
Testing typed functional programs and re-synthesizing them

Katherine Ye, advised by Prof. David Walker1

1Princeton University

Building on Godefroid (2005)’s work on symbolic execution for testing of imperative programs,
we develop a novel algorithm to test typed functional programs. This algorithm generates inputs
that traverse every branch of a program, solving equations along the way. These inputs can serve
as input examples for an example-driven synthesis system, which will then attempt to re-synthesize
the program. This process creates a connection between functional testing and program synthesis.

We implement these algorithms in the context of Myth, a type- and example-directed synthesis
system (Osera and Zdancewic (2015)), and we name our implementation Pyth. Examining the
differences between these input-output examples and human-written examples, as well as their
respective synthesized and re-synthesized programs, sheds light on the additional information needed
for Myth to synthesize a program.

I. INTRODUCTION

The problems of verifying programs and synthesizing
them can be viewed as two sides of the same coin. That
is, proving programs correct is deeply related to cre-
ating correct programs. Thirty years ago, Manna and
Waldinger (1980) presented an approach that regarded
program synthesis as a theorem-proving problem. Re-
cently, Srivastava and Gulwani (2010) interpreted pro-
gram synthesis as generalized program verification. They
encoded a synthesis problem as a verification problem
such that their verification tool would infer both program
invariants and the program itself.

Here, we present a connection between testing pro-
grams and synthesizing them.

A. Symbolic execution and testing programs

When it comes to automatic program testing, there
are two main philosophies: blackbox fuzzing and white-
box testing. A test here is some input vector to a pro-
gram, paired with an expected output. Blackbox fuzzing
treats the program as a black box. Without inspecting
the program’s code or structure, it tests that a program
behaves the way it should. It does this by providing
random or malignant inputs, or systematically mutat-
ing well-formed inputs, to try and cause the program to
crash.

On the other hand, whitebox testing treats the pro-
gram as transparent. It tries to ensure that every path
through the program is well-formed and doesn’t result
in crashes. One way of reaching what testers call “100%
code coverage” is to enumerate each path through a pro-
gram and find the class of inputs that traverses that path.
This can be accomplished by the method of symbolic ex-
ecution, which will be summarized later.

Note that both testing methods generate tests for the
program. Blackbox fuzzers are easier to write, but white-
box tests tend to give more code coverage and account
for more corner cases.

B. Program synthesis and Myth

Program synthesis aims to turn human insight into
computer code. There are three main axes of synthesis:

1. Does it take existing code and fill holes in it, or
does it take a skeleton of examples and synthesize
all the functions?

2. Does it synthesize imperative code or functional
code?

3. To synthesize code, does it use SAT solvers or does
it use proof theory?

The Sketch system, by Solar-Lezama (2008), is a well-
known system that gives the former answer to these three
question. This paper considers the system Myth, by Os-
era and Zdancewic (2015), which gives the latter answer
to these three questions. Myth is a program synthesis
system that synthesizes recursive functions that process
algebraic datatypes, and it operates on a typed functional
ML-like language that is a subset of OCaml. It takes as
input a list of concrete inputs and outputs that a func-
tion would produce. This is a way to partially specify a
function, and given these, Myth attempts to produce a
full specification of a function—that is, the function it-
self. Osera and Zdancewic (2015) introduce Myth with
the following example:

(* Type signature for natural numbers and lists *)

type nat =

| O

| S of nat

type list =

| Nil

| Cons of nat * list

(* Goal type refined by input / output examples *)

let stutter : list -> list |>

{ [] => []

| [0] => [0;0]

| [1;0] => [1;1;0;0]

} = ?

2

(* Output: synthesized implementation of stutter *)

let stutter : list -> list =

match l1 with

| Nil -> l1

| Cons(n1, l2) -> Cons(n1, Cons(n1, f1 l2))

The user gives Myth an environment of types, as well
their understanding of the stutter function in the form of
small examples that duplicate each element of the input
list. Myth uses these to synthesize the full function.

This paper will use Myth as the target environment in
which to perform program de-synthesis and re-synthesis.
That is, our benchmarks are the most complex of their
benchmarks, our language is a subset of theirs, and our
implementation is embedded as additional modes in the
Myth implementation.

C. Contributions

This paper makes the following contributions to the
study of typed functional programs.

Broadly, we make a connection between testing such
programs and synthesizing them.

We summarize Godefroid’s work in Section II, then we
extend Godefroid (2008)’s work on whitebox-fuzzing pro-
grams in C-like languages to whitebox-fuzzing programs
in ML-like languages, for which there is little prior work.
In Sections III and IV, we develop a novel algorithm to
solve equations involving algebraic datatypes, as well as a
novel algorithm for backwards symbolic execution. These
algorithms together can generate thorough test case in-
puts that traverse every execution path of a function. If
they cannot, the code in that subpath is unreachable.

To extend testing to synthesis, in Section IV, we de-
velop a novel algorithm to augment the test case inputs
into input-output examples for Myth. We then give de-
tailed analyses of several end-to-end de-syntheses and
re-syntheses of complex Myth benchmark functions in
Sections IV and V. To our knowledge, this is the first
attempt to systematically de-synthesize functions into
input-output examples (which is a common type of input
for program synthesis systems). This raises the interest-
ing question of using these examples to characterize func-
tions in an information-theoretic manner. We discuss our
conclusions and future work in Section VI, followed by
appendices on the algorithm implementations in OCaml.

We give the name Pyth to the end-to-end system con-
sisting of the equation-solving algorithm, the backwards
symbolic execution algorithm, and the input-output ex-
ample augmentation algorithm.

II. TESTING IMPERATIVE PROGRAMS

A. Motivation and DART

First, we discuss prior work in the area of white-
box testing. DART is a tool for automatically testing

Figure 1. The Pyth system.

software by combining blackbox fuzzing with whitebox
testing, yielding a technique the authors call “whitebox
fuzzing” (Godefroid (2005)). This technique is very ef-
fective at finding bugs. A similar tool called SAGE, by
the same authors, is used to test large codebases at Mi-
crosoft. SAGE was able to find a bug that caused a crit-
ical security vulnerability without any knowledge of the
file formats involved. Moreover, according to Godefroid
(2012), “extensive blackbox fuzzing of this code failed to
uncover the bug and ... existing static-analysis tools were
not capable of finding the bug without excessive false
positives.” This showcases the effectiveness of whitebox
fuzzing compared to blackbox fuzzing.

Blackbox fuzzing often fails precisely because it cannot
inspect the program’s structure, so it fails to find corner
cases in code such as the following:

if (x == 1)

thisLeadsToFailure();

else

(...)

(Let x be an integer.) Code like this is quite common.
To test it, blackbox fuzzing will guess random values for
x , but since there are 232 possibilities (the size of an inte-
ger), the probability of it triggering the error is infinitesi-
mally small. Whitebox testing, however, would easily be
able to generate x = 1 to trigger the failure. DART and
SAGE build on this insight.

3

B. How DART and SAGE ensure code coverage

Here is the core of DART and SAGE’s symbolic exe-
cution algorithm. We examine this function, reproduced
from Godefroid (2008), and try to find a class of inputs
for each path that traverses it.

void top(char input[4]) {

int cnt=0;

if (input[0] == b) cnt++;

if (input[1] == a) cnt++;

if (input[2] == d) cnt++;

if (input[3] == !) cnt++;

if (cnt >= 3) abort(); // error

}

Like in blackbox fuzzing, this symbolic execution algo-
rithm takes an initial well-formed output. We pick the
array of letters good . Like in whitebox testing, it inspects
the path this input takes through the function, and col-
lects constraints along the way. These constraints arise
whenever the program branches on a conditional. For
the good path, the path constraints are the conjunction
of i [0] 6= b, i [1] 6= a, i [2] 6= d , i [3] 6=!. Any input that sat-
isfies these constraints lies in the same equivalence class
of inputs as good does; for example, abcd is in the same
equivalence class.

To create an input in a different equivalence class—
that is, an input that traverses a different path than the
good path—the algorithm systematically negates the col-
lected constraints in some way, and arrives at an input by
passing this new set of constraints to a SAT solver. Here,
we choose to negate the last constraint, which yields the
set i [0] 6= b, i [1] 6= a, i [2] 6= d , i [3] =!, which yields the
input goo!. (Conceivably, here, a SAT solver could have
returned abc!; but for clarity we mutate previous inputs.)
This goo! traverses a new path of the program—for good ,
cnt was 0, but now it is 1.

Note how here we are mutating well-formed inputs in
a manner reminiscent of blackbox fuzzing, but traversing
the function in a whitebox manner.

There are 24 = 16 possible program paths. If the nega-
tions are performed in depth-first order, then the search
space is explored from left to right as shown in the tree in
Figure 2. Each fork partitions the inputs into two equiv-
alence classes. The first fork, for example, partitions the
inputs into ones that start with b and ones that don’t.

The error is finally triggered with the input badd ,
which causes cnt to be 3 and the program to abort.
The depth-first search concludes with the last input bad!,
which also causes the program to abort.

There are two problems with this traversal algorithm.
In practice, codebases are large and interlinked, and the
number of paths doubles with each conditional. Addi-
tionally, symbolic execution may be imprecise or impos-
sible due to floating-point arithmetic and calls to opaque
functions. Godefroid (2008) improves on this traversal
algorithm with an algorithm called generational search.
Generational search is designed to maximize code cov-
erage while efficiently generating new tests, and it is re-

Figure 2. Search space for the code above, with the value of
the variable cnt at the end of each run and the corresponding
input string. Diagram and caption reproduced from Godefroid
(2008).

silient to path divergence. We do not summarize it here
because we study the behavior of Pyth algorithms on sin-
gle short functions; see Godefroid (2008) for the details.

III. TESTING FUNCTIONAL PROGRAMS:
PROBLEM STATEMENT

A. Motivation

There has been plenty of work done on code path
traversal, symbolic execution, fuzzing, and whitebox test-
ing of imperative programs. See Godefroid (2008), whose
DART system tests C programs as summarized in Section
II. However, there has been little work done on testing
of typed functional programs in ML-like languages such
as OCaml. Therefore, one main appeal of this work is its
novelty.

This work also possesses utility. Functional programs
are much less likely to crash for C-like reasons such
as dereferencing null pointers. However, they may still
throw exceptions instead of safely capturing possible fail-
ure in a type signature. It is easy to unwittingly perform
an unsafe operation such as taking the head of an empty
list. (Indeed, the head function in the Haskell standard
library throws a run-time exception if the input list is
empty, instead of returning a value of type list option,
which would capture errors at compile-time).

B. Novelty

OCaml possesses many language features that C does
not. (From now on, we will use “OCaml” as a syn-
onym for “typed functional ML-like language” and “C”
as a synonym for “imperative C-like language.”) The
most notable of these features are algebraic data types,
pattern-matching on values, and inductively defined
types such as natural numbers.

4

One central contribution of this paper is the develop-
ment of a novel symbolic execution algorithm to han-
dle these language constructs. Solving this problem has
revealed interesting correspondences between Pyth’s al-
gorithm and DART’s algorithm. A typical function that
DART considers, taken from Godefroid (2005), looks like
this:

int f(int x) { return 2 * x; }

int h(int x, int y) {

if (x != y)

if (f(x) == x + 10)

abort(); /* error */

return 0;

}

A typical function that Pyth considers, taken from Os-
era and Zdancewic (2015)’s benchmarks for Myth, looks
like this:

let rec list_compress (l1 : list) : list =

match l1 with

| Nil -> Nil

| Cons (n1, l2) ->

(match list_compress l2 with

| Nil -> l1

| Cons (n2, l3) ->

(match compare n2 n1 with

| LT -> Cons (n1, Cons (n2, l3))

| EQ -> failwith "runtime error"

| GT -> Cons (n1, Cons (n2, l3))))

Primitive types in the DART system correspond to
algebraic data types in Pyth and Myth. If state-
ments, which test primitive types, correspond to match
statements, which deconstruct algebraic data types via
pattern-matching. Both if-statements and match state-
ments may be nested arbitrarily deeply, contain arbitrar-
ily many branches that partition the inputs, and contain
arbitrary expressions such as function calls in the guard.
We will call the “guard” of an if-statement its predicate,
and the “guard” of a match statement the expression it
matches on.

In both functions, it is a nontrivial task to figure
out inputs that bypass a guard to land in a particular
branch. To provoke failure in the imperative function,
Godefroid (2005) must figure out x , y such that x 6= y
and f (x) == x + 10. Similarly, to provoke failure in
list compress, Pyth must find an input l1 such that three
guards, listed below, are bypassed. Godefroid (2008)
solves the task of finding inputs by collecting constraints
and SAT solvers to solve their conjunction, each negated
selectively to choose which branch to land in. Analo-
gously, to find inputs to bypass match guards, Pyth must
solve functional equations such as the following.

find n2, n1 : compare n2 n1 = EQ /\

find l2 : list_compress l2 = Cons(n2, l3) /\

find l1 : l1 = Cons (n1, l2)

The last of these equations is trivial, but the first two
are not. The first one involves a call to a recursive func-
tion with multiple holes to be filled (the parameters n1

and n2) and the second one involves a recursive call to
list compress itself. In addition, note that the second
equation involves a variable l3 whose value doesn’t mat-
ter because it is a free variable.

The rest of this section is devoted to clearly defining
the problems Pyth aims to solve. The next section will
describe the solutions.

C. Language definition

The language of Myth is a typed, purely functional
subset of OCaml. It includes user-defined algebraic data
types and recursive functions, but no primitive data
types, such as integers. The language of Pyth is a mini-
mal subset of Myth’s.

Pyth’s language includes only three types. First, it
includes booleans, as a non-recursive type with nullary
constructors, which are constructors that take no argu-
ments. It also includes inductively defined natural num-
bers, as a recursive type with unary constructors. Next,
it includes functions, but not first-class functions, since
we do not wish to have to synthesize functions ourselves.

The difficulty of including lists will be illustrated in
Section V, where we give a detailed trace involving
list compress. Lists are not formally included in this spec
because they are not included in the algorithm imple-
mentation. Arbitrary algebraic datatypes are even more
difficult.

Here is the formal definition of Pyth’s language:

types ::= bool | nat | t1 -> t2

bool ::= True | False

nat ::= O | S of nat

e ::=

| x

| f e

| (match e with | True -> e1 | False -> e2)

| (match e with | Z -> e1 | S n -> e2) (modulo

naming of n)

f ::= fix (x : t1) : t2 = e

Note that functions with multiple arguments can be
represented, as usual, by currying the function, or trans-
lating it into a sequence of functions that each takes one
argument. Note that match statements can indeed match
on other match expressions, though that is not common
practice. Lastly, note that we include recursive functions.

In addition to arbitrary data types, Pyth’s language
has the following limitations:

• It excludes some language features of Myth such as
tuples.

• It excludes higher-order functions, because that
may give rise to the problem of solving a constraint
for a function, which an entire paper in itself.

5

• It excludes if-statements, because the problem of
reaching each branch in an if-statement like this
one:

if (x > 0 || y + z < 5 + x) {

branch 1

} else if (x - y <= -1) {

branch 2

} else {

branch 3

}

has already been solved by DART on imperative
programs using SAT solvers, as covered in Section
II.

• It excludes more general kinds of match statements
such as ones that match on more than one construc-
tor, or wildcards that are not inside a constructor:

match expr with

| O -> OK

| S m -> OK

| S (S O) -> not allowed

| S (S m) -> not allowed

| _ -> not allowed

D. Problem statement: input-output example
generation

Throughout the rest of this section we will take
list compress as a goal function to desynthesize, which
will illustrate the problems that arise in generating input-
output examples, as well as many subproblems.

let rec list_compress (l1 : list) : list =

match l1 with

| Nil -> Nil

| Cons (n1, l2) ->

(match f1 l2 with

| Nil -> l1

| Cons (n2, l3) ->

(match compare n2 n1 with

| LT -> Cons (n1, Cons (n2, l3))

| EQ -> Cons (n1, l3) (*)

| GT -> Cons (n1, Cons (n2, l3))))

Given any valid function f synthesized by Myth that
contains only constructs in the Pyth language described
above, try to “desynthesize” the function. That is, try to
generate a set of input-output examples such that Myth
can resynthesize the “same” function f . This is the top-
level goal of the paper, and it comes with a built-in way
to measure success; namely, we strive to reproduce the
human-written input-output examples included in the
Myth benchmarks for each function. list compress was
synthesized with 15 examples:

let list_compress : list -> list |>

{ [] => []

| [0] => [0]

| [3] => [3]

| [2] => [2]

| [1] => [1]

| [1;0] => [1;0]

| [3;2] => [3;2]

| [3;3;2] => [3;2]

| [0;0] => [0]

| [3;3] => [3]

| [3;3;3] => [3]

| [0;1] => [0;1]

| [0;0;1] => [0;1]

| [2;3] => [2;3]

| [2;2;3] => [2;3]

} = ?

Let’s informally examine how these examples relate to
the function and to each other. First, it seems that each
“branch” of list compress is populated by at least one ex-
ample. The branch marked by (∗) is populated by the
example [3; 3; 3] => [3], among others, and the reader
may verify that this is true for the rest. This observa-
tion is borne out by Myth’s algorithm, which explicitly
generates a match on an expression only if each of the
branches would be populated by an example. This is
a hint that symbolic execution is necessary, if possibly
not sufficient, for de-synthesizing Myth functions—it is
essentially running part of the Myth algorithm in reverse.

Another observation is that every non-trivial example
in the set possesses a corresponding sub-example, such
as the following subset:

[2;2;3] => [2;3]

[2;3] => [2;3]

[3] => [3]

[] => []

This is because list compress is recursive, and requires
recursive sub-examples of each example that provokes a
recursive call. Again, a close look at the Myth algorithm
will verify that this “recursive backpatching” is happen-
ing. The reader may verify the existence of recursive
sub-examples for the rest of the set.

Lastly, there seem to exist structurally similar exam-
ples that traverse the same branches of the function,
but contain different constants. That is, as Godefroid
(2008) pointed out, they lie in the same equivalence class.
[2; 2; 3] (and its recursive subexamples) and [0; 0; 1] (and
its subexamples) may form such a pair. We hypothesize
that the constants must be varied to avoid Myth over-
fitting to particular constants such as [2; 2; 3]. In fact, if
[0; 0; 1] and its subexamples are removed, Myth overfits
on the compare outputs:

match compare n2 n1 with

| LT -> l1

| EQ -> Cons (n1, l3)

| GT -> [2; 3]

Combining these three insights, we choose to accom-
plish the goal of desynthesis by performing symbolic exe-
cution on f to find inputs (by the first observation), then
augmenting the resulting inputs to include recursive sub-
examples and structurally similar examples.

6

An interesting question is whether these human-
written examples constitute some sort of minimal set
needed to synthesize a function. It may be minimal in
size, quality, or both. However, a close study of this
question is out of the scope of the project. We do not
guarantee that the input-output examples generated con-
stitute the minimal set of examples sufficient to synthe-
size a function. We also do not guarantee that they are
necessary; some examples may be superfluous.

We also ignore the problem of checking that the resyn-
thesized f is equivalent to the original f . This is a non-
trivial problem, and we take the approach of “whatever
you get, you get.” We also do not iteratively search for
examples based on how “close” the resynthesized f is to
the original f , though this is one possible optimization.

E. Problem statement: symbolic execution

Recall that Myth will only synthesize a match state-
ment if each of its “branches” is populated by at least
one example. Here we state precisely how we model the
structure of these statements, then define the symbolic
execution problem.

Pyth’s language includes match statements S of the
following form:

match expr with

| Constructor1 args1 -> leafExpr1

| ...

| ConstructorN argsN -> leafExprN

where any leaf expression may also be a match state-
ment, or some other expression such as a function call.
Also, as mentioned earlier, Pyth’s language specification
excludes more general kinds of match statements such as
ones that match on more than one constructor, or wild-
cards that are not inside a constructor:

match expr with

| O -> OK

| S m -> OK

| S (S O) -> not allowed

| S (S m) -> not allowed

| _ -> not allowed

We model valid match statements S with an arboreal
metaphor. The statement itself is a tree graph, since
it contains no cycles. Within S we call expr a guard
and | Constructor i args i → leafExpr i a branch. Within
that branch, we call Constructor i args i a pattern and
leafExpr i a leaf.

Let’s examine the diagram of list compress as a tree.
Note the nested match statements. (The body of the

compare function is omitted for brevity.) In this case,
we call the leaves with no children the terminal leaves.
The terminal leaves are a subset of general leaves, which
can be match statements. Here, the terminal leaves
would be Nil , l1,Cons(n1,Cons(n2, l3)),Cons(n1, l3), and
Cons(n1,Cons(n2, l3)).

Figure 3. list compress’s tree graph.

Figure 4. id’s tree graph.

For comparison, here is a picture of id as a tree.
Note that it contains no match statement, therefore no
branches. It is only a leaf, which is also a terminal leaf.

Now that we have defined terminology, we state the
problem: Given any valid traversable function that
contains only the constructs in the Pyth language,
as well as an environment of types and functions,
generate a set of inputs that traverse the func-
tion to reach every possible terminal leaf of the
function. (That is, given a particular terminal leaf, find
some inputs that reach it.) If any terminal leaf cannot
be reached, the algorithm should fail, either by returning
failure (which is possible in many cases) or by looping
forever.

In this statement, we allow advanced features such
as functions with multiple arguments, functions calling
other functions in the environment (which will then be
traversed themselves), and recursive functions. However,
we do not guarantee being able to find all inputs that
reach a particular terminal leaf, just at least one solu-
tion, or some type of failure if no solution.

This symbolic execution is useful for program synthe-
sis because the inputs must also traverse every branch of
a program on their way to the terminal leaves, and as
we figured out, Myth requires that every branch must be
populated with at least one input. This is also useful for
testing functional programs thoroughly for three reasons:
to find inputs that cause the program to crash, to gen-
erate thorough test coverage, and to point out areas of
dead or unreachable code.

7

F. Problem statement: solving equations

Let’s try symbolic execution on list compress. As be-
fore, when we try to reach the terminal leaf marked (∗),
we must bypass three guards in match statements along
the way.

let rec list_compress (l1 : list) : list =

match l1 with

| Nil -> Nil

| Cons (n1, l2) ->

(match list_compress l2 with

| Nil -> l1

| Cons (n2, l3) ->

(match compare n2 n1 with

| LT -> Cons (n1, Cons (n2, l3))

| EQ -> Cons (n1, l3) (*)

| GT -> Cons (n1, Cons (n2, l3))))

The guards require us to solve three equations before
we may pass.

find n2, n1 : compare n2 n1 = EQ /\

find l2 : list_compress l2 = Cons(n2, l3) /\

find l1 : l1 = Cons (n1, l2)

Doing this is precisely the motivation for this new al-
gorithm. In general, we are given a match statement S
of this form,

match expr with

| Constructor1 args1 -> leafExpr1 (* branch 1 *)

| ...

| ConstructorN argsN -> leafExprN (* branch N *)

where we want to reach branch i , and expr has free vari-
ables vi . Define “concrete value” to mean “value con-
structed via constructors; that is, something that is fully
evaluated, not a function, and contains no free variables.”

We want to find concrete values for the free variables
such that when we substitute them in and evaluate the
expression, the resulting expression matches the pattern
corresponding to the branch we want. That is, we want
to find vi = ci such that expr [vi/ci] matches the pattern
Constructor i argsi . Note that argsi are not really part of
the problem; they are wildcard arguments, and what we
really care about is the head constructor being present.

We change the problem slightly such that the right side
must be any concrete value, instead of just a head con-
structor. (The algorithm for the concrete value problem
will work for the head constructor problem.) We give
free variables that we want to solve for the nickname of
holes. Now, the problem looks like this: find concrete
values ci such that e[vi/ci] = g , where g is a concrete
value that is the goal value. Also, we require that all
functions provided must terminate on all inputs.

The problem includes the following features:

• Multiple holes on the left side of the equation
(find (n1 n2 : nat) : plus n1 n2 = 3)

• Functions calling other functions

• Recursive functions

• Finding all values (or just more values) such that
the equation is satisfied, which may be needed for
deeper symbolic execution

The algorithm can usually handle the following, but a
detailed study of this problem is omitted for brevity:

• Arbitrary expressions on the left hand side of the
equation, so functions may be applied to input

find (n1 n2 : nat) : plus (S n) (S n) = 3

• Expressions on the left hand side of the equation
where some arguments to functions have been sup-
plied

find (n1 n2 : nat) : plus (S n) (3) = 3

We do not handle the following extensions:

• Guaranteed termination on equations with solu-
tions involving only terminating functions. That
is, the algorithm may fail nicely when there are no
solutions, or it may diverge (infinite loop).

• Holes in the goal, such as here:

find (n : nat) : plus n 3 = mult n 3

• Systems of constraints requiring SAT/SMT solver
use that DART handles, such as

x > 5 ∧ y + z ≤ 3 ∨ z < 5.

IV. TESTING FUNCTIONAL PROGRAMS:
ALGORITHMS

A. Motivating example

Here is a motivating example for the capabilities of the
Pyth implementation, as well as some of the questions it
raises.

Given the following problem, we want to generate
input-output examples for the max function, which finds
the larger of two natural numbers. Given the input-
output examples, we will feed them back into Myth and
see what it synthesizes.

type nat =

| O

| S of nat

type cmp =

| LT

| EQ

| GT

let rec compare (n1:nat) (n2:nat) : cmp =

match n1 with

| O ->

(match n2 with

| O -> EQ

| S m -> LT)

| S m1 ->

8

(match n2 with

| O -> GT

| S m2 -> (compare m1 m2))

let max (n1 : nat) (n2 : nat) : nat =

match compare n1 n2 with

| LT -> n2

| EQ -> n1 (* arbitrary *)

| GT -> n1

let toTraverse : nat -> nat -> nat =

max ;;

Note some features that make this problem difficult:

1. Multiple types (cmp, nat), one of which is recursive
(nat)

2. Recursive functions

3. Calls to another function

4. Matching on a call to another function

5. Two functions that take multiple arguments

6. Nested matches in one of the functions

7. Multiple solutions to inner contraint problems

Here is a high-level trace for how Pyth generates input-
output examples. We examine the max function.

1. Symbolic execution.

To reach the leaf of branch 1 (LT), it must solve
the following constraint:

find n1, n2 : compare n1 n2 = LT

To reach the leaf of branch 2 (EQ), it must solve
the following constraint:

find n1, n2 : compare n1 n2 = EQ

To reach the leaf of branch 2 (GT), it must solve
the following constraint:

find n1, n2 : compare n1 n2 = GT

2. Constraint solving.

For each branch, the algorithm inspects leaves to
see if it returns the correct result. Then, it sees if
can indeed reach that leaf, via a recursive call to
itself. It returns the following results, where =>
denotes chaining together:

branch LT: (n1 = O) => (n2 = S m)
branch EQ: (n1 = O) => (n2 = O)
branch GT: (n1 = S m1) => (n2 = O)

3. Postprocessing into concrete input-output exam-
ples.

The postprocessing algorithm is given a set of input
vectors as above. It finds unconstrained arguments
(for example, if a function never matches on an
arguments) and wildcards (such as m in S m above)
and fills them in with arbitrary values. This process
is described in Section IV.

After this process, the final set of input rows is
a concrete set of input arguments where no two
rows are the same. See Section IV for the proof
of this in the description of the symbolic execution
algorithm. Then the postprocessing algorithm runs
the function on each row of inputs to produce an
output for that row.

branch LT: (n1 = O) => (n2 = S O)
branch EQ: (n1 = O) => (n2 = O)
branch GT: (n1 = S O) => (n2 = O)

branch LT: (n1 = O) => (n2 = S O) => S O
branch EQ: (n1 = O) => (n2 = O) => O
branch GT: (n1 = S O) => (n2 = O) => S O

Finally, we have an input-output table, where each
row contains n inputs and one output. Myth does
not accept this table as an input-output format; it
requires that all inputs be given in the order spec-
ified by the function’s arguments, and that rows
starting with the same inputs must be grouped to-
gether in a nested, partial function fashion. The
postprocessing algorithm handles this and returns
the following result.

{ O => { S O => S O,

O => O },

S O => S O}

Pyth can then feed this collection of input-output ex-
amples straight into Myth. This is what Myth synthe-
sizes:

let nat_max (n1 : nat) (n2 : nat) =

match n1 with

| O -> n2

| S n3 -> 1

Note the two main differences between this and the
max function we expect. Myth has over-fitted to the
output “1” and returns that constant. In addition, it
does not recurse.

Why doesn’t it re-synthesize the max function we ex-
pect? To figure this out, let’s examine the set of human-
written input-output examples, which will shed light on
the additional examples that Myth needs to fully re-
synthesize a function.

Here is the corresponding Myth benchmark. Note the
human-written input-output examples, and notice how
they differ from the base input-output examples provided

9

by symbolic exection and postprocessing. In particular,
the base input-output examples are a strict subset of
these. nat max here is a partial function composed of
input-output examples, and Myth will try to synthesize
the full function.

type nat =

| O

| S of nat

type cmp =

| LT

| EQ

| GT

let rec compare (n1:nat) (n2:nat) : cmp =

match n1 with

| O ->

(match n2 with

| O -> EQ

| S m -> LT)

| S m1 ->

(match n2 with

| O -> GT

| S m2 -> (compare m1 m2))

;;

let nat_max : nat -> nat -> nat |>

{

0 => (0 => 0

| 1 => 1

| 2 => 2)

| 1 => (0 => 1

| 1 => 1

| 2 => 2)

| 2 => (0 => 2

| 1 => 2

| 2 => 2)

} = ?

Here is the function that Myth synthesizes:

let rec nat_max (n1 : nat) (n2 : nat) =

match n1 with

| O -> n2

| S n3 -> (match n2 with

| O -> n1

| S n4 -> S (f1 n3 n4))

Interestingly, Myth does not synthesize the original
max function we expected, even though compare is in
the environment. Instead, it synthesizes a more di-
rect, though less understandable, function than the first
human-written max function. It does this because the al-
gorithm hesitates to grow the match scrutinee size (that
is, the size of the match guard), opting to match on argu-
ments instead of a function call. When the initial scru-
tinee size is increased in the Myth settings, Myth does
indeed synthesize the expected nat max function using
compare.

For the rest of the section, we describe the three al-
gorithms, which are the equation-solving algorithm, the
backwards symbolic execution algorithm, and the input-
output augmentation algorithm. The algorithm for solv-

ing equations is the trickiest of the three, and is the main
technical contribution of the paper. Since the other two
rely on it, we give the general algorithm first, run through
some examples, and consider some generalizations.

B. Solving equations

As covered in the problem statement, the equation-
solving problem looks like this: given an expression e
with free variables vi , find concrete values ci such that
e[vi/ci] = g , where g is a concrete value that is the goal
value. If no such ci exist, fail or diverge. If multiple or
infinite such {ci} solution sets exist, we guarantee finding
at least one such {ci}, which will often be the simplest
one, but we do not guarantee finding all of them.

The intuitive idea is that the goal is entirely built of
constructors. The constructors must have been applied
somewhere; we will find them, strip them off, and solve
the subproblem.

Formally, solve the problem by induction on the struc-
ture of e. For convenience, here is the Pyth language
definition.

types ::= bool | nat | t1 -> t2

bool ::= True | False

nat ::= O | S of nat

e ::=

| x

| f e

| (match e with | True -> e1 | False -> e2)

| (match e with | O -> e1 | S n -> e2) (modulo

naming of n)

f ::= fix (x : t1) : t2 = e

Consider each case below, ranked by order of difficulty.

1. e is a function: e = f.

This is not allowed. This is because we do not
allow functions to have free variables like y in the
following: f x = y . Thus, with no free variables
(holes) to solve for, equations to solve will have
one of two forms.

They may be testing function equality (“find noth-
ing such that f = g”) which is not a common use
case in symbolic execution. Or, they may require
dealing with higher-order functions (“find x such
that f x = g” (where (e = f x) is a function),
which is out of the scope of this project.

2. e is a free variable: e = x.

Intuitively, this case is sort of an axiom, or base
case. Free variables can always be assigned values,
so it does not require any recursive solving of sub-
problems. The equation will always look like “find
x such that x = goal .” We consider two cases. Ei-
ther the goal contains free variables, or it does not.

10

If the goal doesn’t contain free variables, it is com-
posed of nullary constructors, such as in “find x
such that x = True.” In this case, we simply return
the equation x = True. This assigns a concrete
value to x , which is what we want.

Or it can look like “find x such that x = S x0” (or
some other non-nullary constructor applied to an
expression containing free variables). In this case,
we return the equation x = S x0, where the caller
will deal with substituting the value of x0 if it is
found in a later call.

Cases where x appears on both the left and the
right side of the equation are dealt with by the uni-
fication algorithm. Essentially, cases that reduce
to “find x , y , z : x = x” return OK , meaning that
all holes may be assigned any value, whereas cases
like “find x , y , z : x = S x” return Failure, meaning
that the equation is not solvable.

3. e is a constructor applied to some expres-
sion: e = C e’.

First, we assume that the problem is sound; that
is, the left and right sides are of the same type.

The general problem was, given an expression e,
to find concrete values ci such that e[vi/ci] = g ,
where g is a concrete value that is the goal value.
Now, it looks like “find concrete values ci such that
C e′[vi/ci] = g .”

There are three cases here.

If C is a nullary constructor, then there is no e′.
This might look like “find (x : bool) : True = True”.
If e = g , then return OK , meaning that it is safe
to assign any value to the holes in the problem.
(Here, x can be any boolean.) If e 6= g , then return
Failure, meaning that there are no solutions, since
the equation is not solvable. This would occur in
something like “find (x : bool) : True = False”.

If not, check the head constructor of g . If it is not
C , the equation is not solvable, so return Failure.

If the head constructor of g is indeed C , then
g = C g ′. Now we have “find ci such that
C e′[vi/ci] = C g ′.” We strip off the construc-
tor and return the solution of recursively solving
this subproblem: “find concrete values ci such that
e′[vi/ci] = g ′.”

4. e is a function application: e = f e’.

The problem looks like “find ci : (f e′)[vi/ci] = g .”
Let the function be defined as f x = b.

First we substitute e′ for the argument x in the
function’s body b, yielding b′ = b[x/e′]. (Note
that this process will happen separate times, re-
cursively, for multi-argument functions, since they
are curried.) Also note that the implementation
requires capture-avoiding substitution.

Then we return the solution of recursively solving
this subproblem after substitution: “find concrete
values ci such that b′[vi/ci] = g .”

5. e is a match statement. In our limited language,
discounting lists, e can have one of two forms:

match e with

| True -> e1

| False -> e2

match e with

| O -> e1

| S n -> e2 (modulo naming of n)

Dealing with match statements is the most compli-
cated of the cases. We consider the match state-
ment on natural numbers, since the booleans are a
special case of it.

Informally, consider each branch bi . First, we need
to figure out how to fill the holes so bi ’s leaf, li , can
possibly return the goal value g . Then, if it might
be able to, we need to figure out how to fill the
holes to li in the first place. Then, we need to see if
the two hole assignments are compatible with each
other.

Formally, consider a match statement m with n
branches. Branch solutions cannot interfere with
each other, so consider each branch separately.
Consider branch bi .

We must first solve the first equation for it concern-
ing its leaf. Let vi be the free variables of li . Then
we must solve “find ci : li [vi/ci] = g .” Note that
the goal has not changed here. Let the result of
trying to solve this be r1.

Next if r1 is not Failure, we must solve the second
equation for it concerning its guard. Let vi be the
free variables of e, and g = S ∗. (The ∗ denotes
a wildcard, meaning that the goal only needs to
start with the head constructor.) Then we must
solve “find ci : e[vi/ci] = S ∗.” (Note that e may
be a call to another function!) Let the result of
trying to solve this be r2.

Now we have two sets of results for the branch,
which are r1 and r2. They can be Failure, OK , con-
crete values, or constraints; for example, r1 = {n =
S n′, n′ = O, y = True}. We unify r1 and r2 using
the unification algorithm described after this, and
return the resulting set, ri .

The match statements may be arbitrarily nested to
depth n, so we may have to figure out how to reach
the match statement we just reached, and so on,
with recursive calls. Then we unify n sets of results
r1, ... , rn into ri .

This was the process for an individual branch. To
finish, given equation sets ri for all the branches,

11

just pick an arbitrary ri and return it. The algo-
rithm can also return the disjunction of the equa-
tion sets; that is, any one will work.

1. Examples

To solve the following very simple problem:

let id x = x

find x : id x = O

The algorithm substitutes x for x in the body of id ,
yielding the problem find x : x = O. It uses the assign-
ment rule and simply returns x = O, which unifies to the
same thing.

To solve the following problem:

let rec plus n1 n2 =

match n1 with

| O -> n2

| S n3 -> S (plus n3 n2)

find n : plus n (S O) = O

The algorithm substitutes n for n1 and S O for n2 in
plus:

find n :

(match n with

| O -> S O

| S n3 -> S (plus n3 (S O))) = O

Inspecting the first terminal leaf, S O can’t be equal to
the goal of O, so it discards that branch. Inspecting the
second terminal leaf, something that starts with S can’t
be equal to the goal of O, so it discards that branch.
Both branches failed, so the algorithm returns failure.

See the next section for a detailed trace of
list compress.

2. Unification

Often the algorithm will not return concrete solutions
like x = 5, but sets of equations involving variables and
constructors on both sides. Unification is simply the pro-
cess of merging all of the equations into a consistent, gen-
eral solution that assigns some symbolic value to every
variable present in the equations. Martelli et al. (1982)
give an algorithm for first-order syntactic unification that
either computes the most general unifier or reports that
there is no solution. See Martelli et al. (1982) for a de-
tailed explanation of the general unification problem and
algorithm.

In practice we usually only encounter simple sets to
unify like these:

l2 = Cons (n2, l3)

l4 = Nil

l2 = Cons (n2, l4)

We unify the bindings by rewriting with l4 in the last
equation, then merging l3 with Nil . This is consistent,
so we arrive at the single answer: l2 = Cons (n2, l3).

Most problems we encounter are solvable using
rewrites, merging values, failure on differing head con-
structors, and failure when the occurs check fails. (The
occurs check simply checks if a variable appears in the
conclusion in an equation that does not reduce to x = x ,
such as x = S x , which is unsolvable.)

3. More than one solution

There may be 0, 1, many but finite, or infinite solu-
tions to a given problem. For brevity, we will omit a
detailed study of this problem. One way to deal with
many solutions is to simply save all the solutions found
so far and pass them to the equation-solving algorithm
(plus some maximum depth setting), and tell it to skip
these solutions and find the next one, if possible.

One way to solve the problem of infinite solutions for
a problem like find x , y , z : O = O, where having infinite
solutions is detectable, is to simply return OK , mean-
ing that any assignment of values to the free variables
is okay. Another way to solve the problem of infinite,
but constrained, solutions, is to return a symbolic solu-
tion such as x = S z , where the solution contains free
variables.

4. No solutions

When there are no solutions to a problem, the algo-
rithm may fail nicely as in the double problem. Or, it
may not know when to stop searching for solutions, as
in the following problem: find x : sum x Z = S (S Z).
There are finite solutions to the problem, and the algo-
rithm can find all of them, but doesn’t know when to
stop searching. The trace is left as an exercise for the
reader.

One way to stop divergence is to identify when sub-
problems to be solved are identical to the original prob-
lem up to substitution. If solving find x : f x = 0 re-
quires eventually solving find y : f y = 0, then there is
no solution.

5. Recursive functions

The algorithm can correctly solve find m : double m =
4, where double is defined as such:

let rec double (n : nat) : nat =

match n with

| O -> O

| S n0 -> S (S (double n0))

The key idea is to use capture-avoiding substitution
when substituting an argument into a function body.

12

That is, in the second branch, the problem given above
becomes the subproblem find n0 : double n0 = 2, and
when substituted into the body, the problem becomes:

find n0 :

(match n0 with

| O -> O

| S n1 -> S (S (double n1))) = 2

Note how the name in the pattern binding has changed
to n1. The algorithm will then solve “find n1 :
double n1 = 0”, yielding n1 = 0. Unification will solve
the following three bindings from the match statements:

n1 = O

n0 = S n1

n = S n0

yielding n = S (S O).
In addition, the algorithm fails correctly, without di-

vergence, on find m : double m = 5, because after whit-
tling down the result after some recursive calls, the prob-
lem reduces to find m : double m = 1 = S O. The algo-
rithm fails gracefully here because the first branch re-
turns O and the second branch returns something that
starts with S (S O), and S O cannot equal either of
them.

C. Symbolic execution

As defined earlier, this is the problem to solve: Given
any valid function f that contains only the con-
structs in the Pyth language, as well as an en-
vironment of types and functions, generate a set
of inputs that traverse the function to reach ev-
ery possible terminal leaf of the function. (That
is, given a particular terminal leaf, find some inputs that
reach it.) If any terminal leaf cannot be reached, the al-
gorithm should fail, either by returning failure (which is
possible in many cases) or by looping forever.

Recall that arbitrarily nested matches are represented
as trees. The core is this algorithm is simple tree traver-
sal, where any node may have an arbitrary number of
branches. Abstracting out the details, here is the pseu-
docode for tree traversal.

A tree is either a terminal leaf or a node with a

list of subtrees.

The traverse function takes a tree and returns a

list of every possible path to a terminal leaf.

Proceed by casework on the structure of the

tree.

Traversing a terminal leaf l returns a list

containing a path which is the singleton list

of l.

To traverse a tree that is a node n with a list of

subtrees l, first recursively traverse each

subtree in the list. This will return a list

with one unnecessary level of nesting, so

concatenate the list. This will yield a list of

every possible path to a terminal leaf,

excluding the current node, so simply add the

current node to the head of each list. Return

the resulting list of paths.

After we have the list of paths, the algorithm performs
postprocessing on it, mainly to fill in wildcards and un-
used arguments.

We describe the algorithm by doing a trace of its pro-
cess on a complicated sample input function f . One dif-
ficulty is that f may ignore some of its arguments; for
example, it might not match on one, but return it as a
leaf.

Recall that f may either match on inputs or on func-
tion calls. We first walk through the algorithm on an f
that does not match on a function call. Then we extend
it to an f that does match on a function call.

First is f that matches on arguments, not on a function
call. Let (a = c1) => (b = c2) denote the fact that f
matched on a first, then b, so that vector of assignments
describes a unique path through the function to some leaf
(which may not be a terminal leaf).

let f (x : nat) (y : bool) (z : nat) =

match z with

| O ->

(match x with

| O -> leaf1

| S x0 -> leaf2)

| S z0 ->

(match y with

| True -> leaf3

| False ->

(match x with

| O -> leaf4

| S x1 -> leaf5))

1. First, traverse the tree to reach all terminal leaves,
as described above. We also record all bindings of
match guards to patterns.

(z = O) => (x = O)

(z = O) => (x = S x0)

(z = S z0) => (y = True)

(z = S z0) => (y = False) => (x = O)

(z = S z0) => (y = False) => (x = S x1)

2. Note that in all paths starting in the first match
statement, f did not match on y . In general, f may
ignore any number of its arguments. So, for each
path, find the unused variables and assign them the
value of OK , which denotes that they may be any-
thing. Now every path should contain all variables
in some order, so sort them into the input order
(here, x then y then z). All paths should be of the
same length.

(x = O) => (y = OK) => (z = O)

(x = S x0) => (y = OK) => (z = O)

(x = OK) => (y = True) => (z = S z0)

(x = O) => (y = False) => (z = S z0)

(x = S x1) => (y = False) => (z = S z0)

13

3. This is the first step of filling in wildcards. The
OK s may be any value, and we know the type of
the variable and how to construct something of that
type, so fill in all the OK s with an arbitrary value.
(One extension is to fill in OKs not just with one
value, but with many, using all the type’s construc-
tors, so y = OK would become both y = True and
y = False, replicating the rest of the assignments
in its path.)

(x = O) => (y = True) => (z = O)

(x = S x0) => (y = True) => (z = O)

(x = O) => (y = True) => (z = S z0)

(x = O) => (y = False) => (z = S z0)

(x = S x1) => (y = False) => (z = S z0)

4. This is the second step of filling in wildcards. Any
free variable in a value in this scenario is a wildcard,
e.g. x1 in x = S x1. Do the same as in the previous
step. It can also be extended in the same way as
the previous step.

(x = O) => (y = True) => (z = O)

(x = S O) => (y = True) => (z = O)

(x = O) => (y = True) => (z = S O)

(x = O) => (y = False) => (z = S O)

(x = S O) => (y = False) => (z = S O)

5. Group the first argument x by the same value, then
recursively repeat on the rest of the arguments.

(x = O) => (y = True) => (z = O)

(x = O) => (y = True) => (z = S O)

(x = O) => (y = False) => (z = S O)

(x = S O) => (y = True) => (z = O)

(x = S O) => (y = False) => (z = S O)

At this stage, all paths are the same length and
contain all the arguments in the input order.

Lemma. All paths are unique.

Proof sketch. All paths are unique before OK
instantiation, since match patterns must partition
the guards into different head constructors, e.g.
True vs. False.

After OK instantiation, all paths remain unique,
since paths that were different before cannot be-
come the same, and the same path will only have its
OK s instantiated with different constructors (see
the extension mentioned earlier), so it cannot cre-
ate two of the same path. The same argument holds
for free variable instantiation. �

6. All inputs should have concrete values, all paths
should be unique, and all paths should have argu-
ments in input order, so everything is ready for us
to evaluate the function on each path. These paths
serve as generated tests that ensure complete code
coverage, and the user may note which paths cause
the function to throw an exception or return an
unexpected result.

(x = O) => (y = True) => (z = O) => leaf1

(x = O) => (y = True) => (z = S O) => leaf3

(x = O) => (y = False) => (z = S O) => leaf4

(x = S O) => (y = True) => (z = O) => leaf2

(x = S O) => (y = False) => (z = S O) => leaf5

Lastly, recall that the very motivation of developing
the equation-solving algorithm was to enable us to per-
form symbolic execution on list compress:

let rec list_compress (l1 : list) : list =

match l1 with

| Nil -> Nil

| Cons (n1, l2) ->

(match f1 l2 with

| Nil -> l1

| Cons (n2, l3) ->

(match compare n2 n1 with

| LT -> Cons (n1, Cons (n2, l3)) (*)

| EQ -> Cons (n1, l3)

| GT -> Cons (n1, Cons (n2, l3))))

because it matched on a function call, not a variable.
Bare-bones symbolic execution cannot figure out how to
reach the terminal leaf marked (∗), for example. To do
that, we must solve this equation:

find n2, n1 : compare n2 n1 = LT

And solving this equation will require us to perform
symbolic execution on the compare function itself, to fig-
ure out how to reach the terminal leaf marked (∗∗).
let rec compare (n1:nat) (n2:nat) : cmp =

match n1 with

| O ->

(match n2 with

| O -> EQ

| S m -> LT (**))

| S m1 ->

(match n2 with

| O -> GT

| S m2 -> (compare m1 m2))

The two algorithms are basically mutually recursive
(with some complications). For a detailed trace of how
symbolic execution and equation-solving interact, see the
trace of list compress in Section V.

D. Input-output example generation

Here we turn from functional testing to functional syn-
thesis. To transform the tests to input-output examples,
we simply nest examples recursively by the same value,
which is the format that requires. Since we have already
recursively sorted the paths by value, this is easy.

(x = O) => (y = True) => (z = O) => leaf1

(x = O) => (y = True) => (z = S O) => leaf3

(x = O) => (y = False) => (z = S O) => leaf4

(x = S O) => (y = True) => (z = O) => leaf2

(x = S O) => (y = False) => (z = S O) => leaf5

14

O => { True => { O => leaf1,

S O => leaf3 } ,

False => { S O => leaf4 }},

S O => { True => { O => leaf2 }}

{ False => { S O => leaf5 }}

1. Augmentation

As discussed in the problem statement, there are three
main ways to augment the input-output examples derived
from symbolic execution, because they are sometimes not
enough to re-synthesize the function.

First, we generate recursive subexamples. That is, for
a list [3; 2; 1], we automatically add [2; 1], [1], and [] to our
list of inputs. This is because Myth is often not able to
deal with functions that recurse on smaller lists without
knowing what to do on the smaller lists themselves. We
do this for any recursive type where the function recurses
on a smaller value of the type.

First, the more we enumerate any free variables left in
the input examples, the more inputs we have for Myth.
Filling in these wildcards gives examples that fall in the
same equivalence class; that is, they traverse the same
path, as discussed in the DART/SAGE section.

Indeed, in general, the idea of generating another
“structurally similar” example that traverses exactly the
same path as an existing example is important. This is
because these examples together signal to Myth to find
a deeper structure and not overfit to constants. This
can be done in several ways; for example, one can ask
the equation-solving algorithm to find several solutions
if they exist, and not just one.

The augmentation process is described concretely at
the end of the next section on list compress.

V. RE-SYNTHESIZING list compress

Here we give a detailed trace of the algorithm and
its successes and failures on the most complicated Myth
benchmark, which is list compress. After that, we briefly
summarize the capabilities of the various implementa-
tions in terms of benchmarks.

First, we describe the process of backwards symbolic
execution on list compress. Then we postprocess the gen-
erated inputs, which yields tests for the function. Then
we augment the input-output examples and examine the
process of re-synthesizing list compress.

A. Backwards symbolic execution

We will examine each of the five paths, which end at
each of the five terminal leaves, as labeled in the diagram.
On each path, the algorithm collects a set of equations
which must be satisfied in order to reach that terminal

Figure 5. Paths of list compress.

leaf. Each equation is solved individually, yielding a set
of bindings for each.

An equation may be found at the location at any solid
arrow on the diagram. It looks like match guard with →
pattern and yields the equation “find free variables of the
guard such that the evaluated guard equals the pattern.”
Equations can be broadly classified as “easy,” meaning
they only involve variable and constructors, or “hard,”
meaning they involve calls to other functions, and those
functions may contain match statements themselves.

Finally, after solving each equation for a set of con-
straints, unification is used on that set to yield a final
set of constraints or a concrete value for each input that
will allow that terminal leaf to be reached. This process
will become clearer as it is described concretely for each
path.

Figure 6. Path 1.

For path 1, the only equation collected is

find l1 : l1 = Nil.

15

This is passed to the equation-solving algorithm, which
returns the only solution, which is an assignment to a
concrete value with no free variables:

path 1: (l1 = Nil).

Figure 7. Path 2.

For path 2, the equations collected (in order from ter-
minal leaf to root) are:

i. find l2 : list_compress l2 = Nil

ii. find l1 : l1 = Cons (n1, l2)

Intuitively, they are doing “can I get to this terminal
leaf?” followed by “can I get to the leaf (match state-
ment) that contains the terminal leaf?”

For i , the equation-solving algorithm substitutes l1
into the body of list compress and looks for a leaf that
might return Nil . It finds that leaf, which returns Nil
if the equation find l2 : l2 = Nil is solved. It returns
l2 = Nil .

For ii , the equation-solving algorithm simply assigns
the value to l1 and returns l1 = Cons (n1, l2).

The solutions to i and ii result in two bindings:

l2 = Nil

l1 = Cons (n1, l2)

on which we run the unification algorithm, resulting
in the solution l1 = Cons (n1,Nil), where n1 is a free
variable, and so may be anything. So, a list like [5] would
traverse path 2 in list compress.

The two easy cases done, we now consider path 4, fol-
lowed by paths 3 and 5 together.

Thinking about path 4 intuitively, it is the only path
that actually compresses the list. It does this by only
Consing one of two duplicate elements.

The equations collected here, again listed from tip to
root order, are:

i. find n1, n2 : compare n1 n2 = EQ

ii. find l2 : list_compress l2 = Cons (n2, l3)

iii. find l1 : l1 = Cons (n1, l2)

Figure 8. Path 4.

We summarize what the equation-solving algorithm
does on each. On equation i , we basically need to find
two equal nats. The algorithm inspects the leaves of the
compare function:

let rec compare (n1:nat) (n2:nat) : cmp =

match n1 with

| O ->

(match n2 with

| O -> EQ

| S m -> LT)

| S m1 ->

(match n2 with

| O -> GT

| S m2 -> (compare m1 m2))

and sees that the function returns EQ when n2 = O
and n1 = O. It returns the first solution it finds, so it
returns this. Note that there are infinite solutions if we
search the recursive call compare m1 m2; for example,
the algorithm could find n2 = S O and n1 = S O.

Equation ii is tricky because it requires us to search
list compress twice. This is the problem:

ii. find l2 : list_compress l2 = Cons (n2, l3)

The equation-solving algorithm substitutes the argu-
ment into the function body in a manner that avoids
capturing free variables in the function body or in the
equation itself. Note that n2 and l3 are free in the equa-
tion.

After substitution, the new problem is:

find l2 :

(match l2 with

| Nil -> Nil

| Cons (n1, l4) (* fresh name *) ->

(match list_compress l4 with

| Nil -> l2

| Cons (n3, l5) -> (* fresh names *)

...omitted...))

= Cons (n2, l3)

16

Note that l2 in the original function body has been
renamed to a fresh variable l4, and the same for renaming
l3 to l5 and n2 to n3.

Now, the equation-solving algorithm inspects the ter-
minal leaves of the match statement in figures 7 and 8
for the goal expression Cons (n2, l3). Looking at path
1’s terminal leaf here fails because returning Nil cannot
possibly return Cons (n2, l3).

Figure 9. First attempt to solve subproblem fails. Note the
naming of the variables.

Now the equation-algorithm tries the terminal leaf of
path 2 here. It sees that the terminal leaf is l2 and thinks,
OK, l2 is a variable. If I assign l2 = Cons (n2, l3) (the
goal value), then I will succeed. Let’s see if I can indeed
do that, and what I will need to do in order to reach this
terminal leaf in the first place.

Figure 10. Second attempt to solve subproblem succeeds.
Note the naming of the variables.

This is exactly a symbolic execution problem, since we
need to figure out what inputs are needed to traverse
path 2, so we call that algorithm in a mutually recursive
fashion. It collects the following constraints:

ia. find l4 : list_compress l4 = Nil

iia. find l2 : l2 = Cons (n2, l4).

Equation ia was already discussed when we solved path
1 for list compress earlier; l4 = Nil . Solving equation iia
the simple assignment l2 = Cons (n2, l4). Recall that
earlier the equation-solving algorithm guessed that we
could assign l2 = Cons (n2, l3) (the goal value) to suc-
ceed, so it added it to the set of bindings. Now, the final
set of bindings is:

l2 = Cons (n2, l3)

l4 = Nil

l2 = Cons (n2, l4)

The unification algorithm unifies the bindings by
rewriting with l4, then seeing that l3 = Nil . This
is consistent, so we arrive at the single answer: l2 =
Cons (n2, l3).

Finally, going back up a level, equation ii is done. It
was the most difficult of the three, since it involved a
function call.

Lastly, equation iii is easy to solve. We simply return
l1 = Cons (n1, l2).

Now, we go back up another level to examine the union
of the binding set from all equations:

i. n1 = O, n2 = O

ii. l2 = Cons (n2, l4)

iii. l1 = Cons (n1, l2)

Using unification, one can rewrite l2 in iii to yield
Cons (n1,Cons (n2, l3)), then rewrite n1 and n2 to yield
the final answer of l1 = Cons (O,Cons (O, l3)). As a
sanity check, yes, this answer makes sense! This list will
clearly be compressed due to the duplicate elements at
the head. So, it does indeed reach path 4.

Note two things about this solution. First, l3 is
free, so it could be anything. Second, a structurally
similar input—that is, an input that is different but
would traverse exactly the same path—would be l1 =
Cons (n,Cons (n, l3)) for any nat n, and with the same
l3. These could be found by searching deeper into the
recursive call in the compare function, as mentioned ear-
lier.

Paths 3 and 5 are very similar to each other and to
path 4. Thus, the trace for paths 3 and 5 is left as an
exercise for the reader. Their solutions are listed below.

Path 3: l1 = Cons (O, Cons (S O, l3)

Path 5: l1 = Cons (S O, Cons (O, l3))

B. Augmenting inputs for synthesis

After solving the five paths, we have five general shapes
that l1 needs to take (letting pn = path n):

p1: l1 = []

p2: l1 = Cons (n1, Nil)

p3: l1 = Cons (0, Cons (S m, l3))

p4: l1 = Cons (0, Cons (0, l3))

p5: l1 = Cons (S m, Cons (0, l3))

17

Figure 11. Path 3 (exercise for reader, along with path 5).

Note that these are not concrete inputs yet, since they
contain free variables. First, we fill the free variables.

Let’s try filling them with only one value, and the sim-
plest one possible. (This can be done algorithmically,
since we know the type of a variable, and how to con-
struct a value of the type.) So all nats will get O and all
lists will get Nil , with no additional augmentation.

p1: l1 = []

p2: l1 = Cons (0, Nil)

RSE: l1 = Cons (1, Nil)

p3: l1 = Cons (0, Cons (1, Nil))

p4: l1 = Cons (0, Cons (0, Nil))

p5: l1 = Cons (1, Cons (0, Nil))

We also add a recursive sub-example (RSE) which is
a sub-example for p4, so Myth doesn’t complain about
not knowing what to do on the smaller list. We then
evaluate the function on all inputs to get outputs, for
use in input-output examples. Now try to guess what
Myth will synthesize!

For reference, here is the original list compress func-
tion:

let rec list_compress (l1 : list) : list =

match l1 with

| Nil -> Nil

| Cons (n1, l2) ->

(match f1 l2 with

| Nil -> l1

| Cons (n2, l3) ->

(match compare n2 n1 with

| LT -> Cons (n1, Cons (n2, l3))

| EQ -> Cons (n1, l3) (*)

| GT -> Cons (n1, Cons (n2, l3))))

And here is the bare-bones re-synthesized function:

let rec list_compress (l1 : list) : list =

match l1 with

| Nil -> []

| Cons (n1, l2) ->

(match l2 with

| Nil -> l1

| Cons (n2, l3) ->

match compare n2 n1 with

| LT -> [1; 0]

| EQ -> [0]

| GT -> [0; 1]))

This is a very interesting result. We immediately have
most of the structure of the original function, including
the call to compare. However, the input lists are not
long enough for Myth to recurse, which is why it matches
on l2 instead of list compress l2. Lastly, Myth has also
overfitted and is returning constants instead of symbolic
expressions in the last match.

Let’s try to solve the constants problem by filling in
wildcards (free variables) with two values instead of one.
Lists are hard to deal with, so let’s just do it for the nats,
and deal with l3 later. In practice, this means replacing
one symbolic example with two, one containing 0 and the
other containing 1 in place of the variable. This approx-
imates telling Myth, “hey, find a deeper structure than a
constant!” Also, we will add the recursive sub-example
Cons (2,Nil). The two-nat-wildcard inputs are:

p1: l1 = []

p2: l1 = Cons (0, Nil)

p2: l1 = Cons (1, Nil)

RSE: l1 = Cons (2, Nil)

p3: l1 = Cons (0, Cons (1, Nil))

p3: l1 = Cons (0, Cons (2, Nil))

p4: l1 = Cons (0, Cons (0, Nil))

p5: l1 = Cons (1, Cons (0, Nil))

p5: l1 = Cons (2, Cons (0, Nil))

And the synthesized function is:

let rec list_compress (l1 : list) : list =

match l1 with

| Nil -> []

| Cons (n1, l2) ->

(match l2 with

| Nil -> l1

| Cons (n2, l3) ->

(match compare n2 n1 with

| LT -> l1

| EQ -> [0]

| GT -> l1))

Two of the constants are gone! This version is quite
close to the expected version of list compress. We just
need longer lists and a structurally similar example for
[0; 0], since it is the only example in the list right now that
gets compressed. Recall that we mentioned this earlier—
recursively searching compare for path 4 can generate
more structurally similar examples. We add the first one
we find, which is [1; 1].

p1: l1 = []

p2: l1 = Cons (0, Nil)

p2: l1 = Cons (1, Nil)

RSE: l1 = Cons (2, Nil)

p3: l1 = Cons (0, Cons (1, Nil))

p3: l1 = Cons (0, Cons (2, Nil))

p4: l1 = Cons (0, Cons (0, Nil))

18

p5: l1 = Cons (1, Cons (0, Nil))

p5: l1 = Cons (2, Cons (0, Nil))

compare: l1 = Cons (1, Cons (1, Nil))

This is the synthesized function:

let rec list_compress (l1 : list) : list =

match l1 with

| Nil -> []

| Cons (n1, l2) ->

(match l2 with

| Nil -> l1

| Cons (n2, l3) ->

(match compare n2 n1 with

| LT -> l1

| EQ -> l2

| GT -> l1))

Our guess was right—the constant has gone away and
all outputs are symbolic! We’re extremely close, but still
missing the last thing. We need longer list inputs to
force list compress to match on a recursive call to deal
with the rest of the list, instead of just matching on l2
and returning l1 or l2.

We can do this by augmenting the l3s that we left
out earlier and only replaced with Nils, now adding both
l3 = Cons (0,Nil) and l3 = Cons (1,Nil) (again, to
avoid constant overfitting) and any recursive subexam-
ples needed.

We started with this general set, and we will augment
the starred inputs.

p1: l1 = []

p2: l1 = Cons (n1, Nil)

p3: l1 = Cons (0, Cons (S m, l3)) *

p4: l1 = Cons (0, Cons (0, l3)) *

p5: l1 = Cons (S m, Cons (0, l3)) *

Here is the result, also including our previous augmen-
tations.

(* original set *)

p1: l1 = []

p2: l1 = Cons (0, Nil)

p2: l1 = Cons (1, Nil)

RSE: l1 = Cons (2, Nil)

p3: l1 = Cons (0, Cons (1, Nil))

p3: l1 = Cons (0, Cons (2, Nil))

p4: l1 = Cons (0, Cons (0, Nil))

p5: l1 = Cons (1, Cons (0, Nil))

p5: l1 = Cons (2, Cons (0, Nil))

comp: l1 = Cons (1, Cons (1, Nil))

RSE2: l1 = [2;1]

(* l3 = [0] *)

p3: l1 = Cons (0, Cons (1, Cons (0, Nil)))

p3: l1 = Cons (0, Cons (2, Cons (0, Nil)))

p4: l1 = Cons (0, Cons (0, Cons (0, Nil)))

p5: l1 = Cons (1, Cons (0, Cons (0, Nil)))

p5: l1 = Cons (2, Cons (0, Cons (0, Nil)))

comp: l1 = Cons (1, Cons (1, Cons (0, Nil)))

(* l3 = [1] *)

p3: l1 = Cons (0, Cons (1, Cons (1, Nil)))

p3: l1 = Cons (0, Cons (2, Cons (1, Nil))) (* needs

new RSE *)

p4: l1 = Cons (0, Cons (0, Cons (1, Nil)))

p5: l1 = Cons (1, Cons (0, Cons (1, Nil)))

p5: l1 = Cons (2, Cons (0, Cons (1, Nil)))

comp: l1 = Cons (1, Cons (1, Cons (1, Nil)))

This is the result:

let rec list_compress (l1 : list) : list =

match l1 with

| Nil -> []

| Cons (n1, l2) ->

(match list_compress l2 with

| Nil -> l1

| Cons (n2, l3) ->

(match compare n2 n1 with

| LT -> Cons (n1, Cons (n2, l3))

| EQ -> Cons (n1, l3)

| GT -> Cons (0, Cons (n2, l3))))

(* oops *)

We only differ from list compress by the constant 0 in
the GT branch. This is probably happening because,
when we solved

find n2, n1 : compare n2 n1 = GT

in path 3, we returned the first solution we found: n2 =
S m; n1 = 0. This is causing the function to overfit on the
constant 0. This behavior is similar to earlier, when we
stopped searching compare too early on EQ. The next
solution to this equation is n2 = 1; n1 = 2. If we add
[1; 2] to the long list of inputs, it does indeed force the
full list compress to be synthesized!

let rec list_compress (l1 : list) : list =

match l1 with

| Nil -> []

| Cons (n1, l2) ->

(match list_compress l2 with

| Nil -> l1

| Cons (n2, l3) ->

(match compare n2 n1 with

| LT -> Cons (n1, Cons (n2, l3))

| EQ -> Cons (n1, l3)

| GT -> Cons (n1, Cons (n2, l3))))

Why didn’t we have to add [2; 1]? That’s because it
was already the recursive sub-example of another list. If
we removed it, the same constant-overfitting error would
happen in the LT branch (the reader is invited to verify
this).

C. Human-written examples

Here is our final list:

let list_compress : list -> list |>

{ [] => []

| [0] => [0]

| [1] => [1]

| [2] => [2]

| [0;1] => [0;1]

19

| [0;2] => [0;2]

| [1;0] => [1;0]

| [2;0] => [2;0]

| [0;0] => [0]

| [1;1] => [1]

| [0;1;0] => [0;1;0]

| [0;2;0] => [0;2;0]

| [1;0;0] => [1;0]

| [2;0;0] => [2;0]

| [0;0;0] => [0]

| [1;1;0] => [1;0]

| [2;1] => [2;1]

| [0;1;1] => [0;1]

| [0;2;1] => [0;2;1]

| [1;0;1] => [1;0;1]

| [2;0;1] => [2;0;1]

| [0;0;1] => [0;1]

| [1;1;1] => [1]

| [1;2] => [1;2]

} = ?

Are any of these extraneous examples? There must be,
because here is a shorter set of human-written examples
that works:

let list_compress : list -> list |>

{ [] => []

| [0] => [0]

| [3] => [3]

| [2] => [2]

| [1] => [1]

| [1;0] => [1;0]

| [3;2] => [3;2]

| [3;3;2] => [3;2]

| [0;0] => [0]

| [3;3] => [3]

| [3;3;3] => [3]

| [0;1] => [0;1]

| [0;0;1] => [0;1]

| [2;3] => [2;3]

| [2;2;3] => [2;3]

} = ?

There are only 15 of them, but 23 of them in our
algorithmically- and ad-hoc-generated set. The human-
written set may or may not be minimal, but it is true
that removing any one of them causes the synthesis to
fail. The reader is invited to compare the two sets of
examples and see which ones are isomorphic, and which
ones differ.

D. Other benchmarks

The implementation for the equation-solving algorithm
has 37 benchmarks, and they are available in the repos-
itory. The implementation is about 500 lines of OCaml
code, and it uses the Myth language parser. The most
advanced problems it can currently solve involve natu-
ral numbers and recursive functions. For example, it can
correctly solve find m : double m = 8 in this input for-
mat:

let rec double (n : nat) : nat =

match n with

| O -> O

| S n0 -> S (S (double n0))

let problem (m : nat) : nat = double m

let result : nat = 8

for which it returns m := 4. Additionally, it fails grace-
fully on find m : double m = 7 by returning “No solution
found.”

The implementation for the symbolic execution algo-
rithm has 12 benchmarks, and they are available in the
repository. The implementation is about 200 lines of
OCaml code, also using the Myth language parser. The
most advanced problem it can solve is along the lines of
“traverse the compare function”:

let rec compare (n1:nat) (n2:nat) : cmp =

match n1 with

| O ->

(match n2 with

| O -> EQ

| S m -> LT)

| S m1 ->

(match n2 with

| O -> GT

| S m2 -> (compare m1 m2))

let toTraverse : nat -> nat -> cmp =

compare

It successfully returns these paths:

* (n1, 0) (n2, 0)

* (n1, 0) (n2, S m)

* (n1, S m1) (n2, 0)

* (n1, S m1) (n2, S m2)

VI. CONCLUSION

We extend Godefroid et al.’s work on DART and SAGE
from imperative languages to typed functional languages.
By doing so, we draw parallels between C-like language
features and ML-like language features, as well as the
methods needed to deal with both. Godefroid et al.
work with primitive types such as integers that appear
in if-statements. They collect constraints from the if-
statement guards and solve them with a SAT solver. On
the other hand, we work with algebraic data types that
are deconstructed by pattern-matching, and we collect
equations from the pattern-matching guards and solve
them with unification.

We introduce two new algorithms, an equation-solving
algorithm and a backwards symbolic execution algo-
rithm. In the tradition of whitebox testing, given a func-
tion, these algorithms together generate input tests with
100% code coverage for it. We also introduce a new exam-
ple augmentation algorithm that, given these tests, can

20

augment them into input-output examples that attempt
to induce Myth to re-synthesize the original function.

We study the successes and failures of these algorithms
on many test cases. In particular, when de-synthesizing
a function into examples and trying to re-synthesize the
function from these examples, we observe an interest-
ing divergence between the original and the synthesized
nat max . Lastly, after much augmentation, we also suc-
ceed in re-synthesizing the complex Myth benchmark of
list compress.

A. Future work

There are directions for future work in each topic cov-
ered by this paper. Within the topic of solving functional
equations, one could extend the equation-solving algo-
rithm to deal with multiple holes, solve holes in the goal,
detect divergence, find infinite solutions, and handle ar-
bitrary user-defined algebraic data types. This is broadly
related to relational programming, in particular as imple-
mented in the programming language miniKanren, which
can solve more general equations (Byrd (2009)). Com-
bining the two approaches, the goal would be to solve
complex equations such as the following:

find (n m : nat) : add n m = mult n m

find (t : tree) : reflectOverYAxis t = t

find (t : abstractSyntaxTree) : eval t = Const 5

Next, there is very little work done on symbolic ex-
ecution for typed functional programs. Being able to
whitebox-fuzz large functional systems to find crashes,
as well as generate thorough tests for use as regression
tests, are useful applications. One could apply the work
in this paper to empirically test large functional systems
for known bugs and compare the results to those of black-
box fuzzers. This would be similar to the work on SAGE,
which was tested on large Microsoft codebases and found
bugs that caused critical security vulnerabilites that had

evaded both blackbox fuzzing and static analysis.

Lastly, one could extend the work here on finding
input-output examples sufficient to synthesize a program.
One interesting line of inquiry is to find an example set
of minimal size and complexity. Or, one could find the
largest possible necessary example set, where every ex-
ample is necessary, but the whole set may not be suffi-
cient. (The de-synthesis in this paper produces does not
always produce examples that are both necessary and
sufficient.) Solving these problems could be put to good
use in characterizing the size and complexity of a pro-
gram in an information-theoretic way, parametrized by a
program synthesis system. That is, given a system like
Myth, characterize the amount of information a program
contains in terms of the quality and quantity of examples
needed to synthesize it. Then, one could study how this
measure differs between different synthesis systems.

ACKNOWLEDGMENTS

First, I owe a lot to Prof. David Walker, who was a
great advisor. He stuck with me through many itera-
tions of research ideas, taught me about judgements and
typing rules, and demonstrated how to find simple algo-
rithms and counterexamples.

Next, I’d like to thank Jonathan Frankle for helping
me get started with Myth and explaining the synthesis
rules. I also would like to thank Peter-Michael Osera and
Prof. Steve Zdancewic of UPenn for graciously allowing
me to join their project and for answering my questions.

Lastly, thanks to Mark Jason Dominus for helping me
notice that unification was exactly what I needed to com-
plete the equation-solving algorithm. Thanks to Alex
Clemmer for insightful comments on the problem of find-
ing minimal example sets for re-synthesis. Omar Rizwan
provided useful comments on the final draft of this paper,
and T. Dickinson provided an abundance of miso soup.

[1] Byrd, William E. Relational programming in minikanren:
Techniques, applications, and implementations. Diss. fac-
ulty of the University Graduate School in partial fulfill-
ment of the requirements for the degree Doctor of Phi-
losophy in the Department of Computer Science, Indiana
University, 2009.

[2] Godefroid, Patrice, Nils Klarlund, and Koushik Sen.
“DART: directed automated random testing.” ACM Sig-
plan Notices. Vol. 40. No. 6. ACM, 2005.

[3] Godefroid, Patrice, Michael Y. Levin, and David A. Mol-
nar. “Automated Whitebox Fuzz Testing.” NDSS. Vol. 8.
2008.

[4] Godefroid, Patrice, Michael Y. Levin, and David Molnar.
“SAGE: whitebox fuzzing for security testing.” Queue
10.1 (2012): 20.

[5] Gulwani, Sumit. “Dimensions in program synthesis.”
Proceedings of the 12th international ACM SIGPLAN

symposium on Principles and practice of declarative pro-
gramming. ACM, 2010.

[6] Manna, Zohar, and Richard Waldinger. “A deductive
approach to program synthesis.” ACM Transactions on
Programming Languages and Systems (TOPLAS) 2.1
(1980): 90-121.

[7] Martelli, Alberto, and Ugo Montanari. “An efficient uni-
fication algorithm.” ACM Transactions on Programming
Languages and Systems (TOPLAS) 4.2 (1982): 258-282.

[8] Osera, Peter-Michael, and Steve Zdancewic. “Type-and-
Example-Directed Program Synthesis.” Programming
Language Design and Implementation (PLDI). 2015.

[9] Solar-Lezama, Armando. Program synthesis by sketch-
ing. ProQuest, 2008.

[10] Srivastava, Saurabh, Sumit Gulwani, and Jeffrey S. Fos-
ter. “From program verification to program synthesis.”
Principles of Programming Languages (POPL). 2010.

21

Appendix A: Pyth

The code for the equation-solving and symbolic execu-
tion algorithms is available at
github.com/hypotext/synthesis.

The rest of the appendices highlights important sec-
tions of the code, then gives two algorithm-generated
benchmark traces.

Appendix B: Myth’s grammar

type id = string

type typ =

| TBase of id

| TArr of typ * typ

| TTuple of typ list (* Invariant: List must

always have two members. *)

| TUnit

type ctor = id * typ

type pattern =

| PWildcard

| PVar of id

| PTuple of pattern list

type pat = id * (pattern option) (* (id of

constructor, pattern). *)

type arg = id * typ

type env = (id * value) list

and decl =

| DData of id * ctor list

| DLet of id * bool * arg list * typ * exp

and exp =

| EVar of id

| EApp of exp * exp

| EFun of arg * exp

| ELet of id * bool * arg list * typ * exp * exp

| ECtor of id * exp

| EMatch of exp * branch list

| EPFun of (exp * exp) list

| EFix of id * arg * typ * exp

| ETuple of exp list (* Invariant: List must

always have two members. *)

| EProj of int * exp (* int is the index of proj.

of the tuple (1-indexed). *)

| EUnit

and branch = pat * exp

and value =

| VCtor of id * value

| VFun of id * exp * env ref (* ref? *)

| VPFun of (value * value) list

| VTuple of value list (* Invariant: List must

always have two members. *)

| VUnit

Appendix C: Types in the equation-solving code

These are the types for the current implementation,
which uses the Myth types defined above. The imple-
mentation is limited in scope and does not reflect the full
generality of the algorithm given in the paper. In partic-
ular, it does ad-hoc unification on one hole, not general
unification involving many holes.

type var = string

type hole = var

type solution =

| Concrete of (hole * exp) list | OK

type binding =

{ name : exp;

value : exp; }

type constraint_problem =

{ holes : hole list;

types : decl list;

fns : decl list;

problem : exp;

goal : exp;

(* State *)

depth : int;

prevSols : solution list;

bindings : binding list;

(* e.g. {l0 = Cons (x0, xs0), x0 = 1...}*)

}

Appendix D: Types in the symbolic execution code

These are the types for the current implementation,
which is limited in scope and does not reflect the full
generality of the algorithm given in the paper.

type var = string

type inputVal =

| Impossible

| Any

| Some of exp

type inputAssn = var * inputVal

type output = exp

(* e.g. [("x", O) => ("b", True)] (=> being a list

semicolon) *)

type inputRow = inputAssn list

type inputTable = inputRow list

(* e.g. ([("x", O) => ("b", True)] => S O) *)

type ioList = (inputAssn list * output) list

module M = Map.Make(String);;

type argsUsedMap = bool M.t;;

type traverse_problem =

{ name : string;

body : exp;

isRec : bool;

args : arg list;

22

fnType : typ;

fns : decl list;

types : decl list;

inputTable : inputTable;

argsUsed : argsUsedMap;

depth : int;

}

Appendix E: Full list of benchmarks

Equation-solving benchmarks:

1. bool and not fail

2. bool asgn

3. bool asgn fail

4. bool id

5. bool match const none

6. bool match const ok

7. bool match id

8. bool neg

9. bool xor one

10. bool xor two

11. list compress

12. list diverge

13. list pairwise swap.out

14. nat anything goes

15. nat capture subst

16. nat cases one sol

17. nat cases ret input 0

18. nat cases ret input fst

19. nat cases ret input snd

20. nat cases two sol

21. nat cases use patt

22. nat id

23. nat plus

24. nat plus2

25. nat plus2 fail

26. nat plus O

27. nat plus S

28. nat plus concrete left

29. nat plus concrete left

30. nat plus concrete right

31. nat plus concrete right

32. nat plus fail

33. nat plus fail concrete left

34. nat plus fail concrete right

35. nat rec double

36. nat rec double fail

37. nat rename

Symbolic execution benchmarks:

1. bool b2 unused

2. bool id

3. bool neg

4. bool xor one

5. list compress

6. list diverge

7. nat compare

8. nat max

9. nat max match call

10. nat minus1

11. nat plus

12. nat plus2

Their code is available in the repository.

Appendix F: Algorithm-generated trace for
equation-solving:

Trace for double for equation-solving:

SOLVE MODE

prog

type nat =

| O

| S of nat

let rec double (n:nat) : nat =

match n with

| O -> 0

| S n0 -> S (S (double n0))

;;

23

let problem (m:nat) : nat =

double m

;;

let result : nat =

3

;;

let double : nat -> nat |> { 0 => 0, 1 => 2 } = ?

end solve

--

Constraint problem:

> Holes:

m

> Problem:

double m

> Goal: = 3

> Depth: 0

> Previous solutions: currently unsupported

> Bindings:

Extracted function application info

Function name: double, input args: m

Function arg names: n

Function # free vars: 3

Function application: sub arg m into body first

Argument # free vars: 1

Top-level: Substitute (m) for n in (match n with

| O -> 0

| S n0 -> S (S (double n0))) with env (TODO)

Free vars of e: m

Free vars of body: n double n0

Renaming free vars of body to avoid clashes with fv

of e

Free vars of e: m

Free vars of body: n double n0

No clash found

No clash found

No clash found

Sub-level exp: Substitute (m) for n in (match n with

| O -> 0

| S n0 -> S (S (double n0))) with env (TODO)

Sub-level exp: Substitute (m) for n in (n) with env

(TODO)

Sub-level exp: Substitute (m) for n in (0) with env

(TODO)

Sub-level exp: Substitute (m) for n in (()) with env

(TODO)

Sub-level pat: Substitute (m) for n in (O) with env

(TODO)

Sub-level exp: Substitute (m) for n in (S (S (double

n0))) with env (TODO)

Sub-level exp: Substitute (m) for n in (S (double n0

)) with env (TODO)

Sub-level exp: Substitute (m) for n in (double n0)

with env (TODO)

TODO: substituting in function application

Sub-level exp: Substitute (m) for n in (double) with

env (TODO)

Sub-level exp: Substitute (m) for n in (n0) with env

(TODO)

Sub-level pat: Substitute (m) for n in (S n0) with

env (TODO)

Substituted body with arg m: (match m with

| O -> 0

| S n0 -> S (S (double n0)))

Sub’d body with all args: (match m with

| O -> 0

| S n0 -> S (S (double n0)))

Function application: TODO replace function body for

patterns

=> Solving application subproblem

--

Constraint problem:

> Holes:

m

> Problem:

match m with

| O -> 0

| S n0 -> S (S (double n0))

> Goal: = 3

> Depth: 1

> Previous solutions: currently unsupported

> Bindings:

=> Solving branch

=> Solving branch equation 1 (leaf only)

--

Constraint problem:

> Holes:

> Problem:

0

> Goal: = 3

> Depth: 2

> Previous solutions: currently unsupported

24

> Bindings:

(m, 0)

Ctor comparison failed

=> Solving branch

=> Solving branch equation 1 (leaf only)

--

Constraint problem:

> Holes:

n0

> Problem:

S (S (double n0))

> Goal: = 3

> Depth: 2

> Previous solutions: currently unsupported

> Bindings:

(m, S n0)

=> Solving constructor subproblem

--

Constraint problem:

> Holes:

n0

> Problem:

S (double n0)

> Goal: = 2

> Depth: 3

> Previous solutions: currently unsupported

> Bindings:

(m, S n0)

=> Solving constructor subproblem

--

Constraint problem:

> Holes:

n0

> Problem:

double n0

> Goal: = 1

> Depth: 4

> Previous solutions: currently unsupported

> Bindings:

(m, S n0)

Extracted function application info

Function name: double, input args: n0

Function arg names: n

Function # free vars: 3

Function application: sub arg n0 into body first

Argument # free vars: 1

Top-level: Substitute (n0) for n in (match n with

| O -> 0

| S n0 -> S (S (double n0))) with env (TODO)

Free vars of e: n0

Free vars of body: n double n0

Renaming free vars of body to avoid clashes with fv

of e

Free vars of e: n0

Free vars of body: n double n0

No clash found

No clash found

Clash found for name n0

Sub-level exp: Substitute (n0’) for n0 in (match n

with

| O -> 0

| S n0 -> S (S (double n0))) with env (TODO)

Sub-level exp: Substitute (n0’) for n0 in (n) with

env (TODO)

Sub-level exp: Substitute (n0’) for n0 in (0) with

env (TODO)

Sub-level exp: Substitute (n0’) for n0 in (()) with

env (TODO)

Sub-level pat: Substitute (n0’) for n0 in (O) with

env (TODO)

Sub-level exp: Substitute (n0’) for n0 in (S (S (

double n0))) with env (TODO)

Sub-level exp: Substitute (n0’) for n0 in (S (double

n0)) with env (TODO)

Sub-level exp: Substitute (n0’) for n0 in (double n0

) with env (TODO)

TODO: substituting in function application

Sub-level exp: Substitute (n0’) for n0 in (double)

with env (TODO)

Sub-level exp: Substitute (n0’) for n0 in (n0) with

env (TODO)

Sub-level pat: Substitute (n0’) for n0 in (S n0)

with env (TODO)

Sub-level exp: Substitute (n0) for n in (match n

with

| O -> 0

| S n0’ -> S (S (double n0’))) with env (TODO)

Sub-level exp: Substitute (n0) for n in (n) with env

(TODO)

Sub-level exp: Substitute (n0) for n in (0) with env

(TODO)

Sub-level exp: Substitute (n0) for n in (()) with

env (TODO)

Sub-level pat: Substitute (n0) for n in (O) with env

(TODO)

25

Sub-level exp: Substitute (n0) for n in (S (S (

double n0’))) with env (TODO)

Sub-level exp: Substitute (n0) for n in (S (double

n0’)) with env (TODO)

Sub-level exp: Substitute (n0) for n in (double n0’)

with env (TODO)

TODO: substituting in function application

Sub-level exp: Substitute (n0) for n in (double)

with env (TODO)

Sub-level exp: Substitute (n0) for n in (n0’) with

env (TODO)

Sub-level pat: Substitute (n0) for n in (S n0’) with

env (TODO)

Substituted body with arg n0: (match n0 with

| O -> 0

| S n0’ -> S (S (double n0’)))

Sub’d body with all args: (match n0 with

| O -> 0

| S n0’ -> S (S (double n0’)))

Function application: TODO replace function body for

patterns

=> Solving application subproblem

--

Constraint problem:

> Holes:

n0

> Problem:

match n0 with

| O -> 0

| S n0’ -> S (S (double n0’))

> Goal: = 1

> Depth: 5

> Previous solutions: currently unsupported

> Bindings:

(m, S n0)

=> Solving branch

=> Solving branch equation 1 (leaf only)

--

Constraint problem:

> Holes:

> Problem:

0

> Goal: = 1

> Depth: 6

> Previous solutions: currently unsupported

> Bindings:

(n0, 0) (m, S n0)

Ctor comparison failed

=> Solving branch

=> Solving branch equation 1 (leaf only)

--

Constraint problem:

> Holes:

n0’

> Problem:

S (S (double n0’))

> Goal: = 1

> Depth: 6

> Previous solutions: currently unsupported

> Bindings:

(n0, S n0’) (m, S n0)

=> Solving constructor subproblem

--

Constraint problem:

> Holes:

n0’

> Problem:

S (double n0’)

> Goal: = 0

> Depth: 7

> Previous solutions: currently unsupported

> Bindings:

(n0, S n0’) (m, S n0)

Ctor comparison failed

RESULT: no solution found

Appendix G: Algorithm-generated trace for
symbolic execution

TRAVERSE MODE

Function to traverse:

(let rec compare (n1:nat) (n2:nat) : cmp =

match n1 with

| O -> (match n2 with

26

| O -> EQ

| S m -> LT)

| S m1 -> (match n2 with

| O -> GT

| S m2 -> compare m1 m2)

;;)

> Symbolic execution

--

Traverse problem:

> Function name:

compare

> Function body:

match n1 with

| O -> (match n2 with

| O -> EQ

| S m -> LT)

| S m1 -> (match n2 with

| O -> GT

| S m2 -> compare m1 m2)

> Input table:

*

> Args used:

(n2, false) (n1, false)

> Depth: 0

--

Processing branches with recursive calls

> Processing branch with var guard n1

Branch: | O -> match n2 with

| O -> EQ

| S m -> LT

First processing branch leaf

> Symbolic execution

--

Traverse problem:

> Function name:

compare

> Function body:

match n2 with

| O -> EQ

| S m -> LT

> Input table:

*

> Args used:

(n2, false) (n1, true)

> Depth: 1

--

Processing branches with recursive calls

> Processing branch with var guard n2

Branch: | O -> EQ

First processing branch leaf

> Symbolic execution

--

Traverse problem:

> Function name:

compare

> Function body:

EQ

> Input table:

*

> Args used:

(n2, true) (n1, true)

> Depth: 2

--

> Processing branch with var guard n2

Branch: | S m -> LT

First processing branch leaf

> Symbolic execution

--

Traverse problem:

> Function name:

compare

> Function body:

LT

> Input table:

*

> Args used:

(n2, true) (n1, true)

> Depth: 2

--

> Processing branch with var guard n1

Branch: | S m1 -> match n2 with

| O -> GT

| S m2 -> compare m1 m2

First processing branch leaf

> Symbolic execution

27

--

Traverse problem:

> Function name:

compare

> Function body:

match n2 with

| O -> GT

| S m2 -> compare m1 m2

> Input table:

*

> Args used:

(n2, false) (n1, true)

> Depth: 1

--

Processing branches with recursive calls

> Processing branch with var guard n2

Branch: | O -> GT

First processing branch leaf

> Symbolic execution

--

Traverse problem:

> Function name:

compare

> Function body:

GT

> Input table:

*

> Args used:

(n2, true) (n1, true)

> Depth: 2

--

> Processing branch with var guard n2

Branch: | S m2 -> compare m1 m2

First processing branch leaf

> Symbolic execution

--

Traverse problem:

> Function name:

compare

> Function body:

compare m1 m2

> Input table:

*

> Args used:

(n2, true) (n1, true)

> Depth: 2

--

> Results

Input table:

* (n1, 0) (n2, 0)

* (n1, 0) (n2, S m)

* (n1, S m1) (n2, 0)

* (n1, S m1) (n2, S m2)

Args used:

(n2, true) (n1, true)

	Testing typed functional programs and re-synthesizing them
	Abstract
	Introduction
	Symbolic execution and testing programs
	Program synthesis and Myth
	Contributions

	Testing imperative programs
	Motivation and DART
	How DART and SAGE ensure code coverage

	Testing functional programs: problem statement
	Motivation
	Novelty
	Language definition
	Problem statement: input-output example generation
	Problem statement: symbolic execution
	Problem statement: solving equations

	Testing functional programs: algorithms
	Motivating example
	Solving equations
	Examples
	Unification
	More than one solution
	No solutions
	Recursive functions

	Symbolic execution
	Input-output example generation
	Augmentation

	Re-synthesizing list_compress
	Backwards symbolic execution
	Augmenting inputs for synthesis
	Human-written examples
	Other benchmarks

	conclusion
	Future work

	Acknowledgments
	References
	Pyth
	Myth's grammar
	Types in the equation-solving code
	Types in the symbolic execution code
	Full list of benchmarks
	Algorithm-generated trace for equation-solving:
	Algorithm-generated trace for symbolic execution

