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Abstract

Geometric reconstruction problems in computer vision are often solved by minimizing a cost
function that combines the reprojection errors in the 2D images. In this paper, we show that, for
various geometric reconstruction problems, their reprojection error functions sbanenaon
andquasiconvexXormulation. Based on the quasiconvexity, we present a novel quasiconvex
optimization framework in which the geometric reconstruction problems are formulated as a
small number of small-scale convex programs that are ready to solve. Our final reconstruction
algorithm is simple and has intuitive geometric interpretation. In contrast to existing random
sampling or local minimization approaches, our algorithm is deterministic and guarantees a
predefined accuracy of the minimization result. Moreover, the quasiconvexity provides an
intuitive method to handle directional uncertainties and outliers in measurements. We demon-
strate the effectiveness of our algorithm by experiments on both synthetic and real data.

Keywords: multi-view geometry, geometric reconstruction, convex programming, directional
uncertainty, robust

1 Introduction

Given measurements in 2D images, the goal of geometric reconstruction in computer vision is to
estimate the three-dimensional information about the scene and/or the camera motions. Classical

examples include triangulation [5], camera resectioning [4, 14], and structure from motion (see [8]



for a review). The Gold standard for these estimation problems is minimZinthe averageof
squared reprojection errors (model-fitting errors measured in 2D image domain). Minimizing
leads to maximum likelihood estimation when measurement noises follow Gaussian distribution.

Due to the camera perspective effect, the cost fundiias highly nonlinear and often contains
multiple local minima. MinimizingF} is therefore difficult. Hartley and Schaffalitzky [7] proposed
usingL.., thepointwise maximuraf the squared reprojection errors, as the cost function, which we
denote ag,.. In contrast taF, it was shown that,, contains only one single minimum value in
its feasible domain. An approach using random line search in the parameter space was used in [7]
to minimize F,. The convergence behavior of random line search remains unclear. As pointed out
in [7], it is difficult to perform random line search when the parameter space is high dimensional.
Constrained minimization is also proposed in [7] for minimizifig. However, the constraints are
nonlinear and nonconvex, making such constrained minimization a difficult problem by itself.

We can consider the model-fitting error as a function of the unknown parameters, which is
termedreprojection error functionin this paper. We show that the reprojection error functions
share &aommorandquasiconvexormulation for the geometric reconstruction problems under our
consideration. As a resulk,,., the pointwise maximum of a family of quasiconvex functions, is
also a quasiconvex function. We then present an one-dimensional bisection algorithm to minimize
the quasiconvex functio,,. Our algorithm consists of a small number of small-scale convex
programs, specifically linear programs (LP) or second-order cone programs (SOCP). Both LP and
SOCP are well-studied and existing efficient algorithms and implementations are ready to use.
Compared to random line search in parameter space or local minimization approaches, our mini-
mization approach is efficient, even when the unknowns are high dimensional. More importantly,
our approach is deterministic and guarantees a predefined accuracy of the minimization result.
Previously, global optimal estimates can be achieved only in rare instances, such as two-view
triangulation usingl.-norm [5] or L;-norm [12], three-view triangulation by solving six-degree
polynomial equation set [17], and affine reconstruction using matrix factorization [18]. Minimiz-

ing F., by quasiconvex optimization provides a framework to achieve global optimal estimation



in many multi-view geometric reconstruction problems, without the limitation on the number of
views and/or the use of affine camera model.

It has been pointed out in [7] thdf,, is sensitive to outliers. We present two approaches
to handling outliers. In the first approach, we usg, the pointwisemn-th smallest reprojection
error, as the cost function. In contrast g, or F,, the cost functionF}, is highly robust to
outliers [22]. In spite of its complex formulation, in our cagdeés is still a pointwise operator of
a family of quasiconvex functions. As a result, our algorithm to mininfize can be extended
to efficiently minimizeF,,,, again by solving small-scale convex programs (LP or SOCP). In the
second approach, we show that the active constraints in the convex programs must contain outliers
(if they exist). As a result, we can remove outliers by simply removing active constraints.

Our quasiconvex minimization framework can also take directional uncertainty into account
in an intuitive way. Cost functions (e.gf; and F,.) are meaningful objectives to minimize only
when the measurement noises are isotropiciamd (independent and identically distributed) at
every 2D feature. In real data, this is rarely the case since the quality of feature matching depends
on the image intensity pattern around the feature, which often varies at different feature points and
has strong directionality to it. To account for the feature-dependent directional uncertainty, one
should minimize the covariance-weighted reprojection error (the Mahalanobis distance), instead
of the Euclidean distance. We incorporate the directional uncertainty model into the quasiconvex
optimization framework. The directional uncertainty can be characterized by the covariance matrix
at each 2D feature, as has been used in matrix factorization for affine reconstruction [9, 11]. We
show that the point-wise maximum of covariance-weighted reprojection errors is still a quasicon-
vex function, and therefore its global minimum can be obtained by the quasiconvex minimization
framework. Moreover, since a line feature can be modeled as a feature point with infinite uncer-
tainty along the line direction, point and line features can be used simultaneously for geometric

reconstruction in a common quasiconvex optimization framework.



1.1 Background: geometric reconstruction problems

We present some classical examples of geometric reconstruction problems in computer vision.
These geometric reconstruction problems can all be solved using our method presented in this

paper.

1.1.1 Multi-view triangulation

We are given projection matrices 6f cameras, denoted 4y, = 1,..., N}, and the images of

the unknown 3D poink in theseN cameras, denoted Hk;,i = 1, ..., N}. The task of triangula-

tion is to estimatéZ from {P;} and{x;}. Triangulation is a necessary step in two- or multi-view
3D reconstruction, and in structure from motion. Note that optimal triangulation algorithms [5, 13]

for two-view case are not generalizable to multi-view case.

1.1.2 Cameraresectioning
We are given 3D point§Z,,i = 1, ..., N} and their images$x;,7 = 1, ..., N} in one camera. The
task is to estimate the camera projection maerixom theseN corresponding pairéx; < Z;}.

Camera resectioning is used in camera calibration and in structure from motion.

1.1.3 Multi-view reconstruction with known rotations

In some cases the camera rotations are known, leaving only the camera positions and the 3D of the
scene to be estimated [7]. For example, in vision-aided inertial navigation, accurate camera pose
is available from modern gyroscopes, while the camera position information from accelerometers
is still noisy [3]. Another example is that there are reconstruction methods in which the camera
rotation for each frame is estimated in a first step [21]. DenoteNhiatrinsically calibrated
cameras a$P, = (R;, —R;C;),i = 1,..., N}, where for each camera the rotatibns known, but

its 3D positionC; is unknown. We are given 2D feature poidts;;} over theN cameras. Here

x;; denotes the projection gfth 3D pointZ,; onto thei-th camera. The task is to estimdté, }

and{C;} from the 2D points{x;;} and the camera pos¢R; }.



1.1.4 Multi-view reconstruction using a reference plane

When a reference plane is visible in all images, the inter-image planar homography from the given
reference plane can be used to compensate the relative camera rotations. Then the problem essen-

tially reduces to the above case of reconstruction with known rotations.

1.1.5 Planar homography estimation

Two images of points on a 3D scene plane are related by a planar homodrapByx 3 non-
singular matrix. GivenV correspondencel; < x;,i = 1,..., N}, the task is to estimatésuch

thatx! = Hx.

2 The cost function

In this section, we define the reconstruction error metric at each individual 2D measurement, and

the cost functions that combine reconstruction errors from individual 2D measurements.

2.1 Error metric for one 2D measurment

We use Triangulation as an example to illustrate three often-used error metrics for an individual

2D measurement.

2.1.1 Algebraic distance

Denotex; = (x;; 1) the homogeneous coordinates of the 2D measuremewe have the follow-
ing linear equation:
ki%; = P,Z 1)

HereZ is also expressed in homogeneous coordinates. The algebraic distaxgcs then defined

by:
fi(Z) = |[kix; — PiZ]|2 (2

Linear least-squares can be applied to estirdaby minimizing the sum of squared algebraic dis-
tances. Since the algebraic distance is not geometrically or statistically meaningful, the algebraic

reconstruction is not reliable (see [7,22]).



Figure 1:Distance betweer = (u,v) andx = (1, 9). The solid square shows the contour on which the
Li norm errore; = |ey| + |ey] = «, while the dash line shows the contour on which fhenorm error

es = /€2 +e2 = a. Heree, = (u— @), ande, = (v — ).

2.1.2 Distance in 3D space

In the case of calibrated camergg,Z) can be defined as the distance from the 3D p#itt the
ray back-projected frong;. In the case of two views, this distance function leads to the midpoint
estimation method whet2 is given by midpoint of the perpendicular between the two rays.

When a camera is further away from the 3D pdfhtthe camera has larger uncertaintyon
Distance metric in 3D space cannot take such uncertainty into account. As a result, the reconstruc-

tion result is unstable when the 3D point is far away from cameras.

2.1.3 Reprojection error in the image

The reprojection error is defined as the distance in the 2D image domain betyeeits repro-
jectionx; = m;(Z):
filZ) = |Ixi = %l = [Jxi = mi(Z)]]. 3)

wherex; = 7;(Z) is the reprojection o in the image of camer®, and|| - |, denotes some vector
norm. Bothx; andx; are in 2D Cartesian coordinates.

We choose reprojection error metric since it has a well-defined geometric meaning and it leads
to maximum likelihood estimation. For example, whignnorm is used in Eq. (3), the reprojection
error f; is the Euclidean distancdetweenx; andx;. We can also usé; norm. Its geometric

meaning is shown in Fig. 1.

2.2 Generalized reprojection error function

Definition 1. The general formulation of reprojection error function:



f(X) = o(X) (4)

where

e X & R"is the unknown vector to be estimated;
e p(X) is a convex function, ana X) > 0.

e ¢(X) is a linear function, and/(X) > 0;

In the following we show that most reprojection error functions are special cases of the above
general formulation. For a geometric reconstruction problem, if its reprojection error function
conforms to the general formulation in Eq. (4), the algorithms we present in this paper can be

applied to solve such reconstruction problem.

2.2.1 Reprojection error function in the image plane

Result 1. For the reconstruction problems in Section 1.1, the reprojection error function defined

in the image domain conforms to the general formulation in Definition 1.

Proof. For the problems in Section 1.1, the reprojectioxef (u, v) in the image can be written

as. T
. a'’X b'X
% = (—x —x> ®)

HereX is the vector to be estimated, b, andc are known vectors. For example, in the triangu-
lation problem, they are the three rows of the camera matnigspectively.

The reprojection error function is:

10 = e = = 5 (). () 1 ©)
where|| - ||; is the vector norm, and
pu(X) = (ucT — aT)X,
po(X) = (ve’ = b")X, (7)

¢(X) =c"X.

It is obvious thaty(X) is a linear function oiX.



In this paper, we consider affine or Euclidean reconstructidine cheirality constraint [6, 8],
which states that the 3D points visible in the image must be in front of the camera, can then be
expressed as' X > 0. Therefore, we have(X) > 0. The reprojection error function in Eq. (6)

can then be rewritten as:

F(X) = @H (pa(X), u(X)) || = % @®)

=

Any norm functiong(y) = ||y||; is a convex function of. The functioni(X) = (p,(X), p,(X))
is an affine function ofX. The composition of a convex functiopnand an affine functiork,
denoted by o h, is a convex function. Thereforg(X) = (g o h)(X) is a convex function oX.

It is obvious thap(X) > 0. O

2.2.2 Uncertainty-weighted reprojection error function

When uncertainty on the location of each 2D feature point is available, the reprojection error at
each feature should be weighted by its corresponding uncertainty. In this subsection, we show that
such uncertainty-weighted reprojection error function still conforms to the general formulation in

Definition 1. As a result, our algorithm in this paper can handle (directional) uncertainties.

Uncertainty of feature position
The accuracy of feature matching depends on the intensity pattern around each feature, which often
has strong directionality and is location-dependent. Such directional uncertainty can be character-
ized by the following inverse covariance matrix (cf. [15,16]:

1 L1, L1,

Q_l = - Z ’ (9)

s (u,w)ew [uIm I’UI’U

wherew is a small window centered around the feature point in the infagfethe i-th camerasg

is determined by the intensity pattern insideand/, and/, are image gradients alongandv di-

In a way similar to the method in [7], our algorithm in this paper can be extended to projective reconstruction.
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Figure 2: Uncertainty in feature point locations. (a): Scalar uncertainty with covariance magrix
diag(o, 0); (b): Directional but uncorrelated noises, with covariance mattix diag(o1, 03); (c): Direc-
tional and correlated noises, with covariance mafgia full 2 x 2 matrix.

(@

rection, respectively. A more accurate method to estimate feature position uncertainty is presented
in [16], which takes into account not only the image pattern but also the image pixel noises.
Figure 2 shows the three different types feature uncertainty:
e Q = diag(o,0): scalar uncertainty that is feature-dependent, but is isotropic and therefore
uncorrelated in; andw direction;
e Q = diag(o1,09): directional ¢; # 05) but uncorrelated im andv direction;

e Q= full 2 x 2 matriz: directional and correlated imandwv direction.

Covariance-weighted reprojection error function

The uncertainty in the location of each 2D feature paircgin be taken into account by weighting
the reprojection error appropriately using the covariance matrix. The covariance médrixhe

2D pointx is a symmetric positive semi-definite matrix, and can be decomposed by Singular
Value Decomposition into the following forntt = UZU', wheret = diag (o1, 02), andu is a2 x 2

orthonormal matrix. The inverse covariance matrix takes the form of
Ql=uzlu’ (10)
DenoteB = ¥~1/2uT, which is an affine transformation that transforms the input data into covariance-

weighted data space where the noises at each feature become isotrapiclarithe transformed

coordinates (in Euclidean) af andx in the image plane are :

x' = (u,v)" =B(u,v)" (11)
vopx— Lt ® |x (12)
a a CTX bT



wherea’ andb' follow the notation in Eg. (5). The covariance matrix of the noise in the

covariance-weighted data space now becomes isotropic and takes the toumn(af 1). Denote

A= |B c' —B . (13)

The covariance-weighted reprojection error function is:

fUX) =[x - (14)

cTXH

Again, the cheirality constraint [6, 8], which states that the 3D points visible in the image must
be in front of the camera, can then be expressed'a > 0. Therefore, Eq. (14) can then be

written as:

F4(X) = o IAX]| (1)
The norm functiorp(X) = ||AX]| is convex, and the function in Eq. (15) conforms to the general
formulation in Definition 1. Wherf - || in Eq. (15) isL,-norm, f*(X) is the Mahalanobis distance
betweenx andx.

2.2.3 Angular reprojection error function

When the camera is calibrated, the an@lleetween the observed rayand the reprojection ray

r = (a,b,c)" X can be used to define the reprojection error [7, 13]:

X Xr

f(X) = |tan(0)| =

(16)

x'r

wherex denotes cross-product. We choose(¢) since it is a monotonically-increasing function
of # whené € [0,7/2). The cheirality constraint can be enforced|By < 7/2, which leads to
q¢(X) = x'r > 0. Itis easy to verify thay(X) is a linear function ofX, andp(X) = |x x r|

is convex inX. Therefore, the angular reprojection error functitfiX) = EX) conforms to the

general form in Definition 1.

10



2.3 Combining reprojection errors into cost function

The often used cost functidh, in geometric reconstruction is defined as the average of the squared
Ly-norm reprojection errors: )

F=— Z F1(X) (17)
where) is the total number of 2D measurements (poinig)is difficult to minimize as it is highly
nonlinear and contains multiple local minima [7].

Hartley and Schaffalitzky [7] proposed using the pointwise maximum of the reprojection errors

as the cost function:
Foo(X) = max f;(X) (18)

When the measurement uncertainties are available, the uncertainty-weighted cost function is de-
fined by:
Foo(X) = max fi*(X) (19)

It was shown in [7] thatF,,(X) contains only one single minimum value in its domain, and is
therefore easier to minimize thdn(X). But as is also pointed out in [7],,(X) is sensitive to
outliers.

To deal with the outliers, we propose using pantwisem-th smallest reprojection errors as

the cost function:
F,(X) = mth f;(X) (20)

It is obvious thatF, is a special case of,, whenm = N. F,, is a highly robust function. For
example, whernm = |N/2|, it is the median operator. Minimizing;, leads to least-median

optimization [22], which can handle noisy measurements with 0% of outliers.

3 Minimizing the cost function

Both F, andF;, are constructed from pointwise operations on a family of functions. They are not
differentiable at many points. As a result, classical gradient-based approaches are not applicable

to minimizing them. Random line search in the parameter space was proposed in [7] to minimize

11



F, and random sampling [19, 22] is often used to detect outliers and to minifjzeThese
randomized approaches are not scalable when the unknowns are high-dimensional. They do not
guarantee convergence either.

In this section, we show that the general reprojection error function (Definition 1) is quasicon-
veX. Such quasiconvexity enables us to design a deterministic and efficient algorithm to minimizing

F,andF,,.

3.1 Minimization by feasibility

Instead of random search or sampling, let us look at a minimization approach that uses the classic
bisection search in the range domain/f and F,,,.

For the vision problems in which we are interested, the image size is bounded. Therefore, it is
realistic to assume that< F'(X) < h, whereF(X) is the cost function. Far € [/, h], denoteS,,

the a-sublevel set of'(X):
So = {X [ F(X) < a} (21)

If S, is non-empty, then we know that*, the minimum value of'(X), satisfies/™* < «. Other-
wise, we haveqF™ > «. Determining whethef, is empty or not can be achieved by solving the
following feasibility problem:

find X (22)

st. X e s,

Based on the above observation, we can use the bisection algorithm (see [2]) to pin down the
optimal value of F(X) by solving a sequence of feasibility problems. Fig. 3 shows the basic
procedure of the algorithm. It starts with a rarigé| that is known to contai™. Then we solve

the feasibility problem at its mid-point = (I + h)/2. If it is feasible, then the optimal value
F*is in the lower half of the interval and we can shrifikh] to [I, o]. Otherwise,F* must be in

the upper half of the interval and we shrifikh| to [«, h|. The algorithm then continues on the

identified half of the interval.

12



Algorithm: minx F'(X).
1: Givenl < F*, h > F*, and the tolerance > 0.
2: while (h — 1) > e do

a=(h+1)/2.

w

Solve the feasibility problem (22).

4
5. if (22) is feasiblethen h = q;
6. elsel=aq.

7

end while

Figure 3:Classical bisection algorithm to pin down the optimal value by searching in the one-dimensional
range domain.

As we can see, at each iteration the range is shrunk by half, and the bisection algorithm is guar-
anteed to converge iflog,((h — [)/¢)] iterations. For examplé(, 100] allows the re-projection
error to be as many as 100 pixels, which is guaranteed to contain the optimalA/alué we
choose= = 0.5 pixel, the algorithm will converge in onlylog, 200] = 8 iterations. Note that
the number of iterations is independent of the dimension of the unk@windicating that the
algorithm is suitable for solving high dimensional problems. More importantly, the optimal value

we derive is guaranteed to be less than 0.5 pixel away from the true minimum value.

3.2 Quasiconvex functions

The bisection algorithm in Fig. 3 is simple, deterministic, and it converges in a small number of
iterations. It can even be applied to minimizing cost functions with multiple minima.cfitieal

stepin the algorithm is solving the feasibility problem in Eq. (22), which could be a hard problem
by itself if the a-sublevel set ofF’(X) is complicated. However, i, is convex, then Eq. (22)

is a convex feasibility problem [2] that can be solved efficiently. A function with such convex

a-sublevel set is called guasiconvetunction:

Definition 2. (see [2])A functionf : R® — R is quasiconvexif its domaindom(f) and all its

sublevel sets,

13



So = {x € dom(f) |f(z) < a} (23)

for o € R, are convex.

A convex function has convex sublevel sets, and therefore, is quasiconvex. The reverse is not
true in general. Fig. 4 shows an example of quasiconvex function that is not convex. The dash-line
segment that lies below the function indicates the non-convexity of the function.

f(X) 4

a

S X

Figure 4:A quasiconvex function. All of its-sublevel set$S,, } are convex. But this quasiconvex function
is not convex, as can be seen from the line segméhnthat lies below the function.

The reprojection error functions are not convex due to camera perspective effect, but they are

guasiconvex:

Result 2. A reprojection error function that conforms to the general form defined in(£gs a

guasiconvex function.

Proof. For anya > 0, thea-sublevel set off (X) is:

Sa ={X [ f(X) <}

={X [ p(X) - aq(X) <0, ¢(X) > 0}

From the definition of the general reprojection error function (Definition 1), we knowpit¥aj

is a convex function, andag(X) is a linear function and, therefore, a convex function. The sum
of these two convex functions(X) = p(X) — aq(X) is still a convex function. A sublevel set
of a convex function is a convex set. As a resglf,is a convex set since it is the intersection of
two convex sets: the zero sublevel sety¢X), and the half space defined hyX) > 0. Since

dom(f) = R™andS, are all convex, we conclude thAtX) is quasiconvex. O

14



3.3 Minimizing cost function F,

Result 3. F.(X), the pointwise maximum of quasiconvex reprojection error functjpfx), is

also quasiconvex.
Proof. Thea-sublevel set,, of F.,(X) is:
So = {X | max f;(X) < a} (24)

N
:ﬂsg
=1

Here S! is thea-sublevel set of the reprojection error functigiX). From Result 2, we know
that{S’} are all convex sets. As a result, their intersectidnis also a convex set. Therefore,

F.(X) is a quasiconvex function. O

Due to its quasiconvexity;,,, can be efficiently minimized by the bisection algorithm in Fig. 3.

The convex sef,, = (', S’ can be expressed as:
Se ={X | ¢(X) > 0;pi(X) —aq;(X) <0;i=1,--- ,N} (25)

The feasibility problem of the bisection algorithm in Eq. (22) can now be solved by the following
convexprogram:
min 7 (26)
st. —qi(X)+e<n,
pi(X) — aq;(X) <,

i=1,..N.

Hereec is a small positive number. Denoté the optimal value of (26). If* < 0, thenS,, of
F.(X) is nonempty, and the problem in (22) is feasible; otherwise (22) is infeasible. Note that

we do not need to solve (26) with high accuracy. The algorithm terminates wheneveb is

15



satisfied, or whenever a dual feasible point is found with positive dual objective (which means

~v* > 0).

3.4 Minimizing robust cost function F;,

F..(X) is sensitive to outliers [7]. To deal with outliers, we use the robust cost funétjgix),
which is defined as the:-th smallest reprojection error (see Eq. (2®),(X) is not a quasiconvex
function, except forn = N, in which caseF;,,, becomed,..
However, since,,,(X) is a pointwise function of a family of quasiconvex functiofng(X)},
its a-sublevel set can still be represented by the convex sublevel sets of these quasiconvex func-

tions. As a result, we are able to extend the bisection algorithm to efficiently minimjze

3.4.1 Thea-sublevel set off;,

A point X,, belongs to thev-sublevel set ofF,,,(X) if and only if there exists a group of. a-

sublevel sets whose intersection contains the P8t

Result 4. DenoteS,, the a-sublevel set of,,(X). For anyX,, X, € S, ifand only if X, €,

{st 52 ... SNl HereS! is thea-sublevel set of;(X). The symbok,, means that there exist
m sublevel sets i{.S}, S2,--- | SN} such thatX, is inside the intersection of these sublevel
sets.

Proof. For anyX,, we sort thelV reprojection errors

f1(Xo), f2(Xo), -+, fn(Xo) (27)

into the nondecreasing order

foy(Xo) < -+ < fm)(Xo) < -+ < fin)(Xo) (28)

For the necessary condition, X, € S,, then we have,,(X,) = f)(Xo) < a. The firstm

smallest reprojection errofg(;(Xo),i = 1,--- ,m} in Eq. (28) must therefore satisfy;) (X,) <

16



a. As a result, X, belongs to the intersection of the a-sublevel sets of the firgt: functions in

Eq. (28).
For the sufficient condition, suppo3g) is in the intersection of the following: sublevel sets:
(¥ i=1,---,m}, whereS{” is thea-sublevel set of . We must have:
fO9Xo)<a, i=1,---,m (29)

Now if F,,(Xo) = fum)(Xo) > «, then from the sorted sequence in Eq. (28) we know that the
number of less-than-reprojection errors is less tham. This contradicts Eq. (29) where there are

m less-thanx reprojection errors. Therefore we hakg (X,) < «, i.e., X, € S,. O

3.4.2 Feasibility by convex program

From Result 4, the feasibility problem in the bisection algorithm to minimiZipgan be rewritten

as.
find X (30)

st. X € {SE, 82, SN

In other words, we need to determine if there exist--sublevel sets whose common intersection
is non-empty. A straightforward approach is to check the feasibility of every possible group of
sublevel sets, where for each group its feasibility can be exactly determined by the convex program
of Eg. (26). In worst case, this requir(a%) convex programs to solve Eq. (30), which is good for

small N. WhenN is large, we can use either integer program or its convex approximation.
Minimizing number of infeasibility

Result 5. The feasibility problem in Equatiai30) can be formulated exactly ligteger program-

ming:

17



miny + 9+ +y (31)
st. —q(X)+e<y,

pi(X) — agqi(X) <,

7 = {0, v},

i=1,.. N.

Herev > 0 is a large positive integer.

Given optimal valuegX*, v*) of the above minimization problem, if; = 0, then thei-th
reprojection errorf;(X) < «, i.e., X is inside thei-th a-sublevel set. On the other hand, if
v = v, thenX is outside the-th a-sublevel set. Whelry; + v, + - -+ + yx) IS minimized, we
obtain a solutionX* where the number infeasible constraints is minimized. In other words, we
seek a solution which maximizes the numberag$ublevel sets who have non-empty common

intersection. If this number is large than then Equation (30) feasible, otherwise, it is infeasible.

Minimizing sum of infeasibility
Although integer programming is well-studied and existing efficient package is available, it is in

general more complicate than LP or SOCP.

Result 6. We can use sum of infeasibility as an approximation to estimate the number of infeasible

constraints:
min y; + 752 + - + N (32)
Xy

st. —qi(X) +e <,

pi(X) — agi(X) <,

Vi Z Oa
i=1,..,N.
Denotey* = (71,75, -+ ,7~) the optimal value of the above convex program achievin at

18



Denoteg the number of zero elementsAn. If g > m, then the problem defined by H§0) must

be feasible; otherwise we consider Eg0) infeasible.

~; is called the infeasibility of;(X*). For any sublevel set’ , if its corresponding infeasibility
¢ = 0, thenX* is insideS’. As a result, the conditiop > m is sufficient for Eq. (30) to be
feasible, since thesgsublevel sets contain the common paXit.

While ¢ > m is a sufficient condition, it is an approximated necessary condition for Eg. (30)
to be feasible. The exact conclusion about the infeasibility of Eqg. (30) requires checking the
feasibility of (Z) groups ofm sublevel sets, or using integer programming to find the optimal
point X* that minimizes the number of infeasibilities (the number of nonzero componefts.in
Result 6 finds the minimum sum-of-infeasibilitigs, 7/, and uses it to approximate the minimum
number of infeasibilities. With such approximation, the bisection algorithm gives an upper bound
on the true minimum value of;,. The sum of infeasibilityl|~y|; = ), is by itself a robust
metric (.; norm is a robust metric), especially in our cases where the magnitude of outliers in the
2D measurements is bound by the image size. As a result, the bisection algorithm using Result 6
can usually achieve a tight upper bound on the true minimum valég, of

Fig. 5 illustrates the meaning of. When the camera matrix rormalizedappropriately, the
infeasibility +;" is the distance fronX* to the convex cone K* is outside the cone. X* is inside
the conesS’,, thenv; = 0. The sum-of-infeasibilitie$ ", v; is therefore the sum of distances from
X* to the convex cones that do not contah. WhenX* goes further away from the camera,
the camera’; has larger uncertainty aK*. Such varying uncertainty is taken into accountby

as it is the distance to the cone, and the cone becomes larg€r gses further away from the

Figure 5: When the camera matrix is normalized appropriately, the infeasibifitys the distance from
X* to the a-convex cone. For comparison purposk,is the distance to the ray back-projected from 2D
measuremer;.
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cameraC’;. This is in contrast to the distance to back-projected ray in 3D space (see Fig. 5).

Minimizing sum of weighted infeasibility

We can further improve the result by using weighted sum of infeasibitityy in Eq. (32), where

w = (wy,--- ,wy) is the weight for each measurement, ande [0, 1] can be set according to

its corresponding reprojection error to down-weight outliers, as shown in the following convex

program:
I)I(Hil wiy + weye + -+ WNYN (33)
st —qi(X) +e <,
pi(X) — aqi(X) < i,
v = 0,

i=1,.. N.

?

A simple weighting scheme is th@, 1} weighting where the weights; corresponding to active
constraints are set to 0. Another scheme is to determine the wejgidcording to reprojection

errorr; =

x; — 2. Note that Eq. (32) is a special case of Eq. (33).

i
i

3.5 Feasibility by LP or SOCP

When L;- or Ly-norm error metric is used in defining the reprojection error function, the convex
program for feasibility becomes small-scale linear programs (LP) or second-order convex pro-
grams (SOCP), respectively.

3.5.1 L;-norm error metric leads to LP

When L;-norm error metric is used, the convex program in Eq. (32) becomes the following linear

program:
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r)r(17i£171+71+---+%v (34)
st. —q(X) +e <,

—agi(X) + pui(X) — pui(X) < 7,

—aq;(X) + pui(X) + pui(X) < 7,

—ag;(X) = pui(X) = pui(X) < i,

—aqi(X) = pui(X) + pui(X) < i,

7@20, Zzl,,N
Herep.;, p.i, andg; are all linear functions oKX (see Eq. (7) for the definition).

3.5.2 Ly-norm error metric leads to SOCP

When L,-norm error metric is used, Eq. (32) becomes:
min’71+’71+"'+’7N (35)
Xy

st —qi(X) +e <,
14 X2 < g (X) + v,

>0, i=1,..N.

Herea; is a2 x 3 matrix defined in Eq. (13)xg;(X) + 7, is a linear function oX. Therefore, the

inequality
A X2 < @gi(X) + 7 (36)

defines a second order convex cone [2]. As a result, Eq. (35) is a second-order cone programming

(SOCP).
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3.6 Explicit outlier detection

In Section 3.4, we have discussed how to use equation (32) to minimize the cost fuRgtion
the m-th smallest reprojection error, for a robust geometric reconstruction. In this section, we
discuss how to explicitly detect outliers by examining the activeness of the constraints in the convex

program of equation (32).

3.6.1 Inliers and outliers

DenoteX; the ground truth value of the unknown geometric parameters we want to estimate. For
an inlier measurement, its distance to the reprojectioK gfin the measurement domain should
follow zero-mean Gaussian distribution. On the other hand, for an outlier, such distance is larger
than some value (e.g3p, whereo is the standard deviation of the Gaussian distribution of the

inliers’ distance taX ).

Definition 3. A measurement; is an inlier if and only if itsar-sublevel set containX; as its

interior point, i.e., Xy € int(S,,). Hereas is some predefined value.
From the definition of inliers, we have:

Result 7. Thear-sublevel sets of all inliers have a common intersection set that conXajinas

an interior point.

3.6.2 Outlier detection

The constraints in the convex program of Eq. (32) can be classified into active or inactive.

Definition 4. Denoteh;(X) = p;(X) — ag;(X) — 7;. SupposéX* v*) is the optimal solution of
Eq. (32). If h;(X*) = 0, then the constraink;(X) < 0 is activeat X*. If h;(X*) < 0, then the

constrainth;(X) < 0 is inactiveat X*.

For an active constrairit;(X), the optimal solutiorX* is either at the boundary df! (when

7v; = 0), or outside ofS? (when~; > 0).
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Figure 6:Choosing a poinX, € S; () So reduces the objective value.

If there are outliers in the measurements, then for outlier detection we only care about the case
of a > ar. Since if we can achiewe < a7 in the bisection algorithm, we know the measurements

are all inliers according to Definition 3.

Result 8. If there are outliers in the measuremeft; }, then the convex prograif82) achieves
some positive optimal value' v* at (X*,v*), givena = ar — ¢ (Heree is a small positive value).

Moreover, at least one active constraint comes from some outlier.

Proof. From the definition, it is obvious that (32) will achieve some positive optimal value, denoted
by X*. DenoteS; the common intersection of constraints from all inliers, a&hdthe common
intersection of constraints from all outliers. From Result 7, we kishvis a non-empty set that
containsX as an interior pointSupposaell active constraints are from inliers. Th&i must be

an interior point of the convex sél,. At the same time, sincg; is a convex setX* must be on

the boundary of;. Therefore there must exist some pa¥y # X*, such that (1X, is an interior

point of S;, and (2)X, € S; () So. The convex program (32) will achieve a smaller objective value
at X,. This is in contradiction to the condition that the convex program (32) achieves a minimum
optimal value aiX*. Therefore, some active constraints must be from outliers. See Figure 6 for an

illustration. O]

Result 8 suggest a simple mechanism to detect outliers, i.e., in each iteration of the bisection
algorithm (see figure 3), discard the measurements corresponding to active constraints<until
ar. But one should be aware that some of the inliers are discarded as they may be active. In some
applications, the number of constraints is small (e.g., 3D triangulation given only 3 or 4 views),

minimizing theF,, is favorable to removing active constraints.
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3.7 Geometric interpretation

The minimization algorithm we presented in this section has intuitive geometric interpretation. We
use uncertainty-weighted multi-view triangulation as an example to illustrate. For each 2D feature
point x;, the a-sublevel setS?” of the covariance-weighted reprojection error functigf(X) is
a second order convex cone in the 3D space in front of the camera. The shape and size of such
convex cone are determined byand the covariance matrik = U diag(o;,0)U", as shown in
Fig. 7(a). The construction of convex coRg is the following. First a circle in the image plane
with radiusa is scaled by, /o, and, /o, in v andv direction, respectively. This results in an ellipse
with axes ofo, /o, andar, /o, respectively. The ellipse is then rotated by the rotation métrikhe
final convex cone, dubbed aeliptical cone is formed by connecting the camera optical center and
the rotated ellipse.

The a-sublevel setS° of the cost functionF,(X) is the intersection of allv-sublevel sets
{S}. Minimizing the covariance-weighted cost,(X) is therefore equivalent to determining
if there exists common intersection of the convex elliptical copgs}, as shown in Fig. 7(b).
The bisection algorithm then seeks a minimum valuguch that the common intersection of the
convex elliptical cone$S"} is non-empty. To minimize the robust functidh, (X), the algorithm

determines whether or not there exigstout-of-N convex cones that have nonempty common

E T
a\/@‘ //,«
fz;'

Figure 7: Geometric illustration of 3D reconstruction using quasiconvex optimization. Her@orm is

used in the reprojection error function. (a): The shape and size of each cone are determinegniy
covariance matrixy;; (b): The algorithm seeks minimumsuch that the cones have non-empdynmon

intersectionS;°. Note that cones have different shapes and sizes. The lastgptas large directional
uncertainty and has little constraint on determinifigf in the direction that has large uncertainty.

(b)
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intersection.

Sincea is common for all convex cones, the relative shape and size of each individual cone
is actually determined by its associated covariance matrix. Therefore the effect of each convex
cone constraint on the final estimatidhis weighted by the inverse covariance matrix. Consider
an extreme case when uncertainty goes to infinity. In such case, the corresponding convex cone is
scaled to infinite size and does not have any constraint on the estim&te ©h the other hand,
if the uncertainty is zero, the convex cone becomes a ray, and we must conXtramthe ray,
which is a strong constraint. When directional uncertainty is presented, the effect of constraints
from different directions are determined by ando,, respectively.

Note that as a camera is further away from the 3D p&init has weaker constraint, since the
convex cone size aX becomes larger. This is a nice property since the further away from the

camera, the larger uncertainty about the 3D position the camera has.

3.8 Differences from algebraic method

Both the linear program in Eq. (34) and the algebraic approach in Section 2.1.1 are linear. However,
they have important differences.

The algebraic approach directly computesagproximatedestimation of thaunknown para-
meters while the linear program only determines fieasibilityin the bisection algorithm. Itis the
overall bisection algorithm that produces the final estimation of the unknown parameters.

The algebraic approach outputs a@pproximatedestimation of the unknown parameters from
an over-constrained linear equation set. It minimizes the sum of squared algebraic distance that is
neither geometrically nor statistically meaningful. The noise in every linear equation affects the
final estimation of the unknown parameters. In our approach, the noise has been taken into account
by the cone size.. Oncea is given, the resulting linear program is considered to be noiseless in
a sense that it givesxactsolution to determining the feasibility for bisection algorithm. Many

constraints in the linear program will be inactive and, therefore, do not affect its final solution.
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Figure 8: Multi-view triangulation: synthetic data. (a): The camera is rotating and translating, imaging

a 3D scene consists of 40 points; (b): Reconstruction errors (normalized by3Ej).with zero-mean
Gaussian noises added to 2D point coordinates; (c): Reconstruction errors under both Gaussian noises and
outliers.

4 Experiments

We apply our quasiconvex optimization algorithm to multi-view triangulation and sequential struc-

ture from motion (SFM)(see [1]), and evaluate the performance using both synthetic and real data.
Using multi-view triangulation and planar homography estimation as two examples, we also show
that, when (directional) uncertainties are available, the use of covariance-weighted error functions

can greatly improve the reconstruction results.

4.1 Multi-view triangulation: synthetic data

The synthetic scene contains forty 3D points, distributed at different depth, that are imaged by a
moving synthetic camera, as shown in Fig. 8(a). We use 10 consecutive views in the triangulation.
Controlled zero-mean Gaussian noises and outliers are added to the 2D points. We apply our
algorithm to minimize three cost functiods,, F,,,, andF. HereFw denotest;,, with weighted
sum-of-infeasibilities used in Eq. (33). The reconstruction results from the algebraic approach (see
Section 2.1.1) are included for comparison purpose.

Fig. 8 shows the average reconstruction errors, where (b) shows results when Gaussian noises
are added to the 2D positions at increasing variances, and (c) shows the results with both Gaussian

noises and 50% of outliers. The reconstruction error is normalized by:
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Figure 9:Multi-view triangulation: corridor sequence. (a): The firstimage of this 11-frame sequence; (b):
Reconstruction errors (normalized by E§7)) with added zero-mean Gaussian noises; (¢): Reconstruction
errors with both Gaussian noises and outliers. For each feature track, the outliers are added to 1 to 3 views,
depending on the number of views in which the corresponding 3D pointis visible. (d): Reconstruction errors
with increased strength of outliers (ranged from 5 to 40 pixels).

2= 20
21

(37)

whereZ is the known ground truth of 3D position, aidis the triangulation result. As we can

see, the algebraic approach has poor performance when there are noises or outliers, while our
quasiconvex optimization successfully minimizés, F,,, andF*. Without outliers,F ., F,,, and

F have similar performance, with;,, and Y better thanF, when the noises become larger.

When there are outliers, the performance f degrades quickly.

4.2 Multi-view triangulation: real data with “ground truth”

We use theorridor sequencé in which the camera is moving forward along the corridor. Fig. 9(a)

shows the first frame of this 11-frame sequence. Along with the sequence, the 2D feature tracks,

2http://www.robots.ox.ac.uk/ ~vgg/datal.html
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camera projection matrices, and 3D points are also provided. We use 2D feature tracks and camera
matrices for triangulation, and compare the recovered 3D against the provided “ground truth”.

Controlled zero-mean Gaussian and/or outliers are added to the 2D feature coordinates. Fig. 9(b)
and (c) show the reconstruction errors. The results are consistent with those from the synthetic data
experiment. Again, our quasiconvex optimization successfully minimizgst,,,, andF.

We observed that,, is determined by outliers. Its performance depends on the “strength” of
the outliers. Fig 9(d) shows the results where the strength of one outlier is increased. As we can
see, the performance froii,, degrades quickly when outlier strength is increasgtl.performs
better thanF},, when outlier strength is large. When the 2D feature tracking error is less than 25

pixels, F,,, performs as well a), indicating that in real scenarids,, is usually good enough.

4.3 Application: sequential structure from motion

Our target application is vision-aided small and micro aerial vehicle navigation, in which sequen-
tial SFM is applied to estimate both the camera motions and the 3D. We apply our multi-view
triangulation usingr,,, minimization to the sequential SFM.

A 450-frame image sequence is taken by a mini camera that was moved around by hand in an
office. Fig. 10(a) shows the first, middle, and last frames in this sequence. The camera is mostly
moving forward, which is typical for a micro aerial vehicle. The forward motion makes the 3D
estimation very challenging. Moreover, the images captured by the mini camera have low quality,
resulting in noisy 2D feature tracking. We therefore seek to use as many frames as possible in
triangulating a 3D point.

Fig. 10(b) shows the final reconstruction result (without global bundle adjustment). The red
circle indicates the points from the chair visible both in the first and the last image. In the 3D
view, the reconstruction of those points at the end of the sequence aligns very well with their
reconstruction at the beginning of the sequence, indicating a good estimation of both the 3D and

the camera motions.
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(b)

Figure 10: Multi-view triangulation in sequential SFM. The camera is moved (largely forward motion)
around inside the office. (a): The first, middle, and last frame of the 450-frame sequence (image size
360 x 240), with tracked points superimposed. (b): Top-down view of the reconstruction results of camera
trajectory and 3D points. The yellow lines show the optical axis of the recovered cameras. The red circle
indicates the 3D points corresponding to the chair.

4.4 Experiments: quasiconvex minimization with uncertainty

We use planar homography estimation and multi-view triangulation as two example applications
to evaluate our algorithm for handling directional uncertainties. Using synthetic and real data,
we compare the performances of quasiconvex minimizatioA,ofwith and without uncertainty
model. The uncertainty-weighted version6f is denoted byF. The results from normalized

linear algorithm are also included for comparison purpose.

4.4.1 Homography estimation with uncertainty: synthetic data

Fig. 11 shows the setup to generate the synthetic data for homography estimation, where the camera

images the points on the “ground plane”. This simulates the case where a camera mounted on a

Figure 11:The set up for synthetic data generation for homography estimation. The camera is looking at
points on the ground plane. The image coordinates are normalized such that the camera focaf length
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vehicle is looking at the ground plane at some angle. Note that in thisigagehomographyi
may become very small. In all the algorithms being compared, we do not agsiimel.

We randomly generate twenty 3D poirXs on the ground plane, and compute the 2D images
x; of these 3D points. We then add elliptical Gaussian noise.td he noise perturbed points are
denoted byk;. The ellipticity of the noise is measured BY= /7,42 min, Whereo, ... ando, i,
are the major and minor axes of the uncertainty ellipse, respectively. The orientation of the ellipse
is randomly selected for each point.

We compare the performances using four criteria:
e Maximum reprojection error
Fo(X) = max d(x;, HX;), (38)
whered(-, -) denotes the Euclidean distance;
e Root of Mean Squares (RMS) of reprojection errors;
e Maximum covariance-weighted reprojection error, defined in Eq. (19) and denofefi(B{);

e ErrorinH defined as:

N
1

whered(x;,HX;) is the Euclidean distance between tjreund truth2D pointx; and the
reprojection poinHX;. This error metric compares the estimatetb the ground truthi;
using ground truth points. If there is not error in the estimatetiene, = 0.
We apply our algorithm to estimatefrom this synthetic data. We repeat the experiments for
20 times, and report the average error. Fig. 12 shows the results, yhgse = 0.01 and, /0,4,
varies from 0.01 to 0.2, i.e., the ellipticityvaries from 1 (isotropic) to 20.
As we can see from Fig. 12(a), boify, and F¥ have similar RMS error. Normalized linear
algorithm has similar RMS error whens small, but becomes unreliable whe 10.
Fig. 12(b) shows that minimizind’,, gives the lowest maximum reprojection error, while
Fig. 12(c) shows that minimizing gives the lowest maximum covariance-weighted reprojection
error. This indicates that quasiconvex minimization indeed achieves the global miniman of

andFY, respectively.
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Figure 12:Results from planar homography estimation. (a): RMS error; (b): Maximum of reprojection
error; (c): Maximum of covariance-weighted reprojection error; (d): ErrorHn

From Fig. 12(d), which compares the estimatieahainst ground truth; using the metrie 4,
we can see that performs the best, and its performance does not degrade at all with the increase
of . This indicates that¥ is the proper metric to minimize. We also find that normalized
linear algorithm performs better than, whenr is small, but when is large, the performance of

normalized linear algorithm becomes unreliable.

4.4.2 Mulit-view triangulation with uncertainty: synthetic data

We use the set up in Fig. 8(a) to generate the synthetic data for multi-view triangulation with
uncertainty. The camera is rotating and translating, and takes ten consecutive views of twenty 3D
points located at different depth. Directional Gaussian noises are added to the locations of image
points.

Fig. 13 shows the average results of 20 runs. Again it shows that the covariance-weighted
reprojection error is the right metric to use, as can be seen by the fadt’thgives the best 3D

estimationZ when compared to the ground tridh using the error metric of Eq. (37).
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Figure 13:Results from multi-view triangulation. (a): RMS error; (b): Maximum of reprojection error; (c):
Maximum of covariance-weighted reprojection error; (d): Reconstruction error compared against ground
truth 3D.

4.4.3 Infinite elliptical uncertainty

The performance of 2 does not degrade even wherthe ellipticity of the noises, goes to essen-
tially infinity, as can be seen from Table 1. This fact indicates that the normal optical flow can be
modelled by directional (infinity) uncertainty. As a result, the point feature and line feature can be

simultaneously used in the quasiconvex optimization for many geometric reconstruction problems.

Homography| Triangulation

Algebraic 833.8092 1.4380
Fy 710.3891 3.1084
FY 0.0093 0.0146

Table 1:Results under infinite elliptical uncertainty= 10°. The table showsy; for homography estima-
tion andesp for triangulation.
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(b)

Figure 14:Two input images. (a): First image, where elliptical uncertainties for some feature points are
shown; (b): Last image.

(b) ()

Figure 15:Residual image by applying the estimated homography. Note that residuals are scaled up for
visibility. The average pixel residual is shown @a$or each case too. (a): Normalized linear algorithm,
e = 15.0798; (b): Minimizing F, e = 28.2082; (c): Minimizing F¥¥, e = 5.8896.

4.4.4 Homography estimation with uncertainty: real data

We apply our algorithm to estimate the inter-image homography using real image data. Fig. 14
shows two input images. Here Fig. 14(a) shows the firstimage. The other images are obtained by
applying a known and gradually-changed planar homography to image (a). This way we have the
ground truth of the planar homography for evaluation purpose.

The features in the first image are tracked through the sequence, and the inverse covariance
matrix for each feature is computed by the matrix defined in Eq. (9). The elliptical uncertainties
for some feature points are shown in Fig. 14(a).

Fig. 15 shows the image residual by applying the inverse-warping using the estimated ho-

mographies. As we can see, minimiziatf gives the homography that has the lowest intensity

33



residual. It correctly down weights the features with large directional uncertainty on the top of
the box to produce a correct estimatedofOn the other hand, both normalized linear algorithm

and the minimization of,, give worse results, as can be seen by the large residuals on the top of
the box, where there exist features with large directional uncertainty. Normalized linear algorithm

performs better than minimizing,, in this case.

5 Conclusion

We have presented a novel quasiconvex optimization framework to geometric reconstruction prob-
lems, which are formulated as a small number of small-scale convex programs that are ready to
solve. We derived the algorithm based on sound mathematical grounds, and the algorithm is es-
sentially free of parameter tuning. The final algorithm is simple, robust, and has very intuitive
geometric interpretation. In contrast to previous methods, our algorithm is deterministic and guar-
antees a predefined accuracy of the minimization result. We have demonstrated the effectiveness
of our approach, using both synthetic and real data.

Our quasiconvex optimization method can take into account (directional) uncertainties in a
straightforward and seamless way. Since line features can be represented as a point feature with
infinite uncertainty in the line direction, our method allows points and lines to be simultaneously
used in reconstruction.

We identified the general quasiconvex formulation of the reprojection error functions, therefore
our quasiconvex optimization framework can be potentially applied to many other estimation prob-
lems. We are investigating the applications of our approach to space carving [10], multi-baseline
stereo reconstruction, and efficient bundle adjustment [20] in structure from motion. We are also

extending our approach to multi-view triangulation without feature correspondences.
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