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Abstract

As the capabilities of manipulator robots increase, they are
performing more complex tasks. The cumbersome nature of
conventional programming methods limits robotic automa-
tion due to the lengthy programming time. We present a
novel method for reducing the time needed to program a
manipulator robot: Predictive Robot Programming (PRP).
The PRP system constructs a statistical model of the user
by incorporating information from previously completed
tasks. Using this model, the PRP system computes pre-
dictions about where the user will move the robot. The
user can reduce programming time by allowing the PRP
system to complete the task automatically. In this paper,
we derive a learning algorithm that estimates the structure
of continuous-density hidden Markov models from tasks
the user has already completed. We analyze the perfor-
mance of the PRP system on two sets of data. The first
set is based on data from complex, real-world robotic tasks.
We show that the PRP system is able to compute predic-
tions for about 25% of the waypoints with a median pre-
diction error less than 0.5% of the distance traveled during
prediction. We also present laboratory experiments show-
ing that the PRP system results in a significant reduction
in programming time, with users completing simple robot-
programming tasks over 30% faster when using the PRP
system to compute predictions of future positions.

1 Introduction

Programming a manipulator robot is an arduous task. A
robot program typically consists of three main components:
a sequence of positions through which the robot must travel,
conditional branching statements, and process-specific in-
structions. Of these components, robot programmers usu-
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ally spend the majority of their time defining the sequence
of positions, called waypoints. While critical to the success
of all robot programs, specifying waypoints is currently
an overly complex and time-consuming process. Conse-
quently, one of the main inhibitors of robotic automation is
the time needed to program the manipulator.

Robot programming has evolved into two mutually ex-
clusive methods, offline and online programming, each hav-
ing its advantages and disadvantages. In offline program-
ming, users move a simulated robot to each waypoint using
a simulated model of the workspace. Offline-programming
packages allow users to design robot programs in simula-
tion without bringing down production and can optimize
programs according to almost any imaginable criterion.
Typical optimizations involve production speed, material
usage, or power consumption. To achieve the high accu-
racy required in many applications, the physical workspace
must be well calibrated with respect to the simulated en-
vironment. Otherwise, extensive online fine-tuning will be
needed, which detracts from the largest benefit of offline
programming: lack of production downtime. Offline sys-
tems generally require that programs be written in a sophis-
ticated procedural-programming language. As such, users
of these systems must be experts at the industrial process as
well as computer programming. Indeed, expertise in either
of these fields is a job skill in its own right.

Despite the advantages of offline packages, online pro-
gramming is more commonly used in practice. In online
programming, an actual part is placed in the workspace ex-
actly as it would be during production. The user creates the
robot program by moving the end-effector between way-
points using some type of control device, typically a joy-
stick or push buttons. Even though online systems generate
procedural-programming code, users can create robot pro-
grams without editing this code, and it is typically viewed
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Figure 1: Waypoints from two subroutines in the same robot program. While different at the subroutine level, there are
repeated subtasks occurring in translated and rotated form, such as the “U-shaped” pattern. The relative movement of the
robot with respect to the end-effector during these subtasks is the same.

as less intimidating and more intuitive than offline program-
ming. One potential disadvantage of online systems is that
production and programming cannot occur in parallel; pro-
duction must be halted during reprogramming. If repro-
gramming cannot be completed during normal downtime,
such as weekends, then cost will be incurred in the form of
lost production. Therefore, the set of tasks viable for online
programming is constrained by programming time. A re-
duction in this time would allow its use in areas previously
off limits.

In this paper, we present a novel Predictive Robot-
Programming (PRP) system that allows users to leverage
their previous work to decrease future programming time.
Specifically, this system assists users by predicting where
they may move the end-effector and automatically positions
the robot at the estimated waypoint. The PRP idea of auto-
matically completing a task based on a few observations is
conceptually similar to word-completion routines in word-
processing programs and text-messaging in mobile phones.
In that application, the user is presented with a word com-
pletion based on a few keystrokes, in the hope of reducing
the time needed to type a message. The domain of word
completion is well defined: a dictionary. In PRP, there is an
uncountable number of tasks that a manipulator robot may
perform and there exist no corpora of example programs.
Further complicating any prediction scheme is the inherent
imprecision and poor repeatability of humans and the ten-
dency of users to perform the same task in different man-
ners. Consider the case of welding the joints of a rectangle.
If the goal is to weld the object together, then the corners
may be welded in any order. Such ambiguity complicates
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any prediction scheme, and our PRP system addresses this
uncertainty both during modeling and prediction.
Manipulator robots perform a wide variety of industrial
applications, and as the capabilities of robots increase, they
are performing more sophisticated tasks. Simple tasks can
take days to program, while more complex tasks can take
weeks or months. Despite their complexity, most tasks can
usually be decomposed into simpler subtasks. These sub-
tasks may be repeated throughout the program directly or
in some modified form. Most robot programmers either do
not recognize the similarity or create these subtasks from
scratch each time due to the cumbersome nature of current
programming environments. For example, in Figure 1 we
show the waypoints from two different subroutines in an
arc-welding robot program. While clearly different at the
subroutine level, there are repeated subtasks, such as a “U-
shaped” pattern, which is rotated differently in the two sub-
routines. However, the patterns have the same movements
with respect to the end-effector. Such repeated subtasks
tend to be specific to a particular robot program. That is,
the similarity arises from the physical workpiece and the in-
dustrial process at hand. If a different workpiece is supplied
or a different industrial process employed, then the pattern
of similarity would change. While the user is creating way-
points, the PRP system must be able to identify similarities,
if any, to the many previously created subtasks and then
suggest future waypoints. If the user allows the PRP system
to move the robot, then the end-effector is automatically po-
sitioned at the predicted waypoint. Compared to the time
needed to move a robot manually, automatic positioning of
a robot is essentially instantaneous, which reduces overall



programming time. The prediction process can execute in
a closed- or open-loop fashion. During closed-loop opera-
tion, the PRP system moves the robot to a single predicted
position and the user may fine-tune the waypoint with a con-
ventional control device. In the open-loop mode, the PRP
system automatically completes the task for the user with-
out adjustment to the waypoints. Both prediction modes
have their advantages and disadvantages. Closed-loop pre-
diction tends to produce more accurate waypoints because
user feedback reduces error. Open-loop prediction is faster
since the PRP system does not have to wait for user inter-
vention.

We place our research in the context of related work in
Section 2 and derive the underlying learning algorithm in
Section 3. Essentially, the PRP system induces the topo-
logical structure and parameters of a Continuous-Density
Hidden Markov Model (CDHMM) based on waypoints that
the user has previously created. This CDHMM is then used
to predict future waypoints. The experimental results are
divided into the offline- and online-programming domains.
For the offline-programming experiments (Section 4), we
analyze the performance of the PRP system in predict-
ing the waypoints of complex, real-world industrial tasks.
Specifically, the programs consist of several thousand way-
points and were created to automate arc-welding production
at various factories. Each program was designed to produce
a different product, from bed frames to round tables. On
each program, we are able to generate a large percentage of
highly accurate predictions. For the online-programming
experiments (Section 5), we show that the PRP system con-
tributes to a significant reduction in the time needed to pro-
gram simple tasks in a laboratory setting. Finally, we give
conclusions and a discussion of the results in Section 6.

2 Related Work

In recent years there has been increased interest in decreas-
ing robot-programming time, primarily by simplifying the
interaction between users and robots. For the vast major-
ity of the population, programming ability limits the set of
tasks that can be automated. Most potential robot users have
neither the experience nor the inclination to program robots
to perform many of their tasks. Several researchers have
developed multimodal interfaces to simplify human-robot
interaction. Perzanowski et al. (2001) use a speech, ges-
ture, and graphical interface to study natural interactions
between humans and robots. Iba et al. (2002) have de-
veloped a system that incorporates speech and gesture, in-
stead of a keyboard and joystick, to program a vacuum-
cleaning mobile robot. These types of systems target users
who are experts at a particular task but may have limited
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programming ability. Several researchers have also devel-
oped systems that observe users performing tasks and syn-
thesize the information so that a robot can perform the tasks.
This paradigm goes by the name of Learning By Obser-
vation (LBO), Programming by Demonstration, Teaching
from Example, or some permutation thereof.

Both PRP and LBO operate in the same two-phase pro-
cess: learning and execution. The learning phase of PRP
and LBO involves the construction of a model of user ac-
tions based on prior behavior. However, during the exe-
cution phase, the PRP system only predicts the next way-
point in the trajectory whereas LBO systems must com-
plete the entire task. The best-known example of LBO is
the neural-network system, ALVINN, that learns to drive a
car by observing human drivers with a camera (Pomerleau,
1991). From these observations, the system learned to im-
itate the car-steering skill of the driver. However, one of
the hallmarks of LBO is the extreme scarcity of data upon
which to train the system. This is because LBO systems
gather observations from human activity, which may be of
significant duration. As such, it may require hours, days,
or months to obtain a sufficient number of tasks for suc-
cessful learning. To cope with the scarcity of training data,
many researchers decompose an observation sequence into
a discrete, symbalic representation and incorporate exten-
sive domain knowledge of the tasks. Friedrich et al. (1996)
segment a task, demonstrated by a user, into a sequence of
predefined primitives using Time-Delay Neural Networks
(TDNN:Ss), storing the decomposition in a symbolic fashion.
A search, using a pre- and post-condition theorem-proving
model (Fikes & Nilsson, 1971), determines a sequence of
primitives that describes the actions of the user. The seg-
mentation derived from the TDNNSs serves as an initial bias
on the search, and the user may also modify resulting pro-
gram. Similarly, Nicolescu and Matari¢ (2001) created a
system that decomposes a demonstration into a symbolic
set of robotic behaviors. Using dynamic programming and
human feedback, a deterministic acyclic automaton “behav-
ior network” is constructed from multiple examples of a
task. This allowed the system to extract user intentions from
a relatively small training set. Chen and Zelinsky (2003)
use a symbolic configuration-space description to represent
a simple assembly task. Suboptimal human demonstra-
tions were ameliorated by “filtering” the observations and
by incorporating extensive domain knowledge with heuris-
tic methods. Several researchers have also used Hidden
Markov Models (HMMs) to recognize human actions. Typ-
ically, these systems create an individual HMM for each
action that the user may perform during a given task. The
topologies of the constituent HMMs are determined a priori
according to some predefined structure, such as left-right
models (Hannaford & Lee, 1991). The HMMs are typi-



cally optimized using a labeled demonstration by the Baum-
Welch algorithm (Rabiner, 1989). To encode higher-level
knowledge, these models are sometimes connected together
in a task-specific manner, creating a sort of “grammar” that
constrains the set of possible actions (Hovland et al., 1996).
This grammatical concept has recently been extended to
recognize unknown actions (Iba et al., 2003). HMM-based
systems have also been used in the telerobotic manipula-
tion domain for analysis of force/torque actions (Hannaford
& Lee, 1991), consistency analysis of human actions (Tso
& Liu, 1997), learning new skills (Yang et al., 1997), and
real-time operator assistance (Hundtofte et al., 2002; Li
& Okamura, 2003). In addition to their applications in
speech recognition (Rabiner, 1989), HMMs have also been
used extensively in recognizing handwriting of various lan-
guages (Bahlman & Burkhardt, 2001; Solis et al., 2002).

As mentioned previously, we use a CDHMM to model
user behavior. Other HMM-based LBO systems have relied
on knowing the structure of the target task in advance. How-
ever, our approach differs from previous work in that we do
not know the set tasks that the user may perform a priori. To
cope with this issue, we have developed an algorithm that
estimates the structure, or topology, of a CDHMM based
on waypoints that the user has previously created. After es-
timating the structure of the model, any of the well-known
fixed-topology algorithms can be applied to optimize the
model parameters, such as the Baum-Welch algorithm.

In the machine-learning field there is a substantial
amount of research on HMMs. There are results suggest-
ing that optimal training of general HMMs is not possi-
ble in polynomial time (Abe & Warmuth, 1992). Con-
sequently, some researchers have focused on special sub-
classes of HMMs to deliver better results. Ron et al. (1998)
have derived a state-merging algorithm that constructs cor-
rect, in the Probably Approximately Correct sense, discrete-
symbol Probabilistic Finite Automata (PFASs). The running
time is polynomial in the size of the sample set and number
of possible observations (alphabet size), provided the states
of the target PFA are distinguishable and acyclic. There is a
similar state-merging algorithm that estimates general PFA
topologies in the limit of infinite training data (Carrasco &
Oncina, 1999). The theoretical results of these works rely
on enumerable alphabet sizes, whereas PRP requires mul-
tivariate real-valued vectors to describe a robot program.
Several researchers have also pursued more heuristic ap-
proaches to HMM structure estimation. For example, Stol-
cke and Omohundro (1994) incorporated a prior topology
distribution favoring simple models and performed a best-
first state-merging to induce the structure of an HMM from
observations. Brand (1999) used an entropy-based prior to
cause parameter extinction in ergodic HMMs. But such
heuristics make it difficult to provide performance guaran-
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tees. Singh et al. (2002) used early-stopping techniques to
determine the phonetic units for a speech recognizer. The
process of determining the atomic units of speech has much
in common with representing the “primitives” needed to
complete a set of tasks. However, the large cross-validation
sets found in the speech-recognition domain are not avail-
able in PRP.

There has also been recent interest in estimating the
structure of HMM s in the statistics and information-theory
fields, where it is called order estimation (Ephraim & Mer-
hav, 2002). Results from these fields deal with bounding
the asymptotic likelihood of under- or over-estimating the
number of states (Merhav et al., 1989) and there have been
generalizations to handle continuous observations (Rydén,
1995). While theoretically appealing, these approaches rely
on the existence of a globally optimal maximum likelihood
estimation procedure for HMMs, which is known to be in-
tractable (Abe & Warmuth, 1992). There has been more
recent work on restricting the classes of HMMs in order to
derive viable results (Gassiat & Boucheron, 2003). How-
ever, these results are focused on asymptotic performance
and not computational complexity. Even the tractable ap-
proaches only specify termination in a finite number of
steps (Ephraim & Merhay, 2002) and, consequently, these
guarantees are not appropriate for real-time use in a PRP
system.

We have created a CDHMM learning algorithm moti-
vated by the characteristic difficulties of LBO. First, the al-
gorithm must be able to operate in real time, so its computa-
tional complexity must be low and it cannot rely on asymp-
totic performance. Furthermore, the algorithm cannot ex-
pect large amounts of training data, such as the large cor-
pora of data in the speech-recognition domain. Our learn-
ing algorithm is designed to identify the relatively short-
sequence similarities found in PRP, such as those in Fig-
ure 1. We have therefore focused our attention on a low-
complexity algorithm that produces the “right” waypoint
at the “right” time, rather than asymptotic sequence guar-
antees such as those described by Ephraim and Merhav
(2002).

3 The Learning Algorithm
3.1 Representing Waypoints

In three-dimensional space, the position of an object can be
described by a location and an orientation. While the lo-
cation is typically given by a rectangular {x,y, z} descrip-
tion there are many orientation representations used. Three
common descriptions include rotation matrices, Euler an-
gles, and unit quaternions (Mason, 2001). While each rep-
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Figure 2: Though different in a global frame, G, the relative
movement of these patterns is the same.

resentation has drawbacks, unit quaternions have yielded
the best performance in our experiments.

In PRP, the ability to recognize and predict patterns in-
dependent of their location and orientation in the workspace
is extremely useful. Let a robot program be given by the
sequence of waypoints W = {“wg, “w1,...,%wn},
where the waypoint “w, maps the global frame, G,
to the frame of the nth waypoint.  This representa-
tion specifies waypoints in a global, or absolute, man-
ner. Let the relative-movement representation be W =
{Owy, tw,, ... ,Mlwy}, where "Lw,, is the change in
position between waypoint “w,,_; and waypoint “w,,. It
is simple to show that W is independent of an initial
coordinate-frame transform. In other words, using the
relative-movement representation permits the recognition
and prediction of patterns in a rotation- and translation-
independent manner. The relative-movement description
requires that the user specify the orientation of the end-
effector very precisely. If the user repeats a task with a
slight difference in orientation, then the Cartesian errors
between the two demonstrations can quickly accumulate
and become large, similar to the compounding of dead-
reckoning errors in a mobile robot (Thrun, 1998). However,
the ability to compute rotation- and translation-independent
predictions is critical to the success of the PRP system since
the similarities embedded in a robot program occur at dif-
ferent orientations and locations in the workspace, cf. Fig-
ure 1.

For notational convenience, we use a column vector to
represent a waypoint, x,, = vec("w,; ). Describing orien-
tation information with unit quaternions means that «,, is a
(7 x 1) vector.

3.2 Learning Algorithm Overview

In the learning phase, the system constructs a model based
on waypoints that the user has already created. We make
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Figure 3: Conceptual modeling of the user.

Figure 4: Hypothetical merging of two nodes in a graph.

no requirement that the sequences are the same length or
perform the same physical task. Due to the poor repeata-
bility and low precision of humans, the waypoints can be
considered noise-corrupted. Furthermore, for a particular
task there may be many possible ways that the user could
achieve the desired goal and it is difficult to instrument fully
any realistic working environment. Consequently there
will always be hidden, or latent, causes for user behavior.
With these assumptions, one natural model of the user is a
Continuous-Density Hidden Markov Model (CDHMM).
We have created a learning algorithm that is designed
to cope with the characteristic difficulties of LBO: sparse
training data, real-time operation, and a wide range of tar-
get tasks. We assume that the PRP system has no a priori
knowledge of what programs the user may create. There-
fore we must induce the structure of the CDHMM, as well
as parameters for the model, from observations alone (Fig-
ure 3). We consider the user as generating a each task
according to a random walk through an unknown target
CDHMM. The learning algorithm begins by assigning one
waypoint to each node in a graph and encoding temporal
information by edge connectivity, as in Figure 5(a). The
algorithm then searches for the most similar nodes in the
graph. If these nodes are sufficiently similar then the nodes
are merged. That is, a new node is created containing the
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Figure 5: The maximal-node graph is constructed from
three demonstrations of a task in Figure 5(a). Results of
state merging using strict and loose similarity are shown in
Figure 5(b) and Figure 5(c) respectively.

waypoints from the old nodes and the edges of the old nodes
are reconnected to the new node, cf. Figure 4. This merg-
ing process repeats until no similar nodes remain, cf. Fig-
ure 5. At this point, the graph contains the estimated topol-
ogy of the target CDHMM, i.e. the node connectivity, as
well as the edge counts and waypoints assigned to each
node. In principle, any of the well-known fixed-topology
HMM estimation procedures could be used to convert the
structure embodied by the graph to a CDHMM, such as the
Baum-Welch algorithm (Rabiner, 1989). However, we use
a simple one-shot procedure to determine the parameters of
the CDHMM. For example, the edge counts can be quickly
converted to transition probabilities by simple division. The
observation-generation probability density functions (pdfs)
can be estimated by fitting a parametric model to the way-
points assigned to each node, e.g. the mean and covariance
of a Gaussian. We use one-shot estimation, in lieu of an it-
erative Expectation-Maximization (EM) approach (Bilmes,
1997), for computational expediency and because we typi-
cally lack the data required for complete EM re-estimation
procedures.

The remainder of this section formalizes the learning al-
gorithm. We begin by defining node similarity and show
that the merging algorithm only produces graphs with a
locally minimal number of nodes (Section 3.3). We then
show that the worst-case running time of the algorithm is
quadratic in the number of waypoints (Section 3.4). The
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topological structure in the graph is converted to a CDHMM
using a simple one-shot estimation (Section 3.5). Next we
derive a bound showing that as more tasks are incorporated
into the CDHMM, the probability of generating the “cor-
rect” waypoint increases exponentially (Section 3.6). We
then show how the CDHMM computes predictions of fu-
ture waypoints and describe a parameter that the PRP sys-
tem uses to indicate its prediction confidence (Section 3.8).

3.3 Learning Algorithm Derivation

We denote the multiset over the set .4 as M(.A) and its
sample mean as (A). To estimate the structure of the
CDHMM, we use a type of directed multigraph called
an observation graph and given by the 7-tuple Gx =
(V,VO E, X,V, f,g) where

V is the set of nodes;

V0 is the set of initial nodes;

E is the set of directed edges;

X C R7 is the set of waypoints of dimension 7;

YV : V — M(X) is the multiset of waypoints as-
signed to each node;

o f: E — Zx is the edge-count function;

e g: VY — Z is the initial-count function.

The depth of an observation graph is determined by a
breadth-first search from the set of initial nodes, V°. Since
the graph may be cyclic, a node may exist at multiple
depths.

Central to the learning algorithm is the definition of sim-
ilarity. We extend the use of the Mahalanobis distance to
compute the similarity between the waypoints assigned to
different nodes in the graph. Our measure (Morgan, 2000)
of similarity is defined as

peWo,u) 2 Y Jz—ul (1)
mEVvk
= Y (z-uw'Cz—w),

TEV,,

where the symmetric Positive Definite (PD) precision ma-
trix C provides a notion of the a priori expectation of node
variance. We also define juc (0, u) = 0.

Lemmal. uc(V,,,u), defined in Equation 1, is a mea-
sure on the multiset M (X’) and minimized when w is the
sample mean of V,,,.

The straightforward proof is omitted.

Two nodes are considered similar if
pe(Vo, UV, (Vo, UV,,)) < ¢ where ¢ > 0 pro-
vides a continuous definition of similarity. Small values of
e imply a strict definition of similarity while large values
imply a loose definition. Intuitively, if a node v; can be
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Figure 6: Illustration of adding the two-dimensional vectors xg, 1, and x> to node v;. The solid circle represents the
region within which a future vector must lie to ensure that uc(V,,, (V,,)) < e. Consequently the circle has radius
n=ce— uc(Vy,, (Vy,)). The dashed circle is the image of the previous region. The centroid of the circles shift according
to the sample mean, (V,,), of the waypoints already assigned to the node.

found with the capacity to add all the waypoints from node
v; then the two nodes will be merged. This process repeats
until no similar nodes exist. The nodes in the maximal
graph in Figure 5(a) are merged using a strict and a loose
definition of similarity, in Figure 5(b) and Figure 5(c)
respectively. The resulting graphs are different since the
definition of similarity was different. In Section 4.2, we
show how modifying the definition of similarity effects the
prediction performance of the PRP system. With respect
to computing the similarity between waypoint sequences,
Equation 1 is memoryless in that the function does not
consider the similarity of ancestor or descendant waypoints.
Consequently, it is possible for two sequences to be similar
for a single waypoint while being dissimilar for all others.
While recursive similarity may be appropriate in some
domains (Ron et al., 1998), memoryless similarity seems
more appropriate for identifying similarities such as those
shown in Figure 1. In a sense, the parameter ¢ behaves
like an initial node “capacity”, or a region within which
future waypoints must lie. Let x, be the first waypoint
assigned to node v;. Any future waypoints assigned to
node v; must lie inside a hyperellipse of radius ¢ whose
axes are defined by the eigendecomposition of C and
centered about xy. Due to the non-negative nature of
Equation 1, as more waypoints are added to node v; the
capacity for the node to accept more waypoints decreases,
shown graphically in Figure 6. In the following lemma
we show that the acceptable region necessarily becomes
smaller as waypoints are assigned to a node and that the
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subsequent regions are completely contained within the
initial hyperellipse. This behavior is central in deriving an
algorithm that produces irreducible observation graphs.

Lemma 2. For any multiset B and for all submultisets
A C B and for all supermultisets C O B,

ne(A, (A) < e (B, (B)) < uc(C,(C)).

Proof.

e (A, (A))

VAN VAN | I VAN VAN
T T X%
Q Q Q

I
=
Q

which completes the claim. O

For a state-merging approach, such as ours, we want to
define what it means for a graph to be irreducible, or com-
pact. Intuitively, a compact graph is one where all similar
nodes are merged but all dissimilar nodes are left unmerged.
The following definition states this in precise terms.

Definition 1. An observation graph is e-compact with re-
spect to o : M(X) — [0, c0), if for all nodes v; # v; at
the same depth

d /U‘C(v7)i7 <v117>) <e



o < ,Ltc(vvi U vvjv <v“71 U v”j>)'
for some ¢ > 0.

While the definition of e-compact implies a sort of ir-
reducible graph, it does not necessarily imply a globally
minimal number of nodes. It is entirely possible that merg-
ing nodes in a different order would result in fewer nodes.
From this perspective, e-compactness implies a type of lo-
cally minimal number of nodes.

Algorithm Lear n- St ruct ur e
X = {X° X' ... XM} is the multiset of waypoint
sequences.
e > 0 is the similarity threshold.

Vi=0,E:=0
GX = (‘/,VO,E,X7V,f7g)
for all Xiec{X°X!,... , XM}
for all =, € X! = {z},z¢,... ,wﬁv}
€min ‘= men‘}/JC(v'uL U {w’ﬂ}v <v1/1 U {iL‘n}>)
i f emin < €t hen
Unew := aT'g Ineh‘}lffC(vviU{wn}v <vv1 U{wn}>)
v7)na~ = u)new U {.’En}
9: end if

© N ghwbdhR

10: else if enin >ethen
11: create empty node v,,,
12: Vi=VU{Vuw}

13: Viraw = {0}

14: Gopew =0

15: ifn>0then

16: E = EU{ena—me}
17: Jewernew =0

18: end if

19: end else if

20: ifn>0then

21: Feorranon 7= Fermarnay + 1
22: end if

23: else if n=0then
24 VO = VOU {vp}

25: Gvney = Jupew T 1

26: end else if

27: Uper *= Unaw

28: end for all

29: end for all

Theorem 3. Learn-Structure
compact observation graphs.

only produces e-

Proof. The algorithm satisfies the first predicate
of Definition 1 (uc(Vy,,(Vs,)) < € since it
will not add a waypoint, x,, to a node, wv;, un-
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less pc(V, U{z,}, Vo, U{zn})) < e Con-
sider the second predicate of Definition 1 (¢ <
pe(Vo, UV, (Vo, UV,,))).  Take any two nodes
and, without loss of generality, assume node v; was created
before v;. There must exist a waypoint ,, € V,, and a

submultisetvai C V,, such that

e < po(W Uiy}, (W, Uiz, 1),

Loosely speaking, the waypoint z,,, could not “fit” into any
existing node (Lear n- St r uct ur e Line 10). Otherwise,
node v; would have never been created. From Lemma 2,

e < pe(W Uiz} (W, Ufa, )
<~
€ < HC (Vui U vvja <V11i U vvj>)

and therefore the algorithm only produces e-compact obser-
vation graphs. O
3.4 Learning Algorithm Running Time
Lemma 4. The sufficient statistics of uc(V,,, (V,,)) are

; K, :Z:cTC:c; o, = Zw

TEVy, TEV,,

§v, = |v'Ui

The update rule for computing the union of two multisets
Vo, =V, UV, is

gvk = gvi + gvﬁ

Using sufficient statistics, Equation 1 can be computed as

Kuy = Ko, + o3 Oy, = Oy, + 0y,

1

Vi

Hc (va <vU1>) =

The proof is omitted but is found by expanding Equa-
tion 1. The significance of Lemma 4 is that the function
pe(Vo, UV,,, (Vs UV,,;)) can be computed in constant
time, irrespective of the number of waypoints assigned to
either node. This is central in providing a bound on the
computational complexity of the algorithm.

Theorem 5. The worst-case computational complexity of
Lear n- St ruct ur e to assimilate M tasks of length N
is O(M2N?).

Proof. Though not required by the algorithm, we simplify
the running-time analysis by assuming that each task is of
length N. We make two reasonable assumptions
e Appending a value to a multiset is constant-time
(A:= AU {x}).



e Accessing any node is constant-time (v; € V).
With these assumptions, there is one line of non-constant
cost inside the locus of Lear n- St r uct ur e, finding the
minimum similarity measure (Line 5). This line forms an
arithmetic series on the number of nodes in the observa-
tion graph. From Lemma 4, the update rule for the union
of two multisets is independent of their cardinalities and is
constant-time. Since this cost is embedded in an arithmetic
series on the number of nodes, the worst-case running-time
occurs when the number of nodes is maximized, i.e. when
no nodes are merged. Therefore, the worst-case computa-
tional complexity for assimilating M tasks of length N is

M N
O(Z Z mn) € O(M?N?),
m=1n=1
which is quadratic in the number of waypoints. O

3.5 Estimating CDHMM Parameters

In this section we present a simple one-shot procedure
for estimating CDHMM parameters from an observation
graph. We use one-shot estimation, in lieu of an EM-
type approach, for computational expediency and because
we typically lack the data required for complete EM re-
estimation procedures. A CDHMM is given by the quin-
tuple A = (Q, X, a, b, ) where

o Qs afinite set of states;

e X C R7is the observation set of dimension d;

e a: Qx Q — [0,1] is the stationary state-transition
probability mass function (pmf);

b: X x Q — [0,00) is the stationary observation
pdf;

e 7: Q — [0,1] is the stationary initial-state pmf;

The function gr aph-t o- HVM simply computes the
maximum-likelihood CDHMM parameters from the infor-
mation contained in the observation graph and is the “Max-
imization” step from the Baum-Welch algorithm. For ex-
ample, the probability of transitioning from state ¢, to state
g; is the number of times the observation graph recorded
a transition from node v; to node v;, divided by the to-
tal number of waypoints assigned to node v;, written as
aji; = fe._.,/|Vo,|. The initial-state probabilities are com-
puted similarly. We do not assume any distribution for the
observation-generation pdfs, b;(x), beyond requiring that
the mean of the pdf be the sample mean of the waypoints as-
signed to the node, E_{x|¢; } = (V,,). In practice, however,
we typically fit a Gaussian distribution to the waypoints as-
signed to each node.

Function gr aph-t o- HWM
Gx = (V,V° E, XV, f,g) is the observation graph.
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M is the number of sequences assimilated into G .

Q:=1
A=(9,X,a,b,7)
for all v; eV

create new CDHMM state g;

Q:= QU {q}

create b; from V,, with E_{z|q; } = (V,,)

= g, /M

for all v; eV

9: ajli = fei; /IVuil
10: end for all
11: end for all
12: return(Q,X,a,b,n)

N Rwd R

Itis simple to show that the running time of this function
is O(|V|? + |V|b), where | V| is the number of nodes in the
observation graph and O(b) is the cost of computing the
observation pdf parameters.

3.6 Bounding State Error

Assume that the tasks are actually generated by an unknown
target CDHMM in an independent identically distributed
(iid) manner. We derive a bound showing that as more
tasks are incorporated, states in the target COHMM are es-
timated with exponentially increasing accuracy. It is typical
to provide HMM bounds regarding an observation sequence
(Ephraim & Merhav, 2002), whereas we provide a bound
on individual waypoints. This appears to be the strongest
statement we can make since our definition of similarity,
Equation 1, is memoryless. First, we precisely define the
idea that an estimated CDHMM will produce “close” to the
correct waypoint at the correct time. Let ¢,, be the random
variable denoting the current state of the CDHMM at time
n and the trace of matrix A be written as tr[A].

Definition 2. A CDHMM, Ay, ~-represents a state in an-
other CDHMM, ¢5 € A, if there exists a state, ¢; € Ay, at
the same depth n such that

IE{xlc,=q1, A1} — E {z|c, =g, AQ}HC <7.

If Xy ~-represents state g in Ao then we write \; MR
g2 € Xo. This defines what it means for different CDHMMSs
to generate waypoints within ~ of each other at the correct
time. Intuitively, it is easier to estimate a state in the tar-
get CDHMM if it generates observations more frequently.
Furthermore, if a state emits observations with high vari-
ance then it will be more difficult to distinguish between
different states. This intuition is formalized in the follow-
ing theorem.



Theorem 6. Let X be a CDHMM estimated from Lear n-
Structure and graph-to- HWwith ¢ > 0 and M
iid tasks of length at least n, generated by some target
CDHMM X*. If the state ¢, € A* generates observations
with finite first and second moments,

Pr {3\ MR q« € )\*}
tr[CVar(x|q.))

> (1) (1- TR

where v > /€, p. = P(c, =q«|A*) > 0, and Var(z|q.) is
the observation-generation variance of state ¢..

Proof. Let m be the random variable summing the number
of times ¢,, = ¢, over each of the M tasks. The probability
that state ¢, with prior probability p. generated at least one
waypoint at time n in M iid tasks is

Pr{m > 0|p., M} 1—Pr{m=0|p., M}

1—(1-p)M.
Let x ~ p(x|g., A*), where p(z|g., A*) has finite
mean w* and finite variance 3*. By the triangle inequal-
ity and reflexive property,
[u” = (V) [ —ullc + |z = (Vo)

From Theorem 3, ||z — (V,,)|lc < Ve forany x € V,,.
Since E_{x|¢;} = (V,,) (gr aph-t o- HW Line 6), the
state ¢g. € A* will be ~-represented by the estimated
CDHMM if ¢, generates at least one waypoint such that

< v—Ve

By assumption v > /e and from the Multivariate Cheby-
shev’s Inequality, *

<

Cc C -

[ — vl

tr[CX]
6 -vor
Multiplying this conditional probability by the prior yields

Pr{le—ule <v—ve} > 1-

Pr {X A= A*}
> - 1
which completes the claim.
In more concrete terms,
Pr {/A\ MR q« € )\*}

> (1 - (1—p*)M> (1 _ %

()

)

(x)
IMultivariate Chebyshev’s Inequality,
e Pr{|lz—ul; > e} < tr[CVar(z)] + HufE{m}Hé
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Figure 7: Asymptotic nature of the bound in Theorem 6
for a fixed inherent error rate with p, = 0.05, v = 1, and
e =0.25.

The term (o) is in many ways an “inherent” error rate. The
inherent error decreases as the

e waypoint variance decreases;

o similarity radius (¢) decreases;

e acceptable error (y) increases.
The term (%) increases exponentially as the number of tasks,
M, increases with the rate determined by the probability
that a state generates a waypoint, p.. This implies that the
bound in Theorem 6 is asymptotic to the inherent error rate
of the target CDHMM, as in Figure 7, and the estimated
CDHMM probably generates the correct waypoint at the
correct time.

3.7 Probability of Similarity

To make the experimental results in this paper easier to
present, we compress the infinite interval, ¢ € [0,00), to
a bounded interval, § € (0, 1]. There are many possibilities
to determine ¢ and we assume that users make positioning
errors about a desired waypoint according to a Gaussian dis-
tribution. We then require that a waypoint be emitted with
high probability,

Pr{le—(V)lg <} > 1-4 )
The squared Mahalanobis distance of a Gaussian random
variable is a chi-square random variable. We can then eval-
uate Equation 2 from the cumulative distribution function
(cdf) of the chi-square distribution, shown graphically in
Figure 8. As § — 0 the definition of similarity becomes
loose, € — oo, inducing a simpler COHMM. As § — 1



09
0.8
0.7

0.6

1-%

04r

0.3

0.2

0.1

10

Figure 8: Cumulative Distribution Function of a chi-square
random variable with 7 degrees of freedom, y2. Graph-
ically, we compute Equation 2 by fixing a value of e.g.
1—6 = 0.7 and finding the intercept on the cdf at ¢ ~ 8.4.

the definition of similarity becomes strict, ¢ — 0, induc-
ing a more complex model. From this perspective, ¢ can
be considered as a type of “complexity parameter”. The
experimental results in this paper will vary the parameter 6.

3.8 Prediction

In the prediction phase, the PRP system computes predic-
tions of future waypoints using the CDHMM estimated by
the learning algorithm. Optimal prediction, given a model,
is a mature topic and can be found in many references (Duda
etal., 2001). There are several reasonable choices for a pre-
diction criterion such as Maximum Likelihood (ML), Max-
imum A Posteriori, expectation, etc. In our experiments,
ML estimators have performed the best. To compute a pre-
diction, we condition the CDHMM probability distributions
on waypoints from the current task and determine the most
likely next waypoint,

A~k
Ty

= arg Héaxp(acn\XSZn_l, A),

where X§.,. ; = {xo,... ,Zn} is the relative-movement
representation of the current task. Using standard HMM
notation, i.e. (Rabiner, 1989), we define the “forward vari-
ables” to be the conjunctive likelihood of being in state g;
at time n—1 while observing the current task,

(77| (Z) = p(Cnflz%‘, X(c)nfl‘A) ’

This is a recursive equation that can be computed in stan-
dard dynamic-programming time (Rabiner, 1989). We then
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define the conditional next-state pmf as
Z aj|iozn,1 (Z)
q;€Q

2 ana(k)

qLEQ

Vn(]) P<CHZQj|X8:7L—1a)‘) =

With this notation, we evaluate the ML prediction as

o 3)

argmax 37 by (@) ()
q;€Q

It is also straightforward to derive predictions for any time
in the future. Equation 3 involves the maximization of a
linear mixture of nonlinear functions. Except in degener-
ate cases, Equation 3 cannot be solved in closed form and
we must resort to iterative multivariate maximization tech-
niques, which can be relatively costly. However, in practice,
a locally optimal solution can be found quickly.

Regardless of the criterion used (ML, expectation, etc.),
a prediction will exist even if the current task is not con-
sistent with the estimated CDHMM. This may result in
computing inaccurate predictions. ldeally, the PRP sys-
tem would only suggest the most accurate predictions to
the user. However, the desired waypoint is not known at
the time of the prediction, so the PRP system indicates its
confidence, ¢,, € [0, 1], based on information available at
the time of prediction. Confidence of ¢,, = 1 indicates that
waypoints from the current task fit perfectly with the model,
while ¢,, = 0 indicates minimum certainty. To this end, we
compute the divergence of the CDHMM from complete in-
ternal uncertainty while observing the current task. Let the
number of states in the CDHMM be |Q|. In our work, we
define confidence as the Kullback-Leibler divergence taken
log base |Q| between the next-state random variable, c,,
and the uniform distribution

Dxwlen | 157)
log, |Q)|
> vn(j)logy(|Qlvn(4))

log, ‘Q|
_ H(cn)
log, ‘Q|’

where H () is entropy. Since ¢, is a discrete random vari-
able with |Q| possibilities, the confidence is bounded on
the closed interval 0 < ¢,, < 1 for any state distribution
and any waypoint sequence. Intuitively, if many states in
the CDHMM are likely to produce the next waypoint, then
the prediction confidence will be low. On the other hand,
a prediction based on the contributions from few states will
result in high confidence.

Pn (4)




Figure 9: Screen shot from the offline package showing the
workspace and waypoints of a program with 18 subroutines.

3.9 LearningAlgorithm Summary

In this section, we derived a learning algorithm that es-
timates the structure of a CDHMM from waypoint se-
guences. Given an ordered set of waypoints, the CDOHMM
is uniquely determined by the parameter ¢ > 0, which is a
function of the parameter § € (0, 1], cf. Section 3.7. De-
creasing the parameter, § — 0, induces a simpler CDHMM,
while increasing the parameter, 5 — 1, induces a more
complex CDHMM. Predictions of future waypoints are
computed using an ML estimation procedure, Equation 3,
by conditioning the CDHMM probability distributions on
waypoints from the current task. In order to avoid burden-
ing the user with inaccurate suggestions, the PRP system
only suggests predictions with high confidence, ¢,, (Equa-
tion 4).

4 Offline Programming

In this section, we analyze the performance of the PRP sys-
tem on five programs created using an offline-programming
environment (Figure 9). The programs have between 252
and 1899 waypoints with 16 to 196 subroutines. Collec-
tively, these programs took over 70 work days to complete
by a professional robot programmer. The programs were
created to automate arc-welding production at several fac-
tories in Sweden. Each program was designed to produce a
different type of product, from round tables to bed frames.
Since the robot programs were developed independently of
our PRP system, the behavior of the user was unmodified
by these experiments. The programs provide the substrate

To appear in the International Journal of Robotics Research
2004-02-05, Revision 2, PREPRINT

12

Initialize
CDHMM

Y

Add Subroutine|
to CDHMM

Y

Get Next
Subroutine

Waypoint

Y
Predict Next
Waypoint

Compute
Prediction Error|

Figure 10: Flow chart for computing predictions for the of-
fline programs.

to verify experimentally the ability of PRP to generate ac-
curate predictions of users creating waypoints for complex,
real-world tasks. In Section 4.2, we analyze the prediction
accuracy of the PRP system as the complexity of the esti-
mated CDHMM changes, by varying the parameter ¢, and
show that the system is capable of performing real-time op-
eration. In Section 4.3, we show that prediction confidence,
on, strongly correlates with prediction accuracy. In Sec-
tion 4.4, we test the hypothesis that the user is well mod-
eled by a CDHMM by observing the prediction accuracy of
the PRP system as more waypoints are incorporated into the
learning algorithm.

4.1 Methodology

To compute waypoint predictions, we segment the pro-
grams along the subroutines contained in each program. We
emulate the user creating the robot program by feeding the
subroutine waypoints into the PRP system in a serial fash-
ion. The PRP system computes a prediction of the next
position by conditioning the CDHMM on previous way-
points from the subroutine (Equation 3). If the PRP system
has sufficient confidence in the prediction (Equation 4) then
we consider the prediction valid and compute its error. To
determine the prediction error, we compare the predicted
waypoint to the next waypoint in the subroutine and con-
sider any difference to be an error in the prediction. At the
end of each subroutine we incorporate its waypoints into
the CDHMM, building an estimated user model. After pre-
dicting the final waypoint in a program, we reinitialize the
CDHMM tabula rasa and start the prediction of the next
program. A flow chart of this procedure is given in Fig-
ure 10.
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Figure 11: Model complexity as a function of 6.

The definition of similarity, Equation 1, incorporates a
symmetric PD precision matrix, C, that represents the in-
verse covariance matrix of human error when defining a
waypoint. We computed the covariance matrix by having
users repeatedly move a robot to a point in space and ana-
lyzing the residual error.? Robotic arc-welding requires ap-
proximately 1 millimeter of Cartesian accuracy and about
0.1 radians of angular accuracy. The results presented in
this work employ these physical tolerance constraints as a
threshold for determining a “useful prediction”. The pre-
diction is useful in that a waypoint within these tolerances
will generally require no fine-tuning by the user.

At the end of welding, it is common to execute a gross
repositioning where the robot moves across the workspace
to the next weld, typically on the order of a meter. These
movements tend not to be predictable and a small percent-
age error in predicting the gross repositioning will dominate
the mean over many precise movements. \WWe are more in-
terested in the typical prediction error, which is better con-
veyed by the median.

4.2 Performance as a Function of Modd
Complexity

In Figure 11, we plot two measures of model complexity,
CDHMM states and running time. As expected, the number
of CDHMM states tends to increase as § increases. Also,
running time increases as the number of CDHMM states
increases. Importantly, Figure 11 shows the average time

2The covariance matrix was computed from online-programming ex-
periments, whereas this section deals with offine-programming. From our
experience, the principal directions of variance appear unchanged, but the
eigenvalues are smaller when using an offine environment.
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Figure 12: Median Cartesian error and angle error as a func-
tion of 6.

per waypoint taken to estimate a CDHMM and compute a
prediction. This time, ~25 milliseconds, is suited for real-
time use in a robot-programming environment.

To determine the performance of the system as a func-
tion of model complexity, we held out one program and
computed the performance on the remaining four programs.
The held-out program is meant as a sort of test set, but since
data are so sparse it is difficult to draw any statistically sig-
nificant conclusions based on this four-program training set
and one-program test set. Indirectly, the parameter § also
determines the accuracy of predictions by controlling the
complexity of the CDHMM. In Figure 12, we plot the av-
erage median error on the four-program training set as a
function of 5. For all values of §, the angle error is ex-
tremely small, less than 0.2 milliradians or about 0.3% of
the angle changed during prediction. This is because robots
tend to change orientation in a fairly predictable manner
during welding and gross repositioning. By exploiting this
information, the PRP system can generate extremely accu-
rate angle predictions. However, the Cartesian movements
of the robot are determined by the size of the objects in the
workspace, a much more unpredictable quantity. When the
parameter is too small, the learning algorithm produces a
CDHMM that is too simple to represent the user. When
the parameter is too large, the CDHMM begins to overfit
the data. In PRP, as in many machine-learning applications,
“everything should be made as simple as possible, but not
simpler” and the correct complexity depends on the tasks
at hand. In our case, the Cartesian error bottoms out on
the interval 6 € (0.5,0.9). This implies that a value in the
neighborhood of § ~ 0.7 induces the right amount of com-
plexity on the training set.
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as a function of the confidence threshold.

4.3 Performanceasa Function of Confi dence

In this section we determine the correlation of prediction
confidence to prediction accuracy. Specifically, we discard
predictions with confidence below a threshold and analyze
the accuracy of the remaining predictions. The hypothe-
sis is that higher-confidence predictions are more accurate
than lower-confidence predictions. Inevitably, as the confi-
dence threshold increases there will be accurate predictions
discarded due to insufficient confidence. Loosely speak-
ing, the PRP system may have a “lucky guess” and, without
knowing the target waypoint at the time of prediction, it is
impossible to discriminate between lucky guesses and well-
informed estimates. Using the training set, we can deter-
mine a confidence threshold that strikes a balance between
quality and quantity. We fix the value of 6 = 0.7 and have
the learning algorithm construct a CDHMM based on Fig-
ure 10 for each program in the four-program training set
and analyze the performance of the PRP system as a func-
tion of confidence threshold. In Figure 13, we plot the per-
centage of useful predictions as a function of the confidence
threshold on the four-program training set. The percentage
of useful predictions generally increases as the confidence
threshold increases until about ¢,, > 0.8, when the percent-
age plateaus. In Figure 14, we plot the average median error
as a function of the confidence threshold. For all confidence
thresholds the angle error is extremely small, between 0.06
and 0.2 milliradians. The median angle movement during
prediction was about 65 milliradians, meaning that the an-
gle prediction error is between 0.09% and 0.3% of the angle
change. However, the Cartesian prediction error improves
as the confidence threshold increases, until it bottoms out

To appear in the International Journal of Robotics Research
2004-02-05, Revision 2, PREPRINT

14

H
O‘

—— Cartesian Error

,_.
S,
T

Avg Median (m)

L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10” T T T T T T
o) — Angle Error
g
8
"g 107 =
=
D
>
< 5

10"’ L L L L L

0 0.1 0.2 0, 0.8 0.9 1

.3 014 015 0‘,6 017
Confidence Threshold

Figure 14: Median Cartesian error and angle error as a func-
tion of the confidence threshold.

around 0.03 millimeters for ¢,, > 0.8, well below the phys-
ical tolerance required by arc welding. The median Carte-
sian movement during prediction was about 100 millime-
ters, meaning that the Cartesian prediction error is about
0.03% of the movement of the robot during a prediction.
Empirically, based on this data set, confidence is related to
Cartesian error with a normalized correlation coefficient of
p = —0.89, significant to a p-value of p < 0.01. This
strong correlation implies that, on the training set, higher-
confidence predictions tend to be more accurate.

4.4 Temporal Performance

In this subsection we use parameters that performed well
on the training set, 6 = 0.7 and ¢,, > 0.7, to analyze the
performance on the hold-out test program. The CDHMM
is initialized tabula rasa and incorporates waypoints from
the test program incrementally according to the procedure
in Figure 10. In Figure 15, we plot the median prediction
error on the hold-out program as the user creates waypoints.
After incorporating about 400 waypoints, the median Carte-
sian error stabilizes around 0.25 millimeters. The median
Cartesian movement during prediction was 50 millimeters,
meaning that the Cartesian prediction error is about 0.5% of
the movement of the robot during a prediction. Likewise,
the median angle error stabilizes around 0.02 milliradians
after about 150 waypoints. The median angle movement
during prediction was 0.1 milliradians, meaning that the an-
gle prediction error is about 20% of the angle change. Both
of these values are well below the physical tolerance of 1
millimeter and 0.1 radians required by arc welding. This
asymptotic-like behavior of the PRP prediction error sug-
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Figure 15: Median error as a function of the number of way-
points incorporated into the CDHMM.

gests that the estimate of the user improves until acquiring
sufficient information about the task.> The PRP algorithm
computed predictions with confidence ¢,, > 0.7 for about
25% of the waypoints on the hold-out program. This hold-
out program originally took over eight work weeks to com-
plete using an offline-programming package. Allowing the
PRP system to move the robot to predicted waypoints au-
tomatically could save several days in programming time.
It it important to remember that none of the programs, ei-
ther in the training set or the hold-out, were created with
a PRP system in mind. In other words, the programs were
not created with any motivation for reusing previous work.
The predictability of the waypoints results from the inherent
similarity of the underlying task. It seems plausible that a
programmer creating waypoints with a PRP system would
be more likely to behave in a predictable fashion, result-
ing in greater time savings, making robot-programming en-
vironments incorporating a PRP system even less cumber-
some.

45 Discussion of Results

The results contained in this section validate the core prin-
ciples of PRP. For the different programs analyzed, the PRP
system computed predictions with confidence ¢,, > 0.7 for
between 10% and 30% of possible waypoints. The median
Cartesian prediction error for each program was between
0.03 millimeters and 0.25 millimeters, or 0.03% and 0.5%
of the distance moved during prediction. The median angle

SParenthetically, al programsin the training set also showed the same
general asymptotically decreasing shapein their error plots.
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prediction error for each program was between 0.06 milli-
radians and 0.2 milliradians, or 0.09% and 20% of the angle
change during prediction. All of these values are well under
the useful physical tolerances required by arc welding of 1
millimeter of Cartesian accuracy and 0.1 radians of angular
accuracy. On average, about 60% of predictions computed
by the PRP system with a confidence of ¢,, > 0.7 were
useful. The high accuracy of predictions indicates that the
CDHMM can identify the inherent similarity contained in
complex, real-world robot programs. Since the programs
were created without consideration for PRP, the predictabil-
ity of the waypoints is due to the underlying similarity of the
tasks themselves. The PRP system was able to estimate a
user model and compute predictions in about 25 millisec-
onds, which is sufficient for real-time use. The asymptot-
ically decreasing nature of prediction error, as a function
of the number of waypoints incorporated into the learning
algorithm, shows that the modeling of a robot programmer
by a CDHMM is appropriate. The strong correlation be-
tween prediction accuracy and prediction confidence gives
the PRP system a causal statistic for determining which pre-
dictions may be inaccurate. By “filtering” predictions based
on confidence, the PRP system can avoid burdening the user
with unhelpful suggestions.

Since the programs were created independently of PRP,
we have no way of directly translating these results to
programming-time savings. However, we can estimate hy-
pothetical savings in programming time based on the results
by assigning a time benefit for useful predictions and a time
penalty for non-useful predictions. A reasonable benefit for
a useful prediction is roughly 90% since it may take the user
a short amount of time to determine if the predicted way-
point is sufficiently close to the desired position. A penalty
of 10% for a non-useful prediction seems appropriate since
a prediction can be rejected out of hand by pressing an
“undo” button. Using typical values for the PRP system
parameters, 6 = 0.7 and ¢,, > 0.7, would result in a 10%
reduction in programming time, which translates to 7 work
days saved on the programs analyzed in this section. With a
benefit of 75% and a penalty of 25%, the programming-time
reduction is 7%. However, some waypoints, such as ap-
proach points, do not require much accuracy. Also, it seems
likely that many non-useful predictions will also benefit the
user; a prediction that is close to the intended waypoint, but
still requires some fine-tuning, probably takes less time than
user moving the robot manually. Consequently, the binary
classification of predictions as useful and non-useful proba-
bly represents a lower bound on programming-time savings.
In Section 5.3 we present results on reducing programming
time in laboratory experiments.



Figure 16: The four patterns for user demonstrations with
13, 6, 10, and 10 waypoints respectively.

5 Online Programming

In this section, we analyze the performance of the PRP sys-
tem in an online-programming environment. We collected
44 robot programs from 3 users in a laboratory setting.
Each user had previous experience with online robot pro-
gramming and all users were allowed to practice moving
the robot until they felt comfortable controlling it. In our
terminology, the repertoire of the user consists of the four
simple tasks shown in Figure 16. The two right-most pro-
grams, comprising 10 waypoints each, represent standard
arc-welding tasks. The two left-most programs, compris-
ing 13 and 6 waypoints respectively, are planar geometric
movements. The mean distance between waypoints in these
programs was 186 millimeters. These programs were cre-
ated in a laboratory setting specifically to test the viability
of PRP as a robot-programming tool. In Section 5.2, we
analyze the performance of the PRP system when the learn-
ing algorithm incorporates programs in different orders. In
Section 5.3, we show that the PRP system contributes to a
significant reduction in programming time.

5.1 Methodology

To create a program, a user moves the robot with a joystick
(Figure 17). When the user feels that the end-effector is suf-
ficiently close to the desired waypoint, he presses a button
on the teach pendant to indicate that the current robot posi-
tion should be stored as the next waypoint in the program.
We left the definition of “sufficiently close” to the user. This
ambiguity resulted in substantially larger deviations than re-
quiring that the program be viable for arc welding.

To compute the precision matrix from Equation 1, we
asked users to move the end-effector repeatedly to an un-
referenced point in space by controlling the robot with the
joystick. We then computed the residual error and set the
precision matrix equal to the inverse of the covariance,
C = Var(ac)’1 Similarity in robot programs may oc-
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Figure 17: Creating waypoints for the patterns in Figure 16
with an ABB IRB140.

cur in short subsequences. In these cases, conditioning the
CDHMM on waypoints from the entire program may cause
the PRP system to generate poor predictions (Equation 3),
even if we discard predictions below a confidence threshold
(Equation 4). This can be avoided by computing predictions
based on a horizon, h, of recent waypoints,

(&
n—h:n—1>

%
Ly

arg maxp(:cn|X A) .
The experiments in this section will incorporate this notion
of a horizon explicitly.

5.2 Leave-One-Out Performance

As mentioned in Section 3, the CDHMM learning algorithm
is sensitive to the order in which robot programs are incor-
porated into the model. To analyze this effect, we created
44 permutations of the 44 robot programs from Figure 16 so
that their waypoints are introduced into the learning algo-
rithm in a differing order. In Figure 18 we plot the median
number of states as a function of §. The error bars in Fig-
ure 18 show the minimum and maximum number of states
caused by the different permutations. Figure 18 implies that
varying the parameter ¢ has a much greater impact on model
complexity than does the order in which the robot programs
are introduced into the learning algorithm.

Using the 44 permutations, we also computed the leave-
one-out statistics for the accuracy of two prediction crite-
ria. The first criterion uses only high-confidence predic-
tions (¢, > 0.8) over a relatively long horizon (h = 3).
The second criterion allows for lower-confidence predic-
tions (¢, > 0.5) over a shorter horizon (h = 2). In Fig-
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Figure 18: Median number of states as a function of ¢, over
the 44 different orderings of the online robot programs col-
lected from Figure 16. The error bars indicate the maximum
and minimum states induced by the permutations.

ure 19, we plot the Cartesian error for the 44 permutations
as a function of § for the two prediction criteria. The aver-
age median Cartesian error for both criteria, for most val-
ues of ¢, was about 15 millimeters, or 8% of the distance
traveled by the robot. The substantial overlap between the
distributions means that neither criterion is different in a
statistically significant sense. While the impact of model
complexity, induced through ¢, has a significant impact on
Cartesian prediction accuracy?, the influence from the or-
der in which programs are incorporated into the CDHMM
dominates.

5.3

A user of the PRP system will be most interested in the re-
duction of the time needed to create robot programs. To
determine the impact on programming time, the users were
asked to complete one of the tasks from Figure 16. The
baseline is the time taken to create a robot program with-
out PRP prediction support. The PRP system constructed
a CDHMM from waypoints of other robot programs us-
ing a value of § = 0.8. We then asked users to create the
programs with the PRP system offering prediction support
with two different prediction criteria. As in Section 5.2,
one criterion incorporates high-confidence predictions over
a long horizon (¢, > 0.8,h = 3) and the other crite-
rion allows low-confidence predictions over a short horizon
(¢, > 0.5, h = 2). During programming, the user moves

Impact on Programming Time

4High-conf: p=—0.83, Low-conf: p=—0.61; both have a p-value of
p < 0.01.
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Figure 19: Cartesian errors caused by the different order-
ings of the online robot programs as a function of §. The
solid surface is the central 50% distribution for a high-
confidence prediction criterion and the mesh surface shows
the central 50% distribution for a low-confidence prediction
criterion.

the robot with a joystick. When the user feels that the cur-
rent end-effector position is sufficiently close to the target
waypoint, he presses a button on the teach pendant. If the
PRP system computes a prediction of sufficient confidence,
this waypoint is suggested to the user with an audible sig-
nal. The user can ignore the suggestion or he can allow the
PRP system to move the robot to the predicted waypoint au-
tomatically by holding down another button. The user can
stop the PRP system from moving the robot by releasing
the button if, for example, there is an obstacle in its path. It
is not uncommon for the user to decide that the prediction
must be refined. Fine-tuning can be done using conven-
tional joystick positioning or the previous waypoint can be
restored by pressing an “undo” button. This fine-tuning or
undoing time was included in the total programming time
for that PRP prediction criterion result.

The impact of the PRP system on programming time is
summarized in Table 1. The first row shows the baseline
programming time used to complete the tasks without PRP
prediction support. The second and third rows show the im-
pact of PRP prediction using the high-confidence and low-
confidence criteria respectively. The Wilcoxon rank sum
test confidence values (Fraser, 1957) in the final column
indicate the statistical significance between the PRP pre-
diction criteria and the baseline programming times. From
Table 1 we see that programming time was reduced by over
one third when using either PRP prediction criterion, with
extremely high statistical confidence. The difference in pro-



Prediction || mean | std change | Wilcoxon
Criterion || (sec) | (sec) Conf
None || 292.2 | 78.61 N/A N/A
¢n>08h=3 | 193.2 | 32.07 | —33.88% 99.95%
¢n>0.5,h=2 | 178.0 | 33.39 | —39.08% 99.99%

Table 1: Programming time used to complete the tasks in
Figure 16 with no prediction, high-confidence prediction,
and low-confidence prediction.

gramming time between the two PRP prediction criteria was
not significant.

5.4 Discussion of Results

The results contained in this section demonstrate the via-
bility of PRP as a robot-programming tool. The prediction
error for these online-programming tasks was much larger
than the offline-programming counterparts. In the online-
programming experiments, the prediction error was about
15 millimeters, or 8% of the distance traveled by the robot.
In the offline-programming experiments, the prediction er-
ror was less than 0.25 millimeters, or 0.5% of the distance
traveled by the robot. This difference is primarily due to
users providing their own definition of “sufficiently close”
in the online-programming case. Despite this variation, the
PRP system was able to assist users in reducing program-
ming time by over a third, in a statistically significant man-
ner.

6 Conclusions

We presented a novel method for predicting the waypoints
in manipulator robot programs called Predictive Robot Pro-
gramming. We derived a learning algorithm that estimates
the structure of CDHMMSs based on previously created
waypoints. This CDHMM is then used to predict future
waypoints. On complex, real-world robot programs, the
PRP system was able to generate a large percentage of
highly accurate predictions. On all programs analyzed, the
median Cartesian prediction error was well under a millime-
ter and the median angular prediction error was well under
a milliradian. Both of these values are below the physical
tolerances required by the target process, robotic arc weld-
ing. In a laboratory setting, we showed that the PRP system
was able to reduce programming time by over a third in a
statistically significant manner. These results suggest that
PRP is a viable tool for reducing the time needed to pro-
gram industrial manipulator robots.
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Not recorded in Table 1 was the number of collisions
with objects in the environment. However, collisions are
not uncommon during conventional operation when hu-
mans create automation programs since, for example, arc
welding requires submillimeter separation from the work-
piece. Industrial manipulators are designed to handle the
eventual collision without inflicting damage. However, this
sheds light on one potential problem with PRP in an online-
programming environment: showing the user the position
of the predicted waypoint before moving the robot. There
does not seem to be an efficient solution that allows the user
to visualize a priori where the PRP system intends to move
the robot. One potential solution is to show the user with
a virtual-reality model (i.e. offline system) where the pre-
dicted waypoint is, allowing the user to determine if the pre-
diction is appropriate. But this implementation may cause
the user to spend more time determining if the waypoint is
acceptable than by simply allowing the PRP system to move
the robot automatically and (potentially) undoing it. Our
solution was to have the user press a button if he decides
to let the PRP system move the robot. The PRP system
then moves toward the predicted waypoint slowly at first
and then quickly comes to full speed. If the user thinks the
prediction is unacceptable, or if a collision may occur, then
he can release the button to stop the PRP system immedi-
ately. This solution appears to work well in practice.

Currently, the PRP system identifies similarity to pre-
vious subtasks using a single, monolithic CDHMM. It may
be helpful to allow the user to provide the PRP system with
labeled subtasks that may occur in the future. The PRP sys-
tem could then create many smaller CDHMMs that describe
these patterns. By incorporating semi-supervised learning
techniques, the PRP system could improve its ability to rec-
ognize and predict these patterns, in addition to those it cur-
rently identifies.
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