
Unsupervised Model-Based Prediction of User Actions

Kevin R. Dixon krd@cs.cmu.edu
Pradeep K. Khosla pkk@ece.cmu.edu

Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA

Abstract

In this paper we derive algorithms that
construct simple continuous-density hidden
Markov models based on unlabeled observa-
tions of user actions. These models are then
be used to predict future actions of the user.
The algorithms were designed for domains
where user-generated training data are costly
to obtain and, consequently, the number of
free parameters must be kept low. More
specifically, we derive an algorithm that con-
structs ε-compact CDHMMs, that is Markov
chains with an irreducible number of states,
based on real-valued observations from users
performing tasks. We show that the worst-
case computational complexity of the algo-
rithm is a second-order polynomial in the
number and length of the tasks. We de-
rive an optimal estimator for the expectation
of future observations, based on recent ob-
servations, and give the computational com-
plexity for the estimator. We also present a
novel application: predictive robot program-
ming. We show that the algorithms derived
in this paper can recognize and predict the
waypoints of robot programs in a rotation-
and translation-independent fashion, and we
also derive the maximum-likelihood equa-
tions for locally optimal scale-invariant pre-
diction. We present experimental results of
the performance of our algorithms for pre-
dictive robot programming.

1. Introduction

Despite the numerous advances in human-computer in-
teraction (HCI), most automation systems still require
users to convey knowledge to computers and robots
through procedural-programming techniques. For the

vast majority of the population this transfer of knowl-
edge is limited by the programming expertise of the
user. Indeed, expertise in programming is its own job
skill. Most users have neither the experience nor the
inclination to program computers and robots to per-
form their tasks. In industrial settings, many compa-
nies do not have the resources to automate produc-
tion. For example, it is estimated that over 90% of arc
welding is still performed by hand due, in part, to the
complexity and duration of the programming process.
The downtime required to reprogram the facilities may
interrupt production and the expense necessary to ob-
tain programming expertise may be too great. A sys-
tem that simplifies the automation of tasks could in-
crease the use of computers and robots in a variety
of fields previously off limits and raise productivity.
We have developed algorithms that assist in the trans-
fer of knowledge by observing users performing tasks
and leveraging this information to decrease the time
required to automate tasks by predicting future obser-
vations.

The general problem of a machine learning by observ-
ing a human has long been a goal of many researchers.
The Learning By Observation (LBO) paradigm is
characterized by a computer assimilating observations
of a user performing a task (or tasks) and then synthe-
sizing this information so that the computer can per-
form the task in novel configurations. We formulate
the LBO problem as one of Stochastic-Source Predic-
tion (SSP), that is predicting future values of a ran-
dom process1 based on prior observations of its be-
havior. The SSP problem has received quite a deal
of attention since its applications are prevalent across

1We use the statistics definition of “random process”:
an indexed sequence of random variables. This contrasts
to the combinatorics/cryptography implication of “random
process”: a sequence where previous observations are no
help in predicting future observations (this would be a
“white process” in statistics jargon).

1

user

hidden
variables

observations

task

repertoire
estim

ate

user

hidden
variables

future
observations

learning model

prediction

observations

task

0

456

1

7

2 3

8

21 22 2324

9101213 11

14 1715 16 181920

Figure 1. Conceptual diagram of the two-phase operation
of our system. First, take observations to generate a user
model. Second, use the model to compute future observa-
tions.

many fields. Economists use time-series analysis to
recognize trends and predict the stock market. Engi-
neers use model-based predictive control to stabilize
systems and achieve optimal performance. Computer
scientists use dynamic-caching algorithms to predict
memory page faults in operating systems. Each of
these applications has SSP at its heart. When cast-
ing the user of a system to be a stochastic source,
LBO reduces to SSP. However, predicting a general
random process is intractable and it is therefore nec-
essary to apply assumptions about the behavior of the
underlying stochastic source. For example, the ran-
dom process can be modeled as autoregressive, mov-
ing average, or both; it can be considered stationary,
ergodic, or Markov. The assumptions are dictated by
the underlying physical system and desired complex-
ity of the model, and our assumptions are driven by
the modeling of (human) users through observations
of their activity. Conceptually, our LBO system op-
erates in two phases (Figure 1). The first, or learn-
ing, phase creates a model based on prior observations
of the user. The second, or prediction, stage com-
putes predictions of future user observations based on
the model. There are several difficulties in predicting
and synthesizing user actions. Observations obtained
from sensors are, in general, noise corrupted since all
sensors have uncertainty associated with them. How-
ever, the primary difficulty of predicting user actions is
the inherent imprecision and poor repeatability of hu-
mans. Even with perfectly accurate sensors there will
be uncertainty as to what task the user was trying to
perform. It is also unfeasible to instrument fully any
realistic working environment and, as a consequence,
there will be latent causes, or hidden variables, for
certain user actions. Any system that attempts to
model user actions must address these types of uncer-
tainty. Furthermore, observations in our system are

gathered from human activity, which can be of a sig-
nificant real-world duration. This results in a very low
availability of data upon which to train and requires
that our system keep the number of tunable parame-
ters to a minimum. As will be discussed later, our user
model is a Continuous-Density Hidden Markov Model
(CDHMM) with acyclic connectivity.

In Section 2 we overview the key ideas behind modeling
user actions. We develop the learning algorithm from
a theoretical perspective in Section 3 and derive the
optimal prediction estimator in Section 4. We outline
a novel application of the SSP problem in Section 5
by describing our work in predictive robot program-
ming, detailing both theoretical and practical aspects
of the problem. We place this research in the context
of related work in Section 6. Finally, conclusions and
future work are given in Section 7.

2. Modeling User Actions

In this section, we formally and informally define some
terms used in this paper. A user observation is a
real-valued vector sampled at discrete time intervals.
To account for inherent user imprecision and measure-
ment inaccuracies, user observations are considered to
be noise corrupted. Sequences of user observations are
called tasks and the unknown set of all possible tasks
that the user may perform is called the repertoire. In-
formally, the user generates a robot program by first
selecting a task from the repertoire according to an
unknown a priori distribution. When performing a
task, each user observation is generated by some hid-
den state of the task. We assume that the user moves
between states in the task according to a stationary,
but arbitrary, probability distribution that depends
only on the current state of the task. Since users tend
not to think in terms of latent random processes, it
is impractical to require a user to describe which in-
ternal state generated a given observation. Therefore,
user observations are unlabeled in the sense that there
is no “ground-truth” mapping between user observa-
tions and internal state. Since the internal states of
the user are unknown and all information is conveyed
to our system via noise-corrupted real-valued obser-
vations, we model user actions as Continuous-Density
Hidden Markov Models (CDHMMs).

More formally, the model of user actions, or repertoire,
is given by the 7-tuple R = (Q,Q0,Qλ,X , a, b, π)
where

• Q is a finite set of states;
• Q0 ⊂ Q is the non-empty set of starting states;
• Qλ ⊂ Q is the non-empty set of terminating states

2

(Q0 ∩Qλ = ∅);
• X ⊆ Rg is the observation set of dimension g;
• a : Q×Q → [0, 1] is the state-transition pmf: the

probability of transitioning from state qi to qj is

aj|i,P(cn=qj |cn−1=qi, R),
∑

qj∈Q\Q0

aj|i=1,∀qi ∈ Q\Qλ;

• b : X × Q → [0,∞) is the observation pdf: the
likelihood of state qj generating observation xn is

bj(xn) , p(xn|cn=qj , R),
∫

xn∈X
bj(xn)dxn=1,∀qj ∈ Q;

• π : Q0 → [0, 1] is the initial-state pmf, the prob-
ability of starting in state qj is πj , P(c0=qj |R),∑
qj∈Q0

πj = 1.

The random variable indicating the current state at
time n is written cn. Because all tasks that can be
created by humans are necessarily finite in duration,
the underlying graph of R is acyclic.

3. Learning from Prior Observations

In high-level terms, we assimilate observations from
an arbitrary number of tasks to estimate the reper-
toire of the user. As a general philosophical assertion,
it is desirable to create the most simple, or compact,
model that explains the observations. This is of par-
ticular importance when training data are scarce, as
simple models imply fewer free parameters to assign.
Furthermore, in many interesting problems, it is not
possible to know a priori the general structure of the
model. Central to the development our algorithms are
the low availibility of training data and an unknown
graph topology. In Section 6, we refer to existing algo-
rithms that exploit large corpora of data or knowledge
of graph topology.

Since the topology of the repertoire is unknown, our
system is initialized tabula rasa. From this blank slate,
there appears to be two approaches to create compact
models. The first approach is to assume a simple initial
model and incrementally increase its complexity to ac-
count for inconsistencies between the simple model and
the data. The second approach is to create a complex
model initially and incrementally decrease its complex-
ity by identifying similarities in the model. When us-
ing graph-based models, these approaches are known
as state splitting and state merging respectively. There
are potential advantages and disadvantages to each;
neither is a clear-cut winner. Because state-merging
schemes tend to start with sparse initial groupings of
data, from our perspective, it seems relatively easy to
identify similarities in these small groupings of data.
This is in contrast to state-splitting schemes, which
start with a large initial groupings of data and, conse-

x0
0

x1
0

x2
0

x3
0

x4
0

x0
1

x1
1

x2
1

x0
2

x1
2

x2
2

x3
2

x0
3

x1
3

x2
3

x3
3

x4
2

x1
3

x3
3

x4
2

x1
2x1

1x1
0

x2
0

x4
0

x0
0 x0

2

x0
1 x0

3

x2
2

x2
1 x2

3

x3
0

x3
2

Figure 2. Hypothetical DAG before assimilating the set of
prior observations (left) and after state-merging algorithm
(right).

quently, tend to be a bit more difficult to identify the
inconsistencies in these groupings. But, again, neither
approach is a clear-cut winner.

3.1 Derivation of the Learning Algorithm

Essentially, the algorithm operates by first building the
maximal-state Directed Acyclic Graph (DAG), G =
(V,E), suggested by the prior user observations and
then repeatedly merges statistically similar states so
that a simple CDHMM results (Figure 2). Each node
in the DAG, vi ∈ V , is comprised of a multiset of
observations, Xvi ⊆M(X), whereM(A) denotes any
finite multiset over the set A. The edges, evi→vj ∈ E,
contain usage counts, Nevi→vj ∈ Z≥0. In a leveled

DAG a node exists at only one level, or depth. Leveled
DAGs are a proper subset of general DAGs. Let the
set of nodes at depth n be written as Vn ⊂ V . Let
the multiset of all tasks be X = {X0,X1, . . . ,XM},
where each task is a sequence of observations Xk =
{xk0 ,xk1 , . . . ,xkNk}. The sample mean of the multiset
A is written as 〈A〉 and given by

〈A〉 ≡ 1

|A|
∑

x∈A
x.

Definition 1. A DAG is ε-compact if, for all nodes
vi ∈ Vn and vj ∈ Vn at some common depth n and for
some function d :M(X)×X → [0,∞),

• d(Xvi , 〈Xvi〉) ≤ ε;
• d(Xvi ∪Xvj , 〈Xvi ∪Xvj 〉) > ε, for all vi 6= vj.

for some ε ∈ [0,∞).

Essentially, Definition 1 provides a precise meaning to
a DAG being “simple”. From a state-merging perspec-
tive, an ε-compact DAG has an irreducible number of
nodes because there are no nodes that can be merged

3

and yield an ε-compact DAG. An ε-compact DAG does
not imply a globally minimal number of nodes, how-
ever it does imply a type of locally optimal solution.
Finding ε-compact DAGs efficiently (by state-merging,
state-splitting, or otherwise) would be inherently use-
ful in any problem searching for “simple” graph-based
models, particularly those where the training data is
severly limited. When and ε-compact DAG is con-
verted to a CDHMM, this translates to fewer free pa-
rameters in the user model. There are many possible
functions to evaluate ε-compactness and in this work
we define

d(Y ,u) ,
∑

x∈Y
(x− u)

T
C(x− u), (1)

where C is a symmetric positive-definite (PD) matrix.
Equation 1 is simply a sum of squared Mahalanobis
distances with respect to a reference vector, u.

Lemma 1. d(Y ,u) ≥ 0, for all Y ⊆ M(X) and any
u ∈ X .

Proof. by definition of PD matrix C. The function
will be strictly positive unless Y = ∅ or u = x, for all
x ∈ Y .

Lemma 2. d(A ∪B,u) = d(A,u) + d(B,u), where
A, B, and A ∪B are multisets.

Proof.

d(A ∪B,u) ,
∑

x∈A∪B
(x− u)

T
C(x− u)

=
∑

x∈A
(x− u)

T
C(x− u) +

∑

x∈B
(x− u)

T
C(x− u)

= d(A,u) + d(B,u).

Lemma 3. 〈Y〉 = arg min
u∈X

d(Y ,u), where 〈Y〉 is the

sample mean of the non-empty finite multiset Y ⊆
M(X).

Proof. Since C is symmetric

0 =
∂

∂u

∑

x∈Y
(x− u)

T
C(x− u)

=
∂

∂u

∑

x∈Y
xTCx−2

∑

x∈Y
uTCx+

∑

x∈Y
uTCu

= −2C
∑

x∈Y
x + 2|Y |Cu.

⇒ u∗ =
1

|Y |
∑

x∈Y
x ≡ 〈Y〉.

This final step requires that C be invertible, which is
always true since C is defined to be PD. To ensure a
minimum, we check the Hessian. By taking the second
derivative, we have

∂2

∂u∂uT
d(Y ,u) = 2|Y |C,

which must be a symmetric PD matrix, by definition
of C and assumption of |Y | > 0. This implies that
〈Y〉 is a minimum.

Note that Lemma 3 is similar to the derivation of the
sample mean for iiddraws from a multivariate Gaus-
sian using the log-ML approach.

Lemma 4. For any non-negative threshold τ ∈
[0,∞), there exists a submultiset Ỹ ⊆ Y of the multi-

set Y such that τ < d(Ỹ , 〈Ỹ〉) ⇐⇒ τ < d(Y , 〈Y〉).

Proof.
⇐: since τ < d(Y , 〈Y〉), let Ỹ = Y and then clearly

τ < d(Ỹ , 〈Ỹ〉). ⇒: we have Ỹ ⊆ Y and

τ < d(Ỹ , 〈Ỹ〉) (By assumption)

≤ d(Ỹ , 〈Y〉) (Lemma 3)

≤ d(Ỹ , 〈Y〉) + d(Y\Ỹ , 〈Y〉) (Lemma 1)
= d(Y , 〈Y〉) (Lemma 2)

which completes both sides of the claim.

Corollary 4.1. For any non-negative threshold τ ∈
[0,∞) and multisets A and B, there exist sub-

multisets Ã ⊆ A and B̃ ⊆ B such that τ <
d(Ã ∪ B̃, 〈Ã ∪ B̃〉) ⇐⇒ τ < d(A ∪B, 〈A ∪B〉)

Proof. By direct extension of Lemma 4.

The first three lemmas are mere properties of Equa-
tion 1. However, the final lemma and its corollary
provide a road-map on how to derive an algorithm
to construct ε-compact DAGs and, ultimately, simple
CDHMMs. Essentially, if we encounter observation
sets from two nodes such that

ε < d(Xvi ∪Xvj , 〈Xvi ∪Xvj 〉), (2)

then we can add any observation, xn, to either node,
providing that d(Xvi ∪ {xn}, 〈Xvi ∪ {xn}〉) ≤ ε, and
be assured that the inequality (Equation 2) will hold.
The algorithm Learn-HMM is based on the result of, and
the intuition gained from, Lemma 4 and Corollary 4.1.
Figure 3 contains the pseudocode for constructing ε-
compact DAGs.

4

Algorithm Learn-HMM

ε ∈ [0,∞) is a similarity threshold.
X = {X0,X1, . . . ,XM} is the multiset of tasks.

1: V := ∅, E := ∅
2: G := (V,E)
3: for all Xi ∈ {X0,X1, . . . ,XM}
4: G := assimilate-task (G,Xi, ε)
5: end for all

6: R := convert-DAG-to-HMM (G)

Figure 3. The complete HMM learning algorithm.

As a note to Learn-HMM (Figure 3), though the ob-
servation set of a CDHMM exists purely as a math-
ematical construct, it is simple to show that X is
the convex hull of the multiset of all observations,
X = {X0,X1, . . . ,XM}, since the convex hull is closed
under linear operators (this will be used in Section 4).

Theorem 5 (Compactness). The Learn-HMM algo-
rithm in Figure 3 produces ε-compact DAGs.

Proof. Because the algorithm only creates edges be-
tween nodes at sequential depths (Line 12, Figure 4),
it will produce only leveled DAGs, which are a proper
subset of general DAGs. The first predicate of Defini-
tion 1 (d(Xvi , 〈Xvi〉) ≤ ε) is trivially true since the al-
gorithm will not add an observation, xn, to a node, vi,
unless d(Xvi ∪ {xn}, 〈Xvi ∪ {xn}〉) ≤ ε (Line 3, Fig-
ure 4). Since all Xvi = ∅ initially (Line 1, Figure 3
and Line 8, Figure 4) and d({x}, 〈{x}〉) = 0,∀x ∈ X ,
therefore all nodes d(Xvi , 〈Xvi〉) ≤ ε at any point dur-
ing the execution of the algorithm.

We now move on to the second predicate of Definition 1
(d(Xvi ∪Xvj , 〈Xvi ∪Xvj 〉) > ε, for all vi 6= vj). Let
us take two nodes, vi and vj , at the same depth in
the DAG. Without loss of generality, we assume that
node vj was created after vi. We know that nodevj
would never have been created unless there exists an
observation xvj ∈ Xvj and a submultiset X̃vi ⊆ Xvi
such that ε < d(X̃vi ∪ {xvj}, 〈X̃vi ∪ {xvj}〉) (Line 7,
Figure 4). From Lemma 4 and Corollary 4.1, we have
shown

ε < d(X̃vi ∪ {xvj}, 〈X̃vi ∪ {xvj}〉)
⇐⇒

ε < d(Xvi ∪Xvj , 〈Xvi ∪Xvj 〉)

Since we never remove observations from nodes, and
all nodes always have corresponding non-empty obser-
vation multisets (Line 10, Figure 4), the second pred-
icate is true at any point during the execution of the

Function assimilate-task

G = (V,E) is the leveled DAG.
Xi = {xi0,xi1, . . . ,xiNi} is the task to assimilate.
ε ∈ [0,∞) is a similarity threshold.

1: for all xn ∈ {xi0,xi1, . . . ,xiNi}
2: εmin := min

vi∈Vn
d(Xvi∪{xn}, 〈Xvi∪{xn}〉)

3: if εmin ≤ ε then
4: vj := arg min

vi∈Vn
d(Xvi∪{xn}, 〈Xvi∪{xn}〉)

5: Xvj := Xvj ∪ {xn}
6: end if

7: else if ε < εmin then

8: create empty node vj
9: V := V ∪ {vj}

10: Xvj := {xn}
11: if n > 0 then

12: E := E
⋃

vk∈V n−1
{evk→vj}

13: end if

14: if n < Ni − 1 then

15: E := E
⋃

vk∈V n+1

{evj→vk}
16: end if

17: end else if

18: if n > 0 then

19: Nevk→vj := Nevk→vj + 1
20: end if

21: vk := vj
22: end for all

23: return (V,E)

Figure 4. Assimilating a task into a leveled DAG.

algorithm. Therefore both predicates of Definition 1
are met and the claim holds.

The learning algorithm, Learn-HMM , relies on a non-
negative scalar threshold, ε ∈ [0,∞). While this is a
mathematically correct approach, this threshold does
not have an obvious real-world analogue that gives the
user insight into the operation of the algorithm. We
can step back from the formulation and recast the al-
gorithm using Probably Approximately Correct (PAC)
learning. In the PAC-learning paradigm, we are given
a probability threshold δ ∈ (0, 1] such that

Pr {d(Xvi∪{xn}, 〈Xvi∪{xn}〉) ≤ ε} > 1− δ.

In words, the distance function must be less that ε
with probability of at least 1 − δ. Here we assume
that the user makes errors independent of other tasks
and follows a Gaussian distribution, N (〈Xvi〉,Σ). For
notational convenience we define µ , 〈Xvi ∪ {xn}〉.

5

Function convert-DAG-to-HMM

G = (V,E) is the leveled DAG.

1: N := maximum depth of G
2: Q := ∅, Q0 := ∅, Qλ := ∅
3: for n := 0, . . . , N − 1
4: for all vi ∈ V n
5: create repertoire state qi
6: create bi from Xvi
7: if n < N − 1 then

8: for all vj ∈ V n+1

9: aj|i :=
Nevi→vj
|Xvi |

10: end for all

11: end if

12: else if n = N − 1 then

13: Qλ := Qλ ∪ {qi}
14: end else if

15: if n = 0 then

16: πi :=
|Xvi |∑

vj∈V 0
|Xvj |

17: Q0 := Q0 ∪ {qi}
18: end if

19: Q := Q∪ {qi}
20: end for all

21: end for

22: return (Q,Q0,Qλ,X , a, b, π)

Figure 5. Converting a leveled DAG to an HMM.

In this case

p
(
xvi0 , . . . ,x

vi
Ni−1,xn|µ,Σ

)

=
∏

x∈Xvi∪{xn}
p(x|µ,Σ)

=
∏

x∈Xvi∪{xn}

exp
{
− 1

2 (x− µ)
T
Σ−1(x− µ)

}

√
(2π)g|Σ|

=

exp

−

1
2

∑
x∈Xvi∪{xn}

(x− µ)
T
Σ−1(x− µ)

√
(2π)g|Σ||Xvi∪{xn}|

·
=

exp
{
− 1

2d(Xvi ∪ {xn},µ)
}

√
(2π)g|Σ||Xvi∪{xn}|

≤ exp
{
− 1

2ε
}

√
(2π)g|Σ||Xvi∪{xn}|

.

For a given probability threshold, δ ∈ (0, 1] we can

find the similarity threshold, ε ∈ [0,∞) as

ε ∈
{
y

∣∣∣∣
δ

2
= Q(y)

}
, (3)

where Q(y) is the Q-function, the area under a zero-
mean unit Gaussian from y to infinity (Q(y) =∫∞
y
N (0, 1)dt) and has a unique solution. Essentially,

Equation 3 determines the hyperellipse within which
the observations from a latent state in the repertoire
must lie.

3.2 Running Time of the Learning Algorithm

We now turn our attention to the running-time of the
Learn-HMM algorithm. It is impossible to know a priori
how many nodes will be created by the algorithm, and
it appears unlikely that some type of expectation (or
“average case”) can be constructed. However, it is pos-
sible to determine the worst-case running-time of the
algorithm. The worst-case scenario is when no nodes
are merged; every observation in each task is a node
unto itself. Then the number of nodes in the DAG
is equal to the number of observations assimilated at
that time. Though not required by the algorithm, we
simplify the running-time analysis by assuming that all
tasks are of a common length N . Let the number of
tasks be M . In the worst case, when the algorithm has
assimilated all observations, there will be MN nodes
in the DAG. The learning algorithm operates in two
decoupled steps by first assimilating observations into
a DAG (Line 3, Figure 3) and then converting the
DAG to a CDHMM (Line 6, Figure 3).

By glancing at the pseudocode in Figure 4, it is clear
that the cost of computing Equation 1 dominates the
computation. Before analysing the cost of assimi-
lating observations, we take note of some sufficient
statistics that will be computed. Again, the obser-
vations assigned to node vi is denoted by the multi-
set Xvi ∈ M(X). The sufficient statistics for Equa-
tion 1 are the cardinality of the observation multiset,
the scalar weighted-quadratic sum of observations, and
the vector sum of observations

ξvi , |Xvi |; κvi ,
∑

x∈Xvi
xTCx; σvi ,

∑

x∈Xvi
x.

These sufficient statistics have simple update rules
when taking the union with another multiset. From

6

the definition of Equation 1 we get the expansion

d(Xvi , 〈Xvi〉) ,
∑

x∈Xvi
(x−〈Xvi〉)TC(x−〈Xvi〉)

=
∑

x∈Xvi
xTCx− 2

∑

x∈Xvi
〈Xvi〉TCx +

∑

x∈Xvi
〈Xvi〉TC〈Xvi〉

·
= κvi −

2

ξvi
σvi

TCσvi +
ξvi
ξ2
vi

σvi
TCσvi

= κvi −
1

ξvi
σvi

TCσvi .

The sufficient statistics for the union of two multisets,
Xvk = Xvi ∪Xvj , are simply computed as

ξvk = ξvi + ξvj ; κvk = κvi + κvj ; σvk = σvi + σvj .

Using the sufficient statistics and their corresponding
update equations, the computational cost of comput-
ing Equation 1 is independent of the cardinality of
either multiset. The cost of computing this union
is dominated by computing the weighted-quadratic
sums, κvi and σvi

TCσvi . These operations cost O(g2),
where g is the dimension of an observation vector. We
compute Equation 1 N times the number of tasks al-
ready assimilated (Line 2, Figure 4), resulting in the
arithmetic series

O(

M∑

m=1

mNg2) ∈ O(M2Ng2).

As a result, the worst-case cost of assimilating M tasks
of length N with an observation vector of dimension g
is order O(M2Ng2).

The second phase of the algorithm converts a DAG
into a CDHMM. The computation time of convert-
ing a DAG to a CDHMM is dominated by the cost of
computing the state-transition probabilities (Line 9,
Figure 5). From the worst-case scenario assumption,
we have MN nodes in the DAG and due to the lev-
eled property of the DAGs, we know that there are M
nodes at each depth. The inner loop for computing
transition probabilities (Line 9, Figure 5) is a double
arithmetic series on M and N . Each pass through
the loop, we must create an observation-pdf (Line 6,
Figure 5), which we define to be of cost O(b). This
implies that the computation complexity of convert-
ing the worst-case MN -node DAG to a CDHMM is
O(M2N2b).

Each phase in the algorithm executes only once in
a strict serial fashion and the respective complexities
are additive. Therefore, the worst-case scenario of M
tasks each of length N is

O(M2N(g2 +Nb)).

4. Predicting User Actions

Once the repertoire has been estimated, we use this
model to predict future observations. While the user
is performing the current task, we compute the pre-
diction for the next observation, x̂n. There are many
potential criteria for this optimal estimator, such as
Maximum Likelihood (ML), Maximum A Posteriori
(MAP), Minimum Entropy (ME), etc. Our criterion is
the expected value (EV) of the next observation, given
the prior observations, the estimated user repertoire,
and observations from the current task. Before deriv-
ing the estimator, we first define some notation. The
current task is Xc = {xc0, . . . ,xcn−1} and a subtask is

written Xi
m:n , {xim, . . . ,xin}. The “forward” vari-

ables are given by

αnj , p(cn=qj ,X
c
0:n|R)

=
∑

qi∈Q
p(xn|cn=qj , R) p

(
cn=qj , cn−1=qi,X

c
0:n−1|R

)

·
=

{
bj(xn)

∑
qi∈Q

aj|iα
n−1
i , n > 0

bj(x0)πj , n = 0
. (4)

The probability of being in state qj at the next time
step, given all observations, is the pmf

νnj , P
(
cn=qj |Xc

0:n−1, R
)

=
p
(
cn=qj ,X

c
0:n−1|R

)

p
(
Xc

0:n−1|R
)

=

∑
qi∈Q

p
(
cn=qj , cn−1=qi,X

c
0:n−1|R

)

∑
qk∈Q

p
(
cn−1=qk,Xc

0:n−1|R
)

=

∑
qi∈Q

P(cn=qj |cn−1=qi, R) p
(
cn−1=qi,X

c
0:n−1|R

)

∑
qk∈Q

p
(
cn−1=qk,Xc

0:n−1|R
)

·
=

∑
qi∈Q

aj|iα
n−1
i

∑
qk∈Q

αn−1
k

. (5)

Using these definitions, the EV estimator is computed
as

x̂n = E
x|Xc

0:n−1,R
{x}

= E
cn|Xc0:n−1,R

{
E

x|cn,Xc0:n−1,R
{x}
}

=
∑

qj∈Q
P
(
cn=qj |Xc

0:n−1, R
)∫

x∈X
xp(x|cn=qj , R) dx

·
=

∑

qj∈Q
νnj

∫

x∈X
xbj(x)dx. (6)

7

Essentially, Equation 6 says that the expected value
of the next observation is the expected value of each
state (the mean of the observation-generation pdf,∫

xbj(x)dx), weighted by the probability that the state
generates the next observation (νnj). We can also re-
peatedly apply Equation 5 to compute the expectation
of observations at any point in the future.

4.1 Confidence

Regardless of the criterion used (ML, MAP, ME, EV),
a prediction will exist even if the observations are not
consistent with the estimated repertoire. Prediction
schemes must incorporate a value that indicates how
confident the system is in its prediction. The confi-
dence value, φn ∈ [0, 1], should indicate the internal
model uncertainty arising from observing the current
task. Confidence of φn = 1, indicates that the obser-
vations fit perfectly with the model, while φn = 0 indi-
cates minimum certainty. The confidence value should
also be independent of the number of observations and
states in the estimated repertoire. In our work, we
define confidence as the Kullback-Leibler divergence
taken log base |Q| between the next-state pmf, νn· and
the uniform distribution

φn ,
DKL(νn· ‖ 1

|Q|)

log2 |Q|
(7)

=

∑
qj∈Q

νnj log2(|Q|νnj)

log2 |Q|

=

∑
qj∈Q

νnj
(
log2 |Q|+ log2 ν

n
j

)

log2 |Q|

=

log2 |Q|
∑
qj∈Q

νnj

log2 |Q|
+

∑
qj∈Q

νnj log2 ν
n
j

log2 |Q|

= 1−

∑
qj∈Q

−νnj log2 ν
n
j

log2|Q|

= 1− H(cn)

log2|Q|
.

Since cn is a discrete random variable with |Q| possible
outcomes, its entropy is H(cn) ∈ [0, log2 |Q|], implying
φn ∈ [0, 1]. Loosely speaking, φn is the distance of the
current uncertainty of the model from complete un-
certainty (the uniform density). When the confidence,
φn, exceeds some predetermined threshold then x̂n is
considered a valid prediction.

4.2 Computational Complexity of Prediction

The cost of computing predictions from Equation 6 has
two components. The first involves taking the expec-

tation of all observation pdfs. Since most pdfs are pa-
rameterized by their mean, its expectation can be com-
puted in constant time. The second part involves com-
puting the next-state pmf, Equation 5. This equation
can be computed at standard dynamic-programming
time, though we could take advantage of the leveled,
sparse connectivity of the CDHMM to reduce the com-
putation time greatly. Let the number of states be |Q|,
the current time be n, and the cost of evaluating an
observation pdf be b. Each of |Q| states costs O(|Q|b)
at each of n time steps. This recurrance relation leads
to a computational cost for prediction of

O(n|Q|2b).

5. Predictive Robot Programming

Programming a manipulator robot is an arduous task.
A typical robot program consists of three main com-
ponents: a sequence of positions through which the
robot must travel, conditional branching statements,
and process-specific instructions. Of these constituent
problems, users spend the bulk of their time merely
defining the sequence of positions, called waypoints.
While critical to the success of all robot programs,
defining the waypoints is currently an overly complex
and time-consuming process.

Robot programming has evolved into two mutually
exclusive paradigms, offline and online programming,
each having its advantages and disadvantages. In of-
fline programming, users move a simulated version of
the robot to each waypoint using a CAD model of the
workspace. In online programming, users move the
robot itself to each waypoint using some type of con-
trol device in the actual workspace.

Offline-programming packages allow users to design a
robot program in simulation without bringing down
production and can optimize according to almost any
imaginable criterion. Typical optimizations involve
production speed, material usage, and power consump-
tion. Offline packages generally require that programs
be written in a sophisticated procedural-programming
language. The transfer of the offline program to the
robot controller requires translating the offline pro-
gramming language to a form that the robot can un-
derstand. Not surprisingly, arcane problems can occur
during this translation, especially with process-specific
instructions, controller models, and inverse kinemat-
ics. To achieve the high accuracy required in many
applications, the physical workspace must be well cal-
ibrated with the simulated environment. Otherwise,
online fine-tuning will be needed, which detracts from
the largest benefit of offline programming: lack of pro-
duction downtime.

8

Despite the advantages of offline packages, online pro-
gramming is, by far, more commonly used in practice.
In online programming, an actual part is placed in
the workspace exactly as it would be during produc-
tion and the user moves the end-effector between way-
points using some type of control device, typically a
joystick or push buttons. Even though online systems
generate procedural-programming code, users can cre-
ate waypoints without editing this code and, as a re-
sult, is typically viewed as less intimidating and more
intuitive than offline programming. One potentially
extreme disadvantage of online systems is that pro-
duction and programming cannot occur in parallel,
meaning production must be halted during reprogram-
ming. If reprogramming cannot be completed during
normal downtime, such as weekends, then the com-
pany will incur cost in the form of lost production.
Therefore, the set of tasks viable for online program-
ming is constrained by programming time. A reduc-
tion in programming time would permit robots into
areas previously off limits. Although users generally
view online programming as less intimidating, they
still spend an inordinate amount of time simply mov-
ing the robot between waypoints instead of transfer-
ring any real knowledge. Furthermore, due to the dif-
ficult robot-positioning process, users tend to discard
their previous work and create waypoints from scratch
every time. This is very wasteful since robot programs
tend to contain repeated subtasks and product designs
contain many similarities to previous designs.

We have developed a Predictive Robot-Programming
(PRP) system that allows users to leverage their previ-
ous work to decrease future programming time. Specif-
ically, this system aims to assist users by predicting
where they may move the end-effector and automati-
cally positioning the robot at the predicted waypoint.
The premise of PRP is that previous actions are useful
in predicting the future. This is usually the case since,
as mentioned earlier, robot programs tend to contain
many similarities and common patterns. Complicating
any prediction scheme is the inherent imprecision and
poor repeatability of humans. Even with perfectly ac-
curate sensors there will be uncertainty as to what task
the user was trying to perform. Thus, any PRP sys-
tem must incorporate the notion of uncertainty during
its operation and our PRP system directly addresses
uncertainty during both modeling and prediction.

User observations in robot programming are the way-
points of the program. General-purpose six degree-of-
freedom (6DOF) manipulators can be described by a
Cartesian-space location and orientation of the end-
effector. In this work, the surjective Cartesian-space
description is preferable to the bijective joint-space

representation because the Cartesian-space description
forms a kinematics-free coordinate transform. Using
this Cartesian-space end-effector description, a way-
point is given by the homogeneous coordinate trans-
form matrix nwG that maps some global reference
frame G to the frame of the nth waypoint. A robot
program can be described by the sequence of way-
points W = {Gw0,

Gw0, . . . ,
GwN} that specify the

location and orientation of the end-effector at discrete
intervals. A homogeneous coordinate-frame trans-
form, awb, is defined by the matrix

awb ,
[aRb

a
apb

0 1

]
,

where aRb is a (3× 3) orthonormal matrix describing
the rotation from frame a to frame b and the (3 × 1)
vector c

apb specifies the translation from frame a to
frame b in coordinate frame c. Many references, e.g.
(Craig, 1989), have derived the following properties
from the definitions above

c
apb = −cbpa,
c
apb = c

apd + c
dpb,

c
apb = cRd

d
apb,

aRb = aRc
cRb,

aRb = (bRa)−1 = (bRa)
T
,

aRa = I.

The product of two homogeneous coordinate trans-
forms, called “compounding”, is written

awb
bwc =

[aRb
a
apb

0 1

] [
bRc

b
bpc

0 1

]
(8)

=

[
aRb

bRc
aRb

b
bpc + a

apb
0 1

]

=

[aRc
a
bpc + a

apb
0 1

]

=

[aRc
a
apc

0 1

]

·
= awc.

Essentially, Equation 8 describes the relative change in
rotation and translation between the frames a and c.
The inverse transform bwa, which “undoes” the trans-

9

G G

2

0 1

3

3

1

0

2

Figure 6. Though different in the global reference frame,
G, the relative-movement information between these two
programs is the same.

form awb, can be derived from the earlier properties

bwa =

[
bRa

b
bpa

0 1

]

=

[
(aRb)

T −bapb
0 1

]

=

[
(aRb)

−1 −bRa
a
apb

0 1

]

=

[
(aRb)

−1 −(aRb)
−1a

apb
0 1

]

= (awb)
−1.

Note that the inverse transform always exists since the
only matrix inversion involves an orthonormal matrix,
which must be full rank.

As we demonstrate shortly, capturing the relative-
movement information, instead of absolute-position in-
formation, has the distinct advantage of yielding rota-
tion and translation independence. For example, the
two robot programs shown in Figure 6 are quite dif-
ferent in absolute terms, but have the same relative-
movement description. Using this relative-waypoint
representation, the PRP system is able recognize pat-
terns and predict waypoints independent of rotation
and translation.

Definition 2. Given a sequence of homogeneous
coordinate-frame transforms with respect to a common
frame, G,

W = {Gw0,
Gw0, . . . ,

GwN},

its Sequential Relative Homogeneous Coordinate-
frame Transform (SRHCT) is given by

W̃ = {0wG
Gw1,

1wG
Gw0, . . . ,

N−1wG
GwN}

= {0w1,
1w2, . . . ,

N−1wN}.

Theorem 6 (Transform Independence). A robot
program specified by its SRHCT is independent of an
initial rotation and translation.

Proof. Suppose we have a robot program
with an arbitrary number of waypoints,
W = {Gw0,

Gw0, . . . ,
GwN}. We give the robot

program an initial rotation and translation by pre-
multiplying each waypoint by some homogeneous
coordinate transform, HwG, to yield

WH = {HwG
Gw0,

HwG
Gw1, . . . ,

HwG
GwN}

= {Hw0,
Hw1, . . . ,

HwN}.

The SRHCT of the rotation and translated program
is then

W̃H = {0wH
Hw1,

1wH
Hw2, . . . ,

N−1wH
HwN}

= {0w1,
1w2, . . . ,

N−1wN}.

Note that the SRHCT of the original robot program
is, by definition,

W̃ = {0wG
Gw1,

1wG
Gw2, . . . ,

N−1wG
GwN}

= {0w1,
1w2, . . . ,

N−1wN}.

Since W̃H ≡ W̃, irrespective of the initial arbitrary
rotation and translation, a robot program specified by
its SRHCT yields rotation and translation indepen-
dence.

Theorem 6 only implies that robot programs can be
recognized independent of an initial rotation and trans-
lation. We now develop the simple equations needed
to predict waypoints in a rotation- and translation-
independent manner. A task is then comprised
of the relative waypoints of a robot program and,
for convenience, we rewrite each relative waypoint
into the stacked column vector, xn = vec(nwn+1).
The ith SRHCT robot program is written as Xi =
{xi0,xi1, . . . ,xiNi}. Then the sequence of prior obser-
vations to the algorithm Learn-HMM is the sequence
of SRHCT robot programs X = {X0,X1, . . . ,XM}.
Note that there is no requirement that the robot pro-
grams have a common length or even describe the same
physical task. The algorithm could assimilate tasks
corresponding to e.g. arc welding a bed frame, spot
welding a ship hull, painting a car, etc. Once the robot
programs have been assimilated into a CDHMM and
the user begins creating a new robot program, we com-
pute predictions of the next waypoint, x̂n, based on
Equation 6. However, x̂n is a stacked column vector
of the relative waypoint n−1ŵn, which specifies the ex-
pected relative movement of the end-effector from its

10

PRP

Figure 7. Diagram of the physical setup of the PRP.

Figure 8. The four patterns for user demonstrations with
thirteen, six, ten, and ten waypoints respectively.

current position, Gwn−1. Therefore the expected posi-
tion of the next waypoint is found by postmultiplying
the estimator, n−1ŵn by the current position of the
end-effector in the global frame

Gŵn = Gwn−1
n−1ŵn

In our physical implementation of the system, the user
presses a button on the teach pendant to indicate that
the current end-effector position should be considered
the next waypoint in the current program, shown in
Figure 7. As mentioned earlier, in robot program-
ming, commonality occurs in a subtasks not entire
tasks. With this in mind, the PRP system considers
observations up to a horizon. Considering a fixed hori-
zon, h, of observations changes the initial conditions
on Equation 4 to be αn−hj = bj(xn−h)/|Q|.

5.1 Experimental Results

We collected user observations from forty-four robot
programs that described different tasks. In our termi-
nology, the repertoire of the user consists of the four
tasks shown in Figure 8. The two right-most programs,
comprised of ten waypoints each, represent standard
arc-welding tasks. The two left-most programs, com-
prised of thirteen and six waypoints respectively, are
planar geometrical movements. To create the pro-
gram, a user moves the robot end-effector with a joy-
stick (cf. Figure 9). When the user feels that the

Figure 9. Creating waypoints for the patterns in Figure 8
with an ABB IRB140.

end-effector is sufficiently close to the waypoint, she
presses a button on the teach pendant. The forty-four
robot programs were assimilated into one HMM that
described the repertoire of the user. The algorithm
took well under a second to construct the estimated
repertoire model from the programs (Figure 10 and
Figure 11). To give some intuition regarding the δ pa-
rameter (cf. Equation 3), we constructed the HMM
in Figure 10 (39 states, 51 transitions) using a small
value of δ, while Figure 11 (85 states, 139 transitions)
was constructed using a larger value of δ. It is typi-
cal that larger δ results in more HMM states because
a larger δ necessarily results in a smaller ε. A small
ε generally gives the algorithm fewer opportunities to
combine DAG states (Line 3, Figure 4). As with any
machine-learning algorithm, there is a danger of over-
fitting the data if δ becomes “too large” and does not
allow the algorithm to generalize, which corresponds
to merging states in this algorithm.

To determine the accuracy of the system, we com-
puted the prediction performance of the system on the
human-generated data. The data set was too small for
a cross-validation set, so we computed the leave-one-
out statistics (sometimes called the jackknife estima-
tor, (Duda et al., 2001)) of the Cartesian prediction
error, summarized in Table 1. With an appropriate
value of δ, the average prediction error of the system
was roughly 2.5 centimeters. The mean linear move-
ment between waypoints in Figure 8 is 19 centimeters,
meaning that the average prediction error of the sys-
tem was roughly 13% in terms of total distance trav-
eled by the end-effector. This low error indicates that
the algorithms can compute accurate predictions based

11

0

4

1

5

2

6

3

7

19

31 3234 35

38

8 9 10

11 1213 15 14 16

17 18

2021 22 232425

26 27

2830 29

33

36

37

Figure 10. HMM constructed from small δ from tasks with
different lengths.

Small δ mean std dev
Prediction Error 0.04260 meters 0.01580 meters

Error Percent 22.42% 8.316%
States 52.53 2.872

Transitions 89.46 8.646

Large δ mean std dev
Prediction Error 0.02587 meters 0.01291 meters

Error Percent 13.61% 6.789%
States 185.7 2.740

Transitions 284.5 4.325

Table 1. Leave-one-out estimates for the prediction perfor-
mance of HMMs with variations on δ.

on fairly sparse data.

While knowing that the system computes accurate pre-
dictions is comforting, it is mainly of academic inter-
est. A user of the system will be most interested in
the reduction of the time required to create robot pro-
grams. In this scenario, the user is asked to complete
one of the tasks from Figure 8, using an estimated
repertoire based on the a priori programs. The user
can allow the controller to move the end-effector if the
PRP system has a valid prediction (i.e. confidence
from Equation 7 exceeds a threshold). It is not uncom-
mon for the user to decide that the prediction must be
refined with the joystick, and this fine-tuning time is
included as well. If an obstacle is in the path to the

0

8

12 3

9 10

4

11

5

12

6

1314

7

4142

6667 68 69 70 73 747576

82 83 84

1516 17 18 19 212320 22

242528 2627 29 3031 32 333435

36 373840 39

434445 46 47 4849 50515253 54

55 5956 5758

60 61 64 626365

7172

77 7879

80 81

Figure 11. HMM constructed from large δ from tasks with
different lengths.

Prediction mean (s) std dev (s) change
Criterion

None 292.2 78.61 N/A
φn > 0.8 193.2 34.02 −33.88%

h = 3
φn > 0.5 178.0 33.39 −39.08%

h = 2

Table 2. Programming-time required to complete the tasks
in Figure 8 with no prediction, high-confidence prediction,
and low-confidence prediction respectively.

prediction, the user can stop the PRP system from
moving the robot by releasing the dead-man switch on
the teach pendant. The results are summarized in the
Table 2. The first row of Table 2 is the time required
by a user to program the tasks in Figure 8 with no
predictions from the PRP system. The second row
shows the programming time when the PRP system
suggests only high-confidence predictions (φn > 0.8)
based on a relatively long horizon of recent observa-
tions (h = 3). The third row shows the program-
ming time when the PRP system is allowed to suggest
“sloppy” predictions, those of potentially low confi-
dence (φn > 0.5) based on a relatively short horizon
(h = 2). Not surprisingly, allowing the PRP system to
suggest low-confidence predictions generally results in
greater prediction error. Though not statistically sig-

12

nificant, it is worth noting that allowing low-confidence
predictions rather than only high-confidence predic-
tions tended to reduce programming time. This sug-
gests that users still find these less accurate predic-
tions helpful. 2 Though not represented in Table 2, it
seems that the primary benefit of predicting waypoints
comes from automatically setting the orientation of the
end-effector, more so than for the Cartesian location.
This is probably due to the tendency of the inverse-
kinematics routines found in many controllers to “tie
the robot in knots”. Under normal operation, the user
must occasionally move each joint individually to pre-
vent a physical joint-stop from being reached. This
did not happen when our PRP system was computing
waypoints for the user.

The covariance matrix, Σ, required by Equation 1 and
Equation 6 to model Gaussian user errors, was com-
puted by asking users to move to known locations and
orientations in the workspace and then computing the
second moment of the residual error. As we will dis-
cuss later, the covariance matrix is assumed to be block
diagonal, with one block corresponding to Cartesian
errors and the other block corresponding to errors in
orientation.

5.2 Representing Waypoints

A little more detail is needed on the representation of
waypoints. As mentioned earlier, a waypoint consists
of two components: location and orientation. Loca-
tions are defined with respect to some reference frame
and, in the robot-programming domain, are invari-
ably represented using Cartesian coordinates. Orien-
tations define the rotation between two frames (i.e.
an “input” and “output” frame) and, in the robot-
programming domain, use a variety of representations.

5.2.1 Homogeneous Versus Non-Homogeneous

While in the previous section, we constrained the dis-
cussion to only homogeneous transforms, this is merely
a mathematical “nicety”, and there is no hard require-
ment that the location and orientation information of
a waypoint be defined with respect to the same frame.
Earlier, we mentioned that representing robot pro-
grams by their SRHCT yield translation- and rotation-
independent predictions. But, as usual, there is no

2Not recorded in Table 2 were the number of collisions
with obstacles. Not surprisingly, there were a few colli-
sions when the PRP system suggested low-confidence pre-
dictions. However, collisions are not uncommon when hu-
mans program automation tasks. For example, arc weld-
ing often requires submillimeter separation from the work-
piece. Consequently, industrial manipulators are designed
to handle the eventual collision without inflicting damage.

Figure 12. An error of 9◦ per rotation results in a com-
pounded error of almost 50% of the leg length.

free lunch. If left in “open loop”, basing predictions
on SRHCT results in an accumulating error, similar
to dead-reckoning errors in a mobile robot (Thrun,
1998). Of particular problem is how small errors in ro-
tation compound themselves. In Figure 12, we corrupt
a square by over-rotating each leg by 9◦. The head of
the fourth leg should be at the origin but due to the
compounding errors, it is 47.58% of a leg-length away
from the origin. But the compounding of errors in
Figure 12 is certainly a worst-case scenario because, in
the PRP domain, a human is controlling the robot and
“closes the loop” to nullify much of the residual predic-
tion error. In the three-dimensional case when trying
to “eyeball” a robot end-effector, humans often make
errors much larger than 9◦ and predictions using the
SRHCT will suffer severely. While the compounding
of errors is not a pressing concern, predictions should
be as accurate as possible. To this end, we can employ
non-homogeneous transforms to minimize the impact
of the poor ability of humans to judge orientation er-
rors. An obvious solution that works well in practice
is to remove orientation estimates from the computa-
tion of the predicted location. This is accomplished by
specifying the predicted location in a global frame and
use orientation only to predict the change in orienta-
tion of the end effector. Let the predicted change in
location be G

n−1p̂n and predicted change in orientation

be
n−1
R̂n. Let the current location and orientation of

the end-effector be G
Gpn−1 and GRn−1 respectively. We

can compute the predicted location and orientation of
the predicted waypoint as

Gŵn =

{
G
Gp̂n = G

Gpn−1 + G
n−1p̂n

G
R̂n = GRn−1

n−1
R̂n

. (9)

Once again, there is no free lunch: It is straightfor-
ward to show that Equation 9 will yield translation-
independent predictions but not rotation-independent
predictions.

13

5.2.2 Representation of Orientation

The second important aspect of prediction is how to
represent the three-dimensional orientation informa-
tion needed for prediction. Rotation matrices are a
poor choice, since the predicted rotation matrix would
be based on an expectation (Equation 6). It is ex-
tremely unlikely that a weighted sum of orthonormal
matrices willyield an orthonormal matrix. In this case,
the predicted orientation will almost certainly violate
one of the properties of a rotation matrix. Other
common representations for three-dimensional orien-
tation involve Euler angles. However, similar orien-
tations may have extremely different Euler-angle rep-
resentations, e.g. the Z-Y -X Euler angles {π2 , π2 , 0}
and {0, π2 ,−π2 } are equivalent. These discontinuities
make Euler angles somewhat unreliable. The solution
in two dimensions, of using sines and cosines to en-
sure angle continuity, becomes a rotation matrix in
the three-dimensional case. For these reasons, we use
a unit quaternion to represent orientation informa-
tion (Craig, 1989). While quaternions also have dis-
continuous representations, they tend to be less prob-
lematic in practice. A quaternion vector must be of
unit length, and renormalizing the quaternion after
taking the expectation in Equation 6 yields no loss of
information.

5.3 Derivation for Scale Invariance

If the PRP system has assimilated a robot program
moving along a rectangle, it will be of little or no
help in predicting the waypoints of different-sized rect-
angles, even rectangles with the same aspect ratio.
The ability to recognize and predict scaled versions
of previously assimilated tasks is called scaled invari-
ance. As mentioned earlier, the PRP system is able
to recognize patterns independent of their pose and
location with respect to some global frame by us-
ing rotation- and translation-independent features, the
SRHCT. While the same approach would work for rec-
ognizing scaled tasks, no feature transform appears
feasible for predicting the waypoints of scaled tasks.
For instance, we could reduce a robot program to a
sequence of rays (in the mathematical sense of “ray”).
To recognize a task, based on previously assimilated
tasks, we could compute the likelihood of the various
rays. However, these “half-infinite lines” are of little
help when trying to predict the position of the next
waypoint they only yield the direction of the predic-
tion. We considered a few scale-invariant transforms
but all yielded equally annoying “quirks”. Thus, we
have turned to a more brute-force approach: iterative
locally optimal maximum likelihood.

In this formulation, we want to find the value, ψ ∈
(0,∞), that scales the observations in the current task,
Xc

0:n = {xc0, . . . ,xcn}, such that the likelihood of the
scaled task is maximized given the estimated reper-
toire of the user

ψ̂∗ = arg max
ψ

p(xc0, . . . ,x
c
n|ψ,R) (10)

= arg max
ψ

∑

qj∈Q
p(cn=qj ,X

c
0:n|ψ,R)

·
= arg max

ψ

∑

qj∈Q
αnj,ψ.

While the transition pmf is observation independent,
the observation pdf will be a function of the scale fac-
tor. We rewrite Equation 4 as

αnj,ψ =

{
bj,ψ(xn)

∑
qi∈Q

aj|iα
n−1
i,ψ , n > 0

bj,ψ(x0)πj , n = 0
.

In the PRP domain, we do not want to multiply each
element of an observation vector, xn, by the scale fac-
tor, ψ. Typically, we would like to scale only the
Cartesian coordinates of the waypoint and leave the
orientation components alone. Since the observation
pdf is a Gaussian distribution, this implies that the co-
variance matrix, Σ, is symmetric block-diagonal, with
one block corresponding to the Cartesian coordinates
and the other block corresponding to the orientation
information. In real-world terms this yields the mild
assumption that a user makes Cartesian errors inde-
pendent of orientation errors. With this in mind, we
define the “scale matrix” such that

Ψi,j =

0, if i 6= j
1, if i = j and not scaled
ψ, if i = j and scaled

(11)

∂

∂ψ
Ψi,j =

0, if i 6= j
0, if i = j and not scaled
1, if i = j and scaled

·
= Ψ′i,j .

Then a scaled observation is Ψxn, which is a column
vector with the Cartesian elements scaled by ψ and
the orientation elements unscaled.

αnj,ψ =

{
bj(Ψxn)

∑
qi∈Q

aj|iα
n−1
i,ψ , n > 0

bj(Ψx0)πj , n = 0
.(12)

Because the observation pdf is Gaussian and Ψ is a

14

diagonal (symmetric) matrix

∂

∂ψ
bj,ψ(xn) =

∂

∂ψ
p(xn|cn=qj , ψ,R)

=
∂

∂ψ

exp
{
− 1

2 (Ψxn−µj)TΣ−1(Ψxn−µj)
}

√
(2π)g|Σ|

= p(xn|cn=qj , ψ,R)
∂

∂ψ
(Ψxn−µj)TΣ−1(Ψxn−µj)

= p(xn|cn=qj , ψ,R)
{

(Ψ′xn)
T
Σ−1(µj−Ψxn)

}

·
=

{
(Ψ′xn)

T
Σ−1(µj−Ψxn)

}
bj,ψ(xn).

We will also need the following notation

p
(
cn=qj ,X

c
0:n−1|ψ,R

)

=
∑

qi∈Q
p
(
cn=qj , cn−1=qi,X

c
0:n−1|ψ,R

)

=
∑

qi∈Q
P(cn=qj |cn−1=qi, R) p

(
cn−1=qi,X

c
0:n−1|ψ,R

)

·
=

∑

qi∈Q
aj|iα

n−1
i,ψ ,

and its corresponding partial derivative

∂

∂ψ
p
(
cn=qj ,X

c
0:n−1|ψ,R

) ·
=

∑

qi∈Q
aj|i

∂

∂ψ
αn−1
i,ψ .

The partial derivative of Equation 12 with respect to
the scale factor is

∂

∂ψ
αnj,ψ =

∂

∂ψ
p(cn=qj ,X

c
0:n|ψ,R)

=
∂

∂ψ
p(xn|cn=qj , ψ,R) p

(
cn=qj ,X

c
0:n−1|ψ,R

)

= p
(
cn=qj ,X

c
0:n−1|ψ,R

) ∂

∂ψ
p(xn|cn=qj , ψ,R) +

p(xn|cn=qj , ψ,R)
∂

∂ψ
p
(
cn=qj ,X

c
0:n−1|ψ,R

)

= p
(
cn=qj ,X

c
0:n−1|ψ,R

) ∂

∂ψ
p(xn|cn=qj , ψ,R) +

p(xn|cn=qj , ψ,R)
∂

∂ψ
p
(
cn=qj ,X

c
0:n−1|ψ,R

)

·
=

(∑

qi∈Q
aj|iα

n−1
i,ψ

)(∂

∂ψ
bj,ψ(xn)

)
+

(
bj,ψ(xn)

)(∑

qi∈Q
aj|i

∂

∂ψ
αn−1
i,ψ

)

=
{

(Ψ′xn)
T
Σ−1(µj−Ψxn)

}
αnj,ψ +

bj,ψ(xn)
∑

qi∈Q
aj|i

∂

∂ψ
αn−1
i,ψ , (13)

12 4

8

2

3

56

7

910

11

13/1

1

23

45

6

Figure 13. The waypoints (1–6) from the pattern on the
right form a scaled subtask (ψ = 2) of waypoints (6-11)
from the pattern on the left.

since Equation 13 is recursive, the appropriate initial
conditions at the beginning of time are needed (the
partial derivative of Equation 12). We cannot solve
for the optimal ML estimator of the scale factor ex-
plicitly since Equation 13 is a sum of transcendental
terms. We can only hope to find locally optimal ML
solutions by iterative line-search techniques, such as
cubic interpolation, gradient ascent, etc. (Bertsekas,
1995).

Once we find the (locally optimal) ML estimator of the

scale, ψ̂∗, we compute predictions based on the scaled
task, by substituting Equation 12 into Equation 6. We
can also incorporate the notion of a horizon, as in Sec-
tion 5, to identify scaled subtasks contained in other
tasks (cf. Figure 13). The scaled task computed by
premultiplying each observation by the ML scale ma-
trix, Ψ, from Equation 11

Xi,ψ̂∗ = {Ψxi0,Ψxi1, . . . ,ΨxiNi}. (14)

However, even if we are able to identify scaled
(sub)tasks based on having a model, we must still in-
corporate scaled tasks into a model. When we execute
the Learn-HMM algorithm, this leads to a “chicken and
egg” problem: without a model, we cannot determine
the ML scale of a task; without any tasks, we cannot
create a model. In Figure 14, we give an algorithm
that uses the tasks already assimilated to estimate the
ML scale. We then scale the task according to Equa-
tion 14 and assimilate this scaled task into the DAG.
However, the estimate is unreliable if a scaled version
of the task has never been assimilated before. In this
case, we assimilate the task unscaled. The bracketing
of the scale can arise from the physical nature of ma-
nipulator robots. All robots have finite accuracy and
reachability, and these numbers can serve as a bracket
on the ML scale, e.g. ψ̂∗ ∈ [0.01, 100].

15

Algorithm Learn-Scaled-HMM

ε ∈ [0,∞) is a similarity threshold.
X = {X0,X1, . . . ,XM} is the multiset of tasks.
ψmin is the minimum bracket for the scale.
ψmax > ψmin is the maximum bracket for the scale.

1: V := ∅, E := ∅
2: G := (V,E)
3: for all Xi ∈ {X0,X1, . . . ,XM}
4: ψ̂∗ := compute-scale (G,Xi, ψmin, ψmax)

5: Xi,ψ̂∗ from Equation 14

6: G := assimilate-task (G,Xi,ψ̂∗ , ε)
7: end for all

8: R := convert-DAG-to-HMM (G)

Figure 14. The algorithm for assimilating scaled tasks into
an HMM.

6. Related Work

The problem of stochastic-source prediction is gen-
erally decomposed into the two steps mentioned in
this paper: creating a model of the source and us-
ing the model to predict the future. Optimal pre-
diction, given a model, is a fairly mature subject
and can be found in many references such Duda
et al. (2001). On the other hand, the modeling
of stochastic sources is still an active area of re-
search. Typically, the source is assumed to have the
Markov property (sometimes extended to include kth-
order Markov sources though these are equivalent to
first-order Markov sources). Information-theoretic ap-
proaches give bounds on the “finite-state predictabil-
ity” of positive-entropy Markov sources (Feder et al.,
1992).

In the seminal work on HMM applications, Rabiner
(1989) outlines the “Three Basic Problems for HMMs”
and notes that the “third, and by far the most dif-
ficult, problem of HMMs is to determine a method
to adjust the model parameters (A,B, π) to maxi-
mize the probability of the observation sequence given
the model.” However, we consider the much more
difficult problem of discovering the structure of the
model, in addition to determining the optimal param-
eters for it. Rudich (1985) showed that the structure
of discrete-symbol Markov chains can be determined
in the limit from its output. However, there are results
that suggest Probabilistic Finite Automata (PFAs)
and HMMs are not optimally trainable globally in time
polynomial in the alphabet size, unless random poly-
nomial time is equivalent to non-deterministic polyno-
mial time (RP = NP) (Abe & Warmuth, 1992).

Function compute-scale

G = (V,E) is the leveled DAG.
Xi = {xi0,xi1, . . . ,xiNi} is the task to assimilate.
ψmin is the minimum bracket for the scale.
ψmax > ψmin is the maximum bracket for the scale.

1: N := maximum depth of G
2: if |Xi| ≤ N then

3: R := convert-DAG-to-HMM (G)
4: ψ := arg max

ψ
p
(
Xi|ψ,R

)

5: if ψ ∈ [ψmin, ψmax] then

6: ψ̂∗ := ψ
7: end if

8: else then

9: /∗ scale is outside bracket: assume 1.0 ∗/
10: ψ̂∗ := 1
11: end else

12: end if

13: else then

14: /∗Xi too long for G ∗/
15: ψ̂∗ := 1
16: end else

17: return ψ̂∗

Figure 15. Computing the ML scale for a task.

In lieu of these disappointing revelations, researchers
focus their attention on special subclasses of HMMs
and PFAs to deliver more optimistic results. Ron
et al. (1998) derive an algorithm that constructs cor-
rect, in the PAC-learning sense, leveled Acyclic Proba-
bilistic Finite Automata (APFAs) in time polynomial
to the PAC-learning parameters and requires a poly-
nomial training set, provided the states of the tar-
get APFA are distinguishable. Carrasco and Oncina
(1999) outline an algorithm that approximates PFA
distributions in the limit. These algorithms only need
an upper bound on the number of states in the model
and have low training-data requirements. However,
the running-time and training-data results are polyno-
mial in the alphabet size. It is not clear that these ap-
proaches would scale well to the high-dimensional con-
tinuous spaces needed for predictive robot program-
ming using vector-quantization techniques.

A long-standing problem of the forward-backward al-
gorithm is its tendency to leave many superfluous
parameters in the model and reliance on large cor-
pora of data. There are “standard tricks” to reduce
the amount of training data required by the forward-
backward algorithm, such as left-right models and as-
suming diagonal covariance matrices (for CDHMMs).

16

But these modifications do not perform well on the
small training sets allowed by PRP. Brand (1999)
derives an entropy-based prior over HMM parame-
ters and develops a MAP extinction scheme to re-
duce the number of parameters in the model, though
large corpora of data are still very much needed.
Other HMM-training algorithms have been developed
recently (Singh et al., 2001) that use large cross-
validation sets to determine the locally optimal topol-
ogy.

In the optimal-control domain, there has been some
research on the partitioning of state spaces of Markov
Decision Processes (MDPs). It has been shown that
the time complexity of partitioning an MDP is at least
as difficult as computing optimal policies on the orig-
inal MDP (Ren & Krogh, 2002). These very informa-
tive results rely on the full observability of the Markov
chain and MDP cost function. In our work, the bulk
of the computation is spent on inducing the structure
of the Markov chain from the data and we are inter-
ested in finding simple models that explain the data,
not simpler models with (nearly) isometric properties.

In the HCI domain, prediction and synthesis based on
user observations goes by the name of Learning By Ob-
servation, Programming by Demonstration, Teaching
by Example, or some permutation thereof. In (Yang
et al., 1994), researchers used standard HMM-training
techniques to learn telerobotic manipulation skills.
These skills were open loop, in that there was no force
or visual feedback to the user demonstrating the task,
and were based on Finite-State Automata (FSAs) with
each node executing a memoryless, nonlinear control
law and transitions determined by HMM training on
user examples. In (Ikeuchi et al., 1993), researchers
created a system that generates robot programs for
assembly tasks based on observations of humans per-
forming the same task. Pomerleau (1994) constructed
a system that allowed users to generate an essentially
limitless supply of training examples steering a car.
From these examples, the computer system learned to
imitate the car-steering skill of the user, using a cam-
era as input. In this work, the skill was a memory-
less, nonlinear control law. Yang et al. (1994) used
HMM-training techniques to decompose human teler-
obotic manipulation tasks into a sequence of primi-
tives. A primitive was an open-loop, memoryless, non-
linear control law. Temporal sequences of primitives
comprised skills, which were FSAs with state tran-
sitions determined by the HMM-training algorithm.
Friedrich et al. (1996) used Time-Delay Neural Net-
works (TDNNs) to decompose human actions into a
sequence of predefined primitives, storing the decom-
position in a symbolic fashion. A search, using the

pre- and post-condition STRIPS model (Fikes & Nils-
son, 1971), is then executed to determine a sequence of
primitives that describes the sequence observed from
the user. The segmentation derived from the TDNNs
serves as an initial bias on the search to create the
automatically generated program. However, all pro-
grams run without any sensor input and are unsuit-
able for most realistic operating conditions. Kang and
Ikeuchi (1995) used Dynamic Time Warping (DTW) to
decompose observations of humans performing assem-
bly tasks into symbolic, predefined primitives. Matarić
(1999) used neuroscience and psychophysical models
to select a “basis set” of primitives. Observations from
users are segmented to determine the primitives to
execute in a temporally sequenced or additive fash-
ion. User observations have also been incorporated to
“prime” iterative optimal-control techniques in robot-
learning tasks (Schaal, 1997).

7. Conclusions and Future Work

In this paper we have presented algorithms for the un-
supervised model-based prediction of user actions. By
modeling user actions as noise-corrupted real-valued
vectors, we cast the LBO problem as one of SSP. Es-
sentially, our SSP algorithms operate in two phases.
The first phase estimates a repertoire of the user and
due to our formulation, this naturally results in the
use of CDHMMs. We derived results showing that the
learning algorithm produces ε-compact graphical mod-
els in second-order polynomial computational com-
plexity. The second phase of the SSP algorithms use
the CDHMMs to predict future values of user actions.

In order to decrease online robot-programming time,
we have created a novel application: predictive robot
programming. Our algorithms were able to predict
very accurately the next waypoint in the robot pro-
gram using a very small training set. Furthermore,
our system has been shown in laboratory experiments
to reduce robot-programming time significantly.

In the future, we would like to complete the theoretical
foundations of the algorithms by bounding the predic-
tion error of the system. It appears as though this
result will be a PAC bound on the error, which should
naturally rise to a probabilistic sample-size require-
ment. We will also develop modified versions of the
algorithms to allow for task correction and recognition.
Task correction and recognition involve linking multi-
ple CDHMMs in a probabilistic “grammar”. With this
grammar, it should be possible to identify when a user
diverges from a pre-determined set of rules governing
standard behavior or which specific task the user is
performing, similar to phonemes in speech recognition.

17

However, these modifications will require a (partial)
labeling of the data.

Acknowledgments

We would like to thank Mike Seltzer and Chris Paredis
for asking tough questions and giving enlightening sug-
gestions. Martin Strand and John Dolan also provided
helpful comments for the application of the algorithms
to predictive robot programming. We used GraphViz
(dotty) from AT&T Research to display HMM topolo-
gies. We would like to thank the Intel Corporation for
providing the computing hardware. This work was
sponsored by ABB Corporate Research.

References

Abe, N., & Warmuth, M. K. (1992). On the com-
putational complexity of approximating probability
distributions by probabilistic automata. Machine
Learning, 9.

Bertsekas, D. P. (1995). Nonlinear programming.
Athena Scientific.

Brand, M. (1999). An entropic estimator for structure
discovery. Advances in Neural Information Process-
ing Systems (pp. 723–729).

Carrasco, R. C., & Oncina, J. (1999). Learning deter-
ministic regular grammars from stochastic samples
in polynomial time. Theoretical Informatics and Ap-
plications, 33, 1–19.

Craig, J. J. (1989). Introduction to robotics: Mechan-
ics and control. Addison Wesley. Second edition.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pat-
tern classification. Wiley-Interscience. Second edi-
tion.

Feder, M., Merhav, N., & Gutman, M. (1992). Univer-
sal prediction of individual sequences. IEEE Trans-
actions on Information Theory, 38, 1258–1270.

Fikes, R., & Nilsson, N. (1971). STRIPS: A new
approach to the application of theorem proving to
problem solving. Artificial Intelligence, 2, 189–208.

Friedrich, H., Münch, S., Dillmann, R., Bocionek, S.,
& Sassin, M. (1996). Robot programming by demon-
stration (RPD): Supporting the induction by human
interaction. Machine Learning, 23, 163–189.

Ikeuchi, K., Kawade, M., & Suehiro, T. (1993). To-
wards assembly plan from observation: Task recog-
nition with planar, curved and mechanical contacts.

Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (pp. 2294–
2301).

Kang, S. B., & Ikeuchi, K. (1995). A robot system
that observes and replicates grasping tasks. IEEE
Fifth International Conference on Computer Vision
(pp. 1093–1099).

Matarić, M. J. (1999). Visuo-motor primitives as a
basis for learning by imitation. Imitation in Animals
and Artifacts. Cambridge, MA: MIT Press.

Pomerleau, D. (1994). Neural network perception
for mobile robot guidance. Doctoral dissertation,
Carnegie Mellon University.

Rabiner, L. R. (1989). A tutorial on hidden Markov
models and selected applications in speech recogni-
tion. Proceedings of the IEEE, 77, 257–286.

Ren, Z., & Krogh, B. H. (2002). State aggregation
in Markov decision processes. To appear in IEEE
Conference on Decision and Control.

Ron, D., Singer, Y., & Tishby, N. (1998). On the
learnability and usage of acyclic probabilistic finite
automata. Journal of Computer and System Sci-
ences, 56.

Rudich, S. (1985). Inferring the structure of a Markov
chain from its output. IEEE Symposium on Foun-
dations of Computer Science (pp. 321–326).

Schaal, S. (1997). Learning from demonstration. Ad-
vances in Neural Information Processing Systems
(pp. 1040–1046).

Singh, R., Raj, B., & Stern, R. M. (2001). Auto-
matic generation of sub-word units for speech recog-
nition systems. Submitted to IEEE Transactions on
Speech and Audio Processing.

Thrun, S. B. (1998). Learning metric-topological maps
for indoor mobile robot navigation. Artificial Intel-
ligence, 99, 21–71.

Yang, J., Xu, Y., & Chen, C. S. (1994). Hidden
Markov model approach to skill learning and its
application to telerobotics. IEEE Transactions on
Robotics and Automation, 10, 621–631.

18

