment that lies below the function indicates the non-convexity of the function.

A

B

x

f(x)

α

Sα

Figure 4:A quasiconvex function. All of itsα-sublevel sets{Sα} are convex. But this quasiconvex function
is not convex, as can be seen from the line segmentAB that lies below the function.

The reprojection error functions are not convex due to camera perspective effect, but they are

quasiconvex:

Result 2. A reprojection error function that conforms to the general form defined in Eq.(4) is a

quasiconvex function.

Proof. For anyα > 0, theα-sublevel set off(X) is:

Sα = {X | f(X) ≤ α}

= {X | p(X)− αq(X) ≤ 0, q(X) > 0}

From the definition of the general reprojection error function (Definition 1), we know thatp(X)

is a convex function, and−αq(X) is a linear function and, therefore, a convex function. The sum

of these two convex functionsφ(X) = p(X) − αq(X) is still a convex function. A sublevel set

of a convex function is a convex set. As a result,Sα is a convex set since it is the intersection of

two convex sets: the zero sublevel set ofφ(X), and the half space defined byq(X) > 0. Since

dom(f) = Rn andSα are all convex, we conclude thatf(X) is quasiconvex.
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3.3 Minimizing cost function F∞

Result 3. F∞(X), the pointwise maximum of quasiconvex reprojection error functionsfi(X), is

also quasiconvex.

Proof. Theα-sublevel setSα of F∞(X) is:

Sα = {X | max
i

fi(X) ≤ α} (24)

= {X | fi(X) ≤ α, i = 1, 2, · · · , N}

=
N⋂

i=1

Si
α

HereSi
α is theα-sublevel set of the reprojection error functionfi(X). From Result 2, we know

that {Si
α} are all convex sets. As a result, their intersectionSα is also a convex set. Therefore,

F∞(X) is a quasiconvex function.

Due to its quasiconvexity,F∞ can be efficiently minimized by the bisection algorithm in Fig. 3.

The convex setSα =
⋂N

i=1 Si
α can be expressed as:

Sα = {X | qi(X) > 0; pi(X)− αqi(X) ≤ 0; i = 1, · · · , N} (25)

The feasibility problem of the bisection algorithm in Eq. (22) can now be solved by the following

convexprogram:

min
X,γ

γ (26)

s.t. −qi(X) + ε ≤ γ,

pi(X)− αqi(X) ≤ γ,

i = 1, ..., N.

Hereε is a small positive number. Denoteγ∗ the optimal value of (26). Ifγ∗ ≤ 0, thenSα of

F∞(X) is nonempty, and the problem in (22) is feasible; otherwise (22) is infeasible. Note that

we do not need to solve (26) with high accuracy. The algorithm terminates wheneverγ ≤ 0 is
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satisfied, or whenever a dual feasible point is found with positive dual objective (which means

γ∗ > 0).

3.4 Minimizing robust cost function Fm

F∞(X) is sensitive to outliers [7]. To deal with outliers, we use the robust cost functionFm(X),

which is defined as them-th smallest reprojection error (see Eq. (20)).Fm(X) is not a quasiconvex

function, except form = N , in which caseFm becomesF∞.

However, sinceFm(X) is a pointwise function of a family of quasiconvex functions{fi(X)},
its α-sublevel set can still be represented by the convex sublevel sets of these quasiconvex func-

tions. As a result, we are able to extend the bisection algorithm to efficiently minimizeFm.

3.4.1 Theα-sublevel set ofFm

A point X0 belongs to theα-sublevel set ofFm(X) if and only if there exists a group ofm α-

sublevel sets whose intersection contains the pointX0.

Result 4. DenoteSα theα-sublevel set ofFm(X). For anyX0, X0 ∈ Sα if and only if X0 ∈m

{S1
α, S2

α, · · · , SN
α }. HereSi

α is theα-sublevel set offi(X). The symbol∈m means that there exist

m sublevel sets in{S1
α, S2

α, · · · , SN
α } such thatX0 is inside the intersection of thesem sublevel

sets.

Proof. For anyX0, we sort theN reprojection errors

f1(X0), f2(X0), · · · , fN(X0) (27)

into the nondecreasing order

f(1)(X0) ≤ · · · ≤ f(m)(X0) ≤ · · · ≤ f(N)(X0) (28)

For the necessary condition, ifX0 ∈ Sα, then we haveFm(X0) = f(m)(X0) ≤ α. The firstm

smallest reprojection errors{f(i)(X0), i = 1, · · · ,m} in Eq. (28) must therefore satisfyf(i)(X0) ≤
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α. As a result,X0 belongs to the intersection of them α-sublevel sets of the firstm functions in

Eq. (28).

For the sufficient condition, supposeX0 is in the intersection of the followingm sublevel sets:

{S(i)
α , i = 1, · · · ,m}, whereS

(i)
α is theα-sublevel set off (i). We must have:

f (i)(X0) ≤ α, i = 1, · · · ,m (29)

Now if Fm(X0) = f(m)(X0) > α, then from the sorted sequence in Eq. (28) we know that the

number of less-than-α reprojection errors is less thanm. This contradicts Eq. (29) where there are

m less-than-α reprojection errors. Therefore we haveFm(X0) ≤ α, i.e.,X0 ∈ Sα.

3.4.2 Feasibility by convex program

From Result 4, the feasibility problem in the bisection algorithm to minimizingFm can be rewritten

as:

find X (30)

s.t. X ∈m {S1
α, S2

α, · · · , SN
α }

In other words, we need to determine if there existm α-sublevel sets whose common intersection

is non-empty. A straightforward approach is to check the feasibility of every possible group ofm

sublevel sets, where for each group its feasibility can be exactly determined by the convex program

of Eq. (26). In worst case, this requires
(

N
m

)
convex programs to solve Eq. (30), which is good for

smallN . WhenN is large, we can use either integer program or its convex approximation.

Minimizing number of infeasibility

Result 5. The feasibility problem in Equation(30)can be formulated exactly byinteger program-

ming:
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min
X,γ

γ1 + γ2 + · · ·+ γN (31)

s.t. −qi(X) + ε ≤ γi,

pi(X)− αqi(X) ≤ γi,

γi = {0, v},

i = 1, ..., N.

Herev > 0 is a large positive integer.

Given optimal values(X∗,γ∗) of the above minimization problem, ifγi = 0, then thei-th

reprojection errorfi(X) ≤ α, i.e., X is inside thei-th α-sublevel set. On the other hand, if

γi = v, thenX is outside thei-th α-sublevel set. When(γ1 + γ2 + · · · + γN) is minimized, we

obtain a solutionX∗ where the number infeasible constraints is minimized. In other words, we

seek a solution which maximizes the number ofα-sublevel sets who have non-empty common

intersection. If this number is large thanm, then Equation (30) feasible, otherwise, it is infeasible.

Minimizing sum of infeasibility

Although integer programming is well-studied and existing efficient package is available, it is in

general more complicate than LP or SOCP.

Result 6. We can use sum of infeasibility as an approximation to estimate the number of infeasible

constraints:

min
X,γ

γ1 + γ2 + · · ·+ γN (32)

s.t. −qi(X) + ε ≤ γi,

pi(X)− αqi(X) ≤ γi,

γi ≥ 0,

i = 1, ..., N.

Denoteγ∗ = (γ∗1 , γ
∗
2 , · · · , γ∗N) the optimal value of the above convex program achieving atX∗.
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Denoteg the number of zero elements inγ∗. If g ≥ m, then the problem defined by Eq.(30) must

be feasible; otherwise we consider Eq.(30) infeasible.

γ∗i is called the infeasibility offi(X
∗). For any sublevel setSi

α, if its corresponding infeasibility

γ∗i = 0, thenX∗ is insideSi
α. As a result, the conditiong ≥ m is sufficient for Eq. (30) to be

feasible, since theseg sublevel sets contain the common pointX∗.

While g ≥ m is a sufficient condition, it is an approximated necessary condition for Eq. (30)

to be feasible. The exact conclusion about the infeasibility of Eq. (30) requires checking the

feasibility of
(

N
m

)
groups ofm sublevel sets, or using integer programming to find the optimal

pointX∗ that minimizes the number of infeasibilities (the number of nonzero components inγ∗).

Result 6 finds the minimum sum-of-infeasibilities
∑

i γ
∗
i , and uses it to approximate the minimum

number of infeasibilities. With such approximation, the bisection algorithm gives an upper bound

on the true minimum value ofFm. The sum of infeasibility‖γ‖1 =
∑

i γi is by itself a robust

metric (L1 norm is a robust metric), especially in our cases where the magnitude of outliers in the

2D measurements is bound by the image size. As a result, the bisection algorithm using Result 6

can usually achieve a tight upper bound on the true minimum value ofFm.

Fig. 5 illustrates the meaning ofγ∗i . When the camera matrix isnormalizedappropriately, the

infeasibilityγ∗i is the distance fromX∗ to the convex cone ifX∗ is outside the cone. IfX∗ is inside

the coneSi
α, thenγ∗i = 0. The sum-of-infeasibilities

∑
i γ

∗
i is therefore the sum of distances from

X∗ to the convex cones that do not containX∗. WhenX∗ goes further away from the cameraCi,

the cameraCi has larger uncertainty onX∗. Such varying uncertainty is taken into account byγ∗i

as it is the distance to the cone, and the cone becomes larger asX∗ goes further away from the

Ci

X

xi
α

γi
*

di

Figure 5: When the camera matrix is normalized appropriately, the infeasibilityγ∗i is the distance from
X∗ to theα-convex cone. For comparison purpose,di is the distance to the ray back-projected from 2D
measurementxi.
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cameraCi. This is in contrast to the distance to back-projected ray in 3D space (see Fig. 5).

Minimizing sum of weighted infeasibility

We can further improve the result by using weighted sum of infeasibilityw>γ in Eq. (32), where

w = (w1, · · · , wN) is the weight for each measurement, andwi ∈ [0, 1] can be set according to

its corresponding reprojection error to down-weight outliers, as shown in the following convex

program:

min
X,γ

w1γ1 + w2γ2 + · · ·+ wNγN (33)

s.t. −qi(X) + ε ≤ γi,

pi(X)− αqi(X) ≤ γi,

γi ≥ 0,

i = 1, ..., N.

A simple weighting scheme is the{0, 1} weighting where the weightswi corresponding to active

constraints are set to 0. Another scheme is to determine the weightwi according to reprojection

errorri =
∣∣∣xi − pi

qi

∣∣∣. Note that Eq. (32) is a special case of Eq. (33).

3.5 Feasibility by LP or SOCP

WhenL1- or L2-norm error metric is used in defining the reprojection error function, the convex

program for feasibility becomes small-scale linear programs (LP) or second-order convex pro-

grams (SOCP), respectively.

3.5.1 L1-norm error metric leads to LP

WhenL1-norm error metric is used, the convex program in Eq. (32) becomes the following linear

program:
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min
X,γ

γ1 + γ1 + · · ·+ γN (34)

s.t. −qi(X) + ε ≤ γi,

−αqi(X) + pui(X)− pvi(X) ≤ γi,

−αqi(X) + pui(X) + pvi(X) ≤ γi,

−αqi(X)− pui(X)− pvi(X) ≤ γi,

−αqi(X)− pui(X) + pvi(X) ≤ γi,

γi ≥ 0, i = 1, ..., N.

Herepui, pvi, andqi are all linear functions ofX (see Eq. (7) for the definition).

3.5.2 L2-norm error metric leads to SOCP

WhenL2-norm error metric is used, Eq. (32) becomes:

min
X,γ

γ1 + γ1 + · · ·+ γN (35)

s.t. −qi(X) + ε ≤ γi,

‖AiX‖2 ≤ αqi(X) + γi,

γi ≥ 0, i = 1, ..., N.

HereAi is a2× 3 matrix defined in Eq. (13).αqi(X) + γi is a linear function ofX. Therefore, the

inequality

‖AiX‖2 ≤ αqi(X) + γi (36)

defines a second order convex cone [2]. As a result, Eq. (35) is a second-order cone programming

(SOCP).
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3.6 Explicit outlier detection

In Section 3.4, we have discussed how to use equation (32) to minimize the cost functionFm,

the m-th smallest reprojection error, for a robust geometric reconstruction. In this section, we

discuss how to explicitly detect outliers by examining the activeness of the constraints in the convex

program of equation (32).

3.6.1 Inliers and outliers

DenoteXT the ground truth value of the unknown geometric parameters we want to estimate. For

an inlier measurement, its distance to the reprojection ofXT in the measurement domain should

follow zero-mean Gaussian distribution. On the other hand, for an outlier, such distance is larger

than some value (e.g.,3σ, whereσ is the standard deviation of the Gaussian distribution of the

inliers’ distance toXT ).

Definition 3. A measurementxi is an inlier if and only if itsαT -sublevel set containsXT as its

interior point, i.e.,XT ∈ int(SαT
). HereαT is some predefined value.

From the definition of inliers, we have:

Result 7. TheαT -sublevel sets of all inliers have a common intersection set that containsXT as

an interior point.

3.6.2 Outlier detection

The constraints in the convex program of Eq. (32) can be classified into active or inactive.

Definition 4. Denotehi(X) = pi(X)− αqi(X)− γi. Suppose(X∗, γ∗) is the optimal solution of

Eq. (32). If hi(X
∗) = 0, then the constrainthi(X) ≤ 0 is activeat X∗. If hi(X

∗) < 0, then the

constrainthi(X) ≤ 0 is inactiveat X∗.

For an active constrainthi(X), the optimal solutionX∗ is either at the boundary ofSi
α (when

γi = 0), or outside ofSi
α (whenγi > 0).
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SI

So

X*

XT X0

Figure 6:Choosing a pointX0 ∈ SI
⋂

SO reduces the objective value.

If there are outliers in the measurements, then for outlier detection we only care about the case

of α > αT . Since if we can achieveα ≤ αT in the bisection algorithm, we know the measurements

are all inliers according to Definition 3.

Result 8. If there are outliers in the measurement{xi}, then the convex program(32) achieves

some positive optimal value1>γ∗ at (X∗, γ∗), givenα = αT − ε (Hereε is a small positive value).

Moreover, at least one active constraint comes from some outlier.

Proof. From the definition, it is obvious that (32) will achieve some positive optimal value, denoted

by X∗. DenoteSI the common intersection of constraints from all inliers, andSO the common

intersection of constraints from all outliers. From Result 7, we knowSI is a non-empty set that

containsXT as an interior point.Supposeall active constraints are from inliers. ThenX∗ must be

an interior point of the convex setSO. At the same time, sinceSI is a convex set,X∗ must be on

the boundary ofSI . Therefore there must exist some pointX0 6= X∗, such that (1)X0 is an interior

point ofSI , and (2)X0 ∈ SI

⋂
SO. The convex program (32) will achieve a smaller objective value

atX0. This is in contradiction to the condition that the convex program (32) achieves a minimum

optimal value atX∗. Therefore, some active constraints must be from outliers. See Figure 6 for an

illustration.

Result 8 suggest a simple mechanism to detect outliers, i.e., in each iteration of the bisection

algorithm (see figure 3), discard the measurements corresponding to active constraints, untilα <

αT . But one should be aware that some of the inliers are discarded as they may be active. In some

applications, the number of constraints is small (e.g., 3D triangulation given only 3 or 4 views),

minimizing theFm is favorable to removing active constraints.
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3.7 Geometric interpretation

The minimization algorithm we presented in this section has intuitive geometric interpretation. We

use uncertainty-weighted multi-view triangulation as an example to illustrate. For each 2D feature

point xi, theα-sublevel setSw
i of the covariance-weighted reprojection error functionfw

i (X) is

a second order convex cone in the 3D space in front of the camera. The shape and size of such

convex cone are determined byα and the covariance matrixQi = U diag(σ1, σ2)U
>, as shown in

Fig. 7(a). The construction of convex coneSw
i is the following. First a circle in the image plane

with radiusα is scaled by
√

σ1 and
√

σ2 in u andv direction, respectively. This results in an ellipse

with axes ofα
√

σ1 andα
√

σ2 respectively. The ellipse is then rotated by the rotation matrixU. The

final convex cone, dubbed aselliptical cone, is formed by connecting the camera optical center and

the rotated ellipse.

The α-sublevel setS∞α of the cost functionF∞(X) is the intersection of allα-sublevel sets

{Sw
i }. Minimizing the covariance-weighted costF∞(X) is therefore equivalent to determining

if there exists common intersection of the convex elliptical cones{Sw
i }, as shown in Fig. 7(b).

The bisection algorithm then seeks a minimum valueα such that the common intersection of the

convex elliptical cones{Sw
i } is non-empty. To minimize the robust functionFm(X), the algorithm

determines whether or not there existm-out-of-N convex cones that have nonempty common

eu

ev

c

xi

eu

ev

α

covariance weighted

C1

C2

Cm

…

(a) (b)

Figure 7: Geometric illustration of 3D reconstruction using quasiconvex optimization. Here,L2 norm is
used in the reprojection error function. (a): The shape and size of each cone are determined byα and
covariance matrixQi; (b): The algorithm seeks minimumα such that the cones have non-emptycommon
intersectionS∞α . Note that cones have different shapes and sizes. The last coneCm has large directional
uncertainty and has little constraint on determiningS∞α in the direction that has large uncertainty.
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intersection.

Sinceα is common for all convex cones, the relative shape and size of each individual cone

is actually determined by its associated covariance matrix. Therefore the effect of each convex

cone constraint on the final estimationX is weighted by the inverse covariance matrix. Consider

an extreme case when uncertainty goes to infinity. In such case, the corresponding convex cone is

scaled to infinite size and does not have any constraint on the estimate ofX. On the other hand,

if the uncertainty is zero, the convex cone becomes a ray, and we must constraintX on the ray,

which is a strong constraint. When directional uncertainty is presented, the effect of constraints

from different directions are determined byσ1 andσ2, respectively.

Note that as a camera is further away from the 3D pointX, it has weaker constraint, since the

convex cone size atX becomes larger. This is a nice property since the further away from the

camera, the larger uncertainty about the 3D position the camera has.

3.8 Differences from algebraic method

Both the linear program in Eq. (34) and the algebraic approach in Section 2.1.1 are linear. However,

they have important differences.

The algebraic approach directly computes anapproximatedestimation of theunknown para-

meters, while the linear program only determines thefeasibilityin the bisection algorithm. It is the

overall bisection algorithm that produces the final estimation of the unknown parameters.

The algebraic approach outputs anapproximatedestimation of the unknown parameters from

an over-constrained linear equation set. It minimizes the sum of squared algebraic distance that is

neither geometrically nor statistically meaningful. The noise in every linear equation affects the

final estimation of the unknown parameters. In our approach, the noise has been taken into account

by the cone sizeα. Onceα is given, the resulting linear program is considered to be noiseless in

a sense that it givesexactsolution to determining the feasibility for bisection algorithm. Many

constraints in the linear program will be inactive and, therefore, do not affect its final solution.
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Figure 8:Multi-view triangulation: synthetic data. (a): The camera is rotating and translating, imaging
a 3D scene consists of 40 points; (b): Reconstruction errors (normalized by Eq.(37)) with zero-mean
Gaussian noises added to 2D point coordinates; (c): Reconstruction errors under both Gaussian noises and
outliers.

4 Experiments

We apply our quasiconvex optimization algorithm to multi-view triangulation and sequential struc-

ture from motion (SFM)(see [1]), and evaluate the performance using both synthetic and real data.

Using multi-view triangulation and planar homography estimation as two examples, we also show

that, when (directional) uncertainties are available, the use of covariance-weighted error functions

can greatly improve the reconstruction results.

4.1 Multi-view triangulation: synthetic data

The synthetic scene contains forty 3D points, distributed at different depth, that are imaged by a

moving synthetic camera, as shown in Fig. 8(a). We use 10 consecutive views in the triangulation.

Controlled zero-mean Gaussian noises and outliers are added to the 2D points. We apply our

algorithm to minimize three cost functionsF∞, Fm, andFw
m. HereFw

m denotesFm with weighted

sum-of-infeasibilities used in Eq. (33). The reconstruction results from the algebraic approach (see

Section 2.1.1) are included for comparison purpose.

Fig. 8 shows the average reconstruction errors, where (b) shows results when Gaussian noises

are added to the 2D positions at increasing variances, and (c) shows the results with both Gaussian

noises and 50% of outliers. The reconstruction error is normalized by:
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Figure 9:Multi-view triangulation: corridor sequence. (a): The first image of this 11-frame sequence; (b):
Reconstruction errors (normalized by Eq.(37)) with added zero-mean Gaussian noises; (c): Reconstruction
errors with both Gaussian noises and outliers. For each feature track, the outliers are added to 1 to 3 views,
depending on the number of views in which the corresponding 3D point is visible. (d): Reconstruction errors
with increased strength of outliers (ranged from 5 to 40 pixels).

err =
‖Z− ZT‖2

‖ZT‖2

(37)

whereZT is the known ground truth of 3D position, andZ is the triangulation result. As we can

see, the algebraic approach has poor performance when there are noises or outliers, while our

quasiconvex optimization successfully minimizesF∞, Fm, andFw
m. Without outliers,F∞, Fm, and

Fw
m have similar performance, withFm andFw

m better thanF∞ when the noises become larger.

When there are outliers, the performance ofF∞ degrades quickly.

4.2 Multi-view triangulation: real data with “ground truth”

We use thecorridor sequence2 in which the camera is moving forward along the corridor. Fig. 9(a)

shows the first frame of this 11-frame sequence. Along with the sequence, the 2D feature tracks,

2http://www.robots.ox.ac.uk/ ∼vgg/data1.html

27



camera projection matrices, and 3D points are also provided. We use 2D feature tracks and camera

matrices for triangulation, and compare the recovered 3D against the provided “ground truth”.

Controlled zero-mean Gaussian and/or outliers are added to the 2D feature coordinates. Fig. 9(b)

and (c) show the reconstruction errors. The results are consistent with those from the synthetic data

experiment. Again, our quasiconvex optimization successfully minimizesF∞, Fm, andFw
m.

We observed thatF∞ is determined by outliers. Its performance depends on the “strength” of

the outliers. Fig 9(d) shows the results where the strength of one outlier is increased. As we can

see, the performance fromF∞ degrades quickly when outlier strength is increased.Fw
m performs

better thanFm when outlier strength is large. When the 2D feature tracking error is less than 25

pixels,Fm performs as well asFw
m, indicating that in real scenariosFm is usually good enough.

4.3 Application: sequential structure from motion

Our target application is vision-aided small and micro aerial vehicle navigation, in which sequen-

tial SFM is applied to estimate both the camera motions and the 3D. We apply our multi-view

triangulation usingFm minimization to the sequential SFM.

A 450-frame image sequence is taken by a mini camera that was moved around by hand in an

office. Fig. 10(a) shows the first, middle, and last frames in this sequence. The camera is mostly

moving forward, which is typical for a micro aerial vehicle. The forward motion makes the 3D

estimation very challenging. Moreover, the images captured by the mini camera have low quality,

resulting in noisy 2D feature tracking. We therefore seek to use as many frames as possible in

triangulating a 3D point.

Fig. 10(b) shows the final reconstruction result (without global bundle adjustment). The red

circle indicates the points from the chair visible both in the first and the last image. In the 3D

view, the reconstruction of those points at the end of the sequence aligns very well with their

reconstruction at the beginning of the sequence, indicating a good estimation of both the 3D and

the camera motions.
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(a) (b)

Figure 10: Multi-view triangulation in sequential SFM. The camera is moved (largely forward motion)
around inside the office. (a): The first, middle, and last frame of the 450-frame sequence (image size
360 × 240), with tracked points superimposed. (b): Top-down view of the reconstruction results of camera
trajectory and 3D points. The yellow lines show the optical axis of the recovered cameras. The red circle
indicates the 3D points corresponding to the chair.

4.4 Experiments: quasiconvex minimization with uncertainty

We use planar homography estimation and multi-view triangulation as two example applications

to evaluate our algorithm for handling directional uncertainties. Using synthetic and real data,

we compare the performances of quasiconvex minimization ofF∞ with and without uncertainty

model. The uncertainty-weighted version ofF∞ is denoted byFw
∞. The results from normalized

linear algorithm are also included for comparison purpose.

4.4.1 Homography estimation with uncertainty: synthetic data

Fig. 11 shows the setup to generate the synthetic data for homography estimation, where the camera

images the points on the “ground plane”. This simulates the case where a camera mounted on a

X

x

Figure 11:The set up for synthetic data generation for homography estimation. The camera is looking at
points on the ground plane. The image coordinates are normalized such that the camera focal lengthf = 1.
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vehicle is looking at the ground plane at some angle. Note that in this caseh33 in homographyHT

may become very small. In all the algorithms being compared, we do not assumeh33 = 1.

We randomly generate twenty 3D pointsXi on the ground plane, and compute the 2D images

xi of these 3D points. We then add elliptical Gaussian noise toxi. The noise perturbed points are

denoted bỹxi. The ellipticity of the noise is measured byr =
√

σmax/σmin, whereσmax andσmin

are the major and minor axes of the uncertainty ellipse, respectively. The orientation of the ellipse

is randomly selected for each point.

We compare the performances using four criteria:

• Maximum reprojection error

F∞(X) = max
i

d(x̃i, HXi), (38)

whered(·, ·) denotes the Euclidean distance;

• Root of Mean Squares (RMS) of reprojection errors;

• Maximum covariance-weighted reprojection error, defined in Eq. (19) and denoted byFw
∞(X);

• Error inH defined as:

eH =

√√√√ 1

N

N∑
i=1

d2(xi, HXi) (39)

whered(xi, HXi) is the Euclidean distance between theground truth2D point xi and the

reprojection pointHXi. This error metric compares the estimatedH to the ground truthHT

using ground truth points. If there is not error in the estimatedH, theneH = 0.

We apply our algorithm to estimateH from this synthetic data. We repeat the experiments for

20 times, and report the average error. Fig. 12 shows the results, where
√

σmin = 0.01 and
√

σmax

varies from 0.01 to 0.2, i.e., the ellipticityr varies from 1 (isotropic) to 20.

As we can see from Fig. 12(a), bothF∞ andFw
∞ have similar RMS error. Normalized linear

algorithm has similar RMS error whenr is small, but becomes unreliable whenr ≥ 10.

Fig. 12(b) shows that minimizingF∞ gives the lowest maximum reprojection error, while

Fig. 12(c) shows that minimizingFw
∞ gives the lowest maximum covariance-weighted reprojection

error. This indicates that quasiconvex minimization indeed achieves the global minimum ofF∞

andFw
∞, respectively.
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Figure 12:Results from planar homography estimation. (a): RMS error; (b): Maximum of reprojection
error; (c): Maximum of covariance-weighted reprojection error; (d): Error inH.

From Fig. 12(d), which compares the estimatedH against ground truthHT using the metriceH ,

we can see thatFw
∞ performs the best, and its performance does not degrade at all with the increase

of r. This indicates thatFw
∞ is the proper metric to minimize. We also find that normalized

linear algorithm performs better thanF∞ whenr is small, but whenr is large, the performance of

normalized linear algorithm becomes unreliable.

4.4.2 Mulit-view triangulation with uncertainty: synthetic data

We use the set up in Fig. 8(a) to generate the synthetic data for multi-view triangulation with

uncertainty. The camera is rotating and translating, and takes ten consecutive views of twenty 3D

points located at different depth. Directional Gaussian noises are added to the locations of image

points.

Fig. 13 shows the average results of 20 runs. Again it shows that the covariance-weighted

reprojection error is the right metric to use, as can be seen by the fact thatFw
∞ gives the best 3D

estimationZ when compared to the ground truthZT using the error metric of Eq. (37).

31



0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

elliptical uncertainty: r = σ
max

 / σ
min

 

R
M

S
 r

ep
ro

je
ct

io
n 

er
ro

r

Algebraic
F−inf
Cov−weighted F−inf

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

elliptical uncertainty: r = σ
max

 / σ
min

 

M
ax

im
um

 r
ep

ro
je

ct
io

n 
er

ro
r

Algebraic
F−inf
Cov−weighted F−inf

(a) (b)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

elliptical uncertainty: r = σ
max

 / σ
min

 

M
ax

 c
ov

−
w

ei
gh

te
d 

re
pr

oj
 e

rr
or

Algebraic
F−inf
Cov−weighted F−inf

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

elliptical uncertainty: r = σ
max

 / σ
min

 
R

ec
on

st
ru

ct
io

n 
er

ro
r 

in
 3

D

Algebraic
F−inf
Cov−weighted F−inf

(c) (d)

Figure 13:Results from multi-view triangulation. (a): RMS error; (b): Maximum of reprojection error; (c):
Maximum of covariance-weighted reprojection error; (d): Reconstruction error compared against ground
truth 3D.

4.4.3 Infinite elliptical uncertainty

The performance ofFw
∞ does not degrade even whenr, the ellipticity of the noises, goes to essen-

tially infinity, as can be seen from Table 1. This fact indicates that the normal optical flow can be

modelled by directional (infinity) uncertainty. As a result, the point feature and line feature can be

simultaneously used in the quasiconvex optimization for many geometric reconstruction problems.

Homography Triangulation
Algebraic 833.8092 1.4380

F∞ 710.3891 3.1084
Fw∞ 0.0093 0.0146

Table 1:Results under infinite elliptical uncertaintyr = 105. The table showseH for homography estima-
tion ande3D for triangulation.

32



(a) (b)

Figure 14:Two input images. (a): First image, where elliptical uncertainties for some feature points are
shown; (b): Last image.

(a) (b) (c)

Figure 15:Residual image by applying the estimated homography. Note that residuals are scaled up for
visibility. The average pixel residual is shown ase for each case too. (a): Normalized linear algorithm,
e = 15.0798; (b): MinimizingF∞, e = 28.2082; (c): MinimizingFw∞, e = 5.8896.

4.4.4 Homography estimation with uncertainty: real data

We apply our algorithm to estimate the inter-image homography using real image data. Fig. 14

shows two input images. Here Fig. 14(a) shows the first image. The other images are obtained by

applying a known and gradually-changed planar homography to image (a). This way we have the

ground truth of the planar homography for evaluation purpose.

The features in the first image are tracked through the sequence, and the inverse covariance

matrix for each feature is computed by the matrix defined in Eq. (9). The elliptical uncertainties

for some feature points are shown in Fig. 14(a).

Fig. 15 shows the image residual by applying the inverse-warping using the estimated ho-

mographies. As we can see, minimizingFw
∞ gives the homography that has the lowest intensity
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residual. It correctly down weights the features with large directional uncertainty on the top of

the box to produce a correct estimate ofH. On the other hand, both normalized linear algorithm

and the minimization ofF∞ give worse results, as can be seen by the large residuals on the top of

the box, where there exist features with large directional uncertainty. Normalized linear algorithm

performs better than minimizingF∞ in this case.

5 Conclusion

We have presented a novel quasiconvex optimization framework to geometric reconstruction prob-

lems, which are formulated as a small number of small-scale convex programs that are ready to

solve. We derived the algorithm based on sound mathematical grounds, and the algorithm is es-

sentially free of parameter tuning. The final algorithm is simple, robust, and has very intuitive

geometric interpretation. In contrast to previous methods, our algorithm is deterministic and guar-

antees a predefined accuracy of the minimization result. We have demonstrated the effectiveness

of our approach, using both synthetic and real data.

Our quasiconvex optimization method can take into account (directional) uncertainties in a

straightforward and seamless way. Since line features can be represented as a point feature with

infinite uncertainty in the line direction, our method allows points and lines to be simultaneously

used in reconstruction.

We identified the general quasiconvex formulation of the reprojection error functions, therefore

our quasiconvex optimization framework can be potentially applied to many other estimation prob-

lems. We are investigating the applications of our approach to space carving [10], multi-baseline

stereo reconstruction, and efficient bundle adjustment [20] in structure from motion. We are also

extending our approach to multi-view triangulation without feature correspondences.
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