
Incorporating Prior Knowledge and Previously Learned
Information into Reinforcement Learning Agents

Kevin R. Dixon Richard J. Malak Pradeep K. Khosla

Institute for Complex Engineered Systems
Carnegie Mellon University
Pittsburgh, PA 15213 USA

{krd,rmalak,pkk}@cs.cmu.edu
Prepared for the Institute for Complex Engineered Systems Technical Report Series, 2000.

31 January, 2000

Abstract

Reinforcement learning has received much attention in the past decade. The primary thrust of this research has
focused on tabula rasa learning methods. That is, the learning agent is initially unaware of its environment and
must learn or re-learn everything. We feel that this is neither realistic nor effective. While the agent may start out
with little or no knowledge of its environment, it must be able to incorporate new information into the learning of
subsequent tasks otherwise the learning effort is largely wasted. To address the shortcomings of tabula rasa learning,
we present a general and intuitive approach for incorporating previously learned information and prior knowledge into
the reinforcement learning process. We demonstrate the potential of this method on learning problems in the mobile-
robot and grid-world domains, where results indicate that learning time can be decreased. We also demonstrate that
multiple knowledge sources can be incorporated into the learning process.

1 Introduction

Incorporating prior knowledge and previously learned
information in machine learning tasks is a subject that
is receiving increased attention. In these problems, a
learning agent attempts to design a controller that max-
imizes some performance metric. For many tasks, tab-
ula rasa learning may not be appropriate. The designer
of a system may have some a priori, domain-specific
knowledge or the agent itself may have already learned
a task that may prove useful to the problem at hand.
A method for incorporating this knowledge into a rein-
forcement learning controller, which learns by actively
exploring its environment, would be particularly useful.

Through the past forty years, the main thrust of ma-
chine learning research has been toward improving the
performance of tabula rasa systems. Many sophisti-
cated and powerful techniques have been developed that
allow a machine to learn a task quickly. There are sev-
eral noteworthy examples of machines surpassing the
performance of their human creator (e.g., (Tesauro &
Sejnowski, 1992) and (Samuel, 1959)). However, these
programs usually learn the task tabula rasa. This is
not always desirable; the designer of a system may
have some a priori, domain-specific knowledge or the
agent itself may have already learned a task that may
prove useful to the problem at hand. Oftentimes, tabula
rasa learning is utilized because the internal representa-
tions in the learning algorithm are not well understood.
Thus, incorporating prior knowledge into such systems
can be extremely difficult (Baxter, 1994). Recently, re-
searchers have started to focus on learning agents ex-
ploiting previously learned information (Pratt, 1994).

We propose a method for embedding previously
learned information and prior knowledge into the con-
troller of a reinforcement learning agent. This method
utilizes an intuitive representation, scales well to large
problems and allows for easy analysis.

In this paper, we give an introduction to reinforce-
ment learning in Section 2, describe our method for
embedding prior knowledge in Section 3, apply our
method to a couple problems and give experimental re-
sults in Section 4, discuss related work in Section 5, and
state our conclusions and future work in Section 6.

2 Reinforcement Learning

In the reinforcement learning (RL) paradigm, an agent
exists in an environment, whether embodied in the
real world or in a simulated world (Kaelbling et al.,
1996). The agent can sense the state of the environ-
ment through sensors and affect its environment by exe-
cuting actions through actuators. Furthermore, at every

Reinforcement Learning Agent
A

ctions

St
at

es

Environment

R
ew

ar
d

Figure 1: Conceptual diagram of a RL agent.

discrete time step, the agent receives an external scalar
reward signal from the environment (see Figure 1).

2.1 Markov Decision Processes

In reinforcement learning algorithms, the environment
is implicitly assumed to have the Markov property. The
state-to-state transition probabilities of the underlying
Markov chain are conditioned on the action executed.
This type of system is called a Markov Decision Pro-
cess (MDP). A MDP is specified by a finite set of states,
S, a finite set of actions, A, and the state-to-state tran-
sition probabilities, p : S × A× S 7→ <[0,1]. In words,
p(1, 0, 2) is the probability of entering state 2 by execut-
ing action 0 in state 1. MDPs also have a scalar reward
function, r : S × A × S 7→ <. In words, r(2, 1, 0)
is the reward for entering state 0 by executing action 1
in state 2. A visualization of a simple MDP is given in
Figure 2. At each discrete time step, the agent executes
an action given by a policy, π : S 7→ A. The model
of the environment is considered to be the functions p
and r, since these functions describe how the actions of
an agent affect the environment and the reward that the
agent receives.

Markov Decision Processes with reward functions
give rise to two natural value functions. First is the state
value function, V : S 7→ <, defined as the expected
sum of discounted future rewards for a given state and
policy

V π(s0)
4
=

∞∑

t=0

Est+1

{
γtr(st, π(st), st+1)

∣∣∣π, s0

}

1

2a

a1

0 s

1a

a1

0 s0a

a1

0 s

p(1,0,2)
r(2,1,0)

Figure 2: A three-state MDP with two actions in each
state.

=

∞∑

t=0

∑

st+1∈S
γtp(st, π(st), st+1)r(st, π(st), st+1)

Where γ ∈ (0, 1] is a discount factor, similar to an
inflation rate. To the agent, future rewards are not as
great as immediate rewards when γ < 1. Intuitively,
V π(s0) is the amount of reward the agent expects to
receive starting from state s0 until the end of time, under
the policy π.

The other value function is called the Q-function.
This function, Q : S × A 7→ <, is defined similarly to
the state value function

Qπ(s0, a)
4
= Es1

{
r(s0, a, s1) + γV π(s1)

∣∣∣π, s0, a
}

=
∑

s1∈S
p(s0, a, s1)

(
r(s0, a, s1) + γV π(s1)

)

Intuitively, Qπ(s0, a) is the amount of reward the
agent expects to receive by executing action a starting
in state s0 and then following the policy π until the end
of time.

The optimal value functions are denoted by

V ∗(s) = max
π

V π(s),∀s ∈ S
Q∗(s, a) = max

π
Qπ(s, a),∀s ∈ S

For non-pathological MDPs, there exists an optimal
policy

π∗(s) = arg max
a

Q∗(s, a),∀s ∈ S

that may not be necessarily unique (Bertsekas & Tsit-
siklis, 1996).

2.2 Computing the Optimal Policy

Several techniques exist for computing the optimal pol-
icy, π∗. The two most popular methods are Dynamic
Programming (DP) (Bellman, 1957) and reinforcement
learning. DP requires an exact model of the environ-
ment (the functions p and r) and finds the globally op-
timal solution and RL does not require a model of the
environment and finds a locally optimal solution. RL
tends to scale better to larger real-world problems than
DP for these reasons. Thus for this work, we will con-
sider only RL algorithms to compute policies.

As stated earlier, the environment in reinforcement
learning algorithms is implicitly assume to be a Markov
Decision Process and a model of the environment is
not required. Several algorithms exist that can com-
pute an optimal policy. Q-Learning (Watkins, 1989)
has received the bulk of attention by researchers, most
likely for its simplicity and convergence proofs, though
the guarantees on convergence are not practical. Q-
Learning iteratively approximates theQ-function as fol-
lows

Q̂(s, a)← (1−α)Q̂(s, a)+α
(
ρ+γmax

ã
Q̂(s̃, ã)

)
(1)

Where α ∈ (0, 1] is a step-size parameter, γ is the dis-
count rate, ρ is the reward received from the environ-
ment (this should be an unbiased sampling of the reward
function r), and s̃ is the resultant state after the current
time step. Watkins showed that Q̂(s, a) from (1) is an
asymptotically unbiased estimator of Q∗(s, a) for real-
istic assumptions. Thus, the following policy will be
optimal in the limit

π̂(s) = arg max
a

Q̂(s, a)

Note that a model of the environment (the functions p
and r) is not used to compute this unbiased estimate.
This means that with no prior knowledge or dynami-
cal model, an agent can compute the optimal policy. In
practice, however, we usually settle for a locally opti-
mal policy due to time considerations. Since no model
of the environment is used in RL, the environment must
be explored through trial-and-error so that the samples
of the reward signal, ρ, approximate the true expecta-
tion of the reward function, r.

2.3 Reinforcement Learning Controllers

In reinforcement learning, the controller of an agent
is either on-policy or off-policy. On-policy controllers
(Figure 3) execute actions that affect the environment.
Thus, the RL algorithm is determining which actions

2

Input
States

Output
Actions

On−Policy
Reinforcement

Learning
Controller

Reward Signal

Figure 3: An on-policy RL controller executes actions
that affect the environment.

Input
States
Input
States

Output
Actions

Static
Controller

Off−Policy
Reinforcement

Learning
Controller

Reward Signal

Figure 4: An off-policy RL controller can compute an
optimal policy but the static controller executes actions
that affect the environment.

the agent will execute in a given state. Off-policy con-
trollers (Figure 4) observe the actions that a static con-
troller executes and do not determine which actions the
agent will execute. The off-policy controller is not at-
tempting to mimic the static controller, but determining
which actions will maximize the reward signal from the
state-action examples the static controller presents it.

2.4 Generalization and Function Approx-
imators

Typically, generalization across similar states is de-
sired. To this end, controllers normally represent the
value function in a parameterized function approxima-
tor, such as an artificial neural network (ANN). This
may allow the agent to visit the states less often to get
a good estimate of the expectation of the reward func-
tion, r, from the samples, ρ. However, there are no con-
vergence results for either on- or off-policy controllers
when non-linear approximators (e.g., sigmoidal multi-
layer perceptrons) are used. Furthermore, the use of
function approximation, even linear mappings, may re-
sult in divergence or oscillation in off-policy controllers
(Bradtke, 1993; Baird, 1995; Boyan & Moore, 1995;
Tsitsiklis & Van Roy, 1995). The fundamental cause
of divergence is that the states the static controller vis-
its are drawn from a different distribution than the off-
policy controller would generate. Thus, as the distri-

butions become further apart, the off-policy controller
may become more likely to diverge. However, re-
searchers have continued to use function approximators
since the benefits of generalization normally out-weight
these potential problems.

2.5 Exploration of the Environment

Since a reinforcement learning agent must explore
its environment through trial-and-error, many methods
have been devised to bias this exploration. These meth-
ods range from quite simple to exceedingly complex,
and each has its advantages and drawbacks.

The most simple exploration strategy is to take ran-
dom actions periodically (Luce, 1959; Watkins, 1989).
However, these methods do a poor job of reaching states
that are difficult to enter and tend to be myopic.

More elaborate methods attempt to build a model
of the environment, primarily the p-function, and de-
termine which exploratory actions to take based on this
model (Moore & Atkeson, 1993; Wiering & Schmid-
huber, 1998). Constructing a model of the environment
can be difficult in terms of memory and computation
and can be problematic when the environment is dy-
namic.

Another method of biasing the exploration is aug-
menting the reward function, r, to alter the behavior of
the agent (Matarić, 1994). When maximizing the al-
tered reward signal, the agent may not be improving its
true performance metric, just the augmentation of the
reward function. So the designer may spend an inordi-
nate amount of time trying to get the reward function
“just right”, as opposed to having the agent learn the
task.

For further analysis of various exploration tech-
niques, the reader is referred to (Whitehead, 1991;
Koenig & Simmons, 1993; Lin, 1992; Thrun, 1992).

2.6 Incorporating Prior Knowledge

Incorporating prior knowledge into machine learning
tasks has received an increasing amount of attention in
recent years. Primarily, knowledge transfer between
prior knowledge and a new, unlearned task has dealt
with ANNs. Most researchers have focused on trans-
ferring the synaptic weights of the ANN used in the
prior task and mapping them to help the agent in the
new task. The weights from the first ANN typically
pass through a task-specific state mapping function that
transforms the weights into the state-space of the new
task (see Figure 5). This method of incorporating pre-
vious knowledge suffers from two serious drawbacks.
First, and most critically, is that constructing the state

3

Task−Specific
State Mapping

Function

Figure 5: Transferring the synaptic weights of an ANN
between tasks.

mapping function is task specific and can be quite dif-
ficult. For all but the most trivial tasks, the function
will be non-linear and not convex. Second, transferring
weights can degrade the performance of the agent if the
prior knowledge and mapping function are not chosen
properly (Sharkey & Sharkey, 1993). This phenomenon
is called “catastrophic interference”.

Furthermore, the representation used by most ANNs
is not well understood. Therefore, transfer methods
tend to be somewhat ad hoc.

3 Embedding Prior Knowledge

We propose to embed prior knowledge and previously
learned tasks directly into the controller of the rein-
forcement learning agent. The methods described here
are scalable, general, intuitive and can be smoothly inte-
grated with existing reinforcement learning techniques.

3.1 Knowledge Transfer via Guided Ex-
ploration

Using an off-policy RL controller scheme (Figure 4),
we can embed the prior knowledge into the static con-
troller while learning the value function estimate tabula
rasa. In essence, we guide the exploration of the RL
agent toward an expected interesting area of the state
space (i.e., a region of high reward or high knowledge
gain). A major benefit of this approach is that any con-
troller that maps states to actions can be used as a prior
knowledge source. Neither the representation nor the
state space of the prior knowledge controller need be
the same as that of the learning controller.

In order for knowledge transfer to occur between the
controllers, the learning agent must be capable of ob-
serving relevant environment features and able to repre-
sent the knowledge internally. For example, if the prior
knowledge instructs the agent to recharge its power sup-
ply every day at noon, but the RL controller cannot ob-
serve the time of day, then the learning agent cannot
learn this behavior. We call this a state-space deficiency.
On the other hand, if the prior knowledge controller
uses a history of events to make a decision, a reactive
RL agent will not be able to learn this task even if it
can observe all of the relevant environmental features.

We call this a representational deficiency. While the de-
signer must consider the above issues, the overall task is
greatly simplified when compared to other approaches
(cf. Section 2.6). No longer does the designer have to
determine the exact mapping between one knowledge
representation and another. With this method, the de-
signer only need determine whether such a mapping ex-
ists. Another benefit of this method is that no restriction
is placed on the number of prior knowledge sources that
can be presented to the agent.

Another benefit of this method is that it allows the
agent to utilize more than one prior knowledge source.
While it may be possible to create a function that maps
information from one representation to another, the task
is made even more difficult when multiple sources of
information are considered. The method we present al-
lows for the possibility of having multiple knowledge
sources guide the exploration of the RL agent. This
may involve multiplexing the sources for control of the
agent or fusing the action selection distributions of the
sources. This allows the learning agent to sample all the
actions suggested by the knowledge sources and deter-
mine which, if any, is best.

As described in Section 2.4, an off-policy method
may cause the RL controller to diverge. This is because
the prior knowledge will visit the states according to a
different distribution than would the policy that max-
imizes the current reward function. If this were not
the case then the prior knowledge maximizes the re-
ward function and the task is solved anyway. Thus, we
slightly augment this scheme in order to bring the state-
visitation distributions closer in-line.

3.2 Exploration Control Module

We have augmented the off-policy RL agent to include
an exploration control module (Figure 6). The explo-
ration control module selects the actions to be executed
in the environment from any number of input sources.
The selections made by this module reflect the distri-
butions of all input controllers (i.e., the prior knowl-
edge and RL controllers). Thus, the exploration con-
trol module can be designed to have a state-visitation
distribution that is arbitrarily similar to that of the RL
controller. This alleviates the divergence problems of
strict off-policy controllers. Since this method uses an
augmented off-policy controller, the body of research
developed for improving exploration (discussed in Sec-
tion 2.5) can be used in the controller. The off-policy
controller need not necessarily select the greedy action,
but may incorporate the more sophisticated strategies,
when the exploration control module selects the actions
from off-policy controller.

4

Input
States

Exploration
Control
Module

Off−Policy
Reinforcement

Controller
Learning

Output
Actions

Prior
Knowledge

Source 1

Reward Signal

Prior
Knowledge

Prior
Knowledge

Source 2

Source n

Figure 6: This scheme allows the embedding of prior
knowledge directly into the static controller. The selec-
tion criterion of the Exploration Control Module can be
adjusted to eliminate divergence concerns.

The objectives of the exploration control module are
simple: heavily bias the initial exploration toward the
actions selected by the prior knowledge and move the
state-visitation distribution closer to that of the RL con-
troller as it learns more information. These objectives
can be achieved by a variety of methods. Two differ-
ent implementations of the exploration controller are
described in Section 4.

The first method is presented in the context of an
incremental learning problem. The agents learn more
difficult problems incrementally with the learned con-
troller from one step acting as the prior knowledge to
learn the next, more difficult problem. The exploration
control module used is a multiplexor that alternates be-
tween one of the two controllers for a fixed number of
learning steps.

The second exploration controller examined is in the
context of composable skill synthesis. A set of source
skills is used as prior knowledge. The source skills are
tasks related to the target task. A skill is viewed as a re-
active mapping of states to actions. The action-selection
distribution of each skill, along with the distribution of
the RL controller, are linearly combined to form an ex-
ploration distribution. The exploration controller then
selects actions from this distribution.

4 Applications

In this section, we demonstrate that our approach for
embedding prior knowledge can be used to improve
the performance and decrease the learning time of RL

agents. One example is taken from the simulated
mobile-robot domain, the other from the grid-world
arena. In Section 4.1, we use our approach to solve a
complex task incrementally and, in Section 4.2, to uti-
lize previously learned skills to compose new skills.

4.1 Incremental Learning

In incremental learning, a large, complex task is decom-
posed into smaller sub-tasks. If the task is decomposed
properly then solving all the sub-tasks may be easier
than solving the entire task, and by solving the sub-
tasks, a solution to the target task is found. By easier,
we mean that some objective measure of performance is
greater than (or less than, as the case may be) the same
objective measure resulting from using another method-
ology.

4.1.1 Description of Problem

To demonstrate our approach in the incremental learn-
ing domain, we selected a game of mobile robot “tag”.
In this game, there three mobile robots: two Runners
and one Defender. The Runners attempt to move to a
goal location and the Defender attempts to stop either
Runner from reaching the goal. The game is pictured in
Figure 7. The task is to find a policy for both Runners
that maximizes its expected sum of future rewards. The
policy for the Defender is fixed and does not change
during the course of this experiment. The reward func-
tion for the Runners is +1 for reaching the goal, -1 for
being tagged (i.e., within one meter of the Defender) or
moving too far away (greater than ten meters) from the
goal, and zero otherwise. A game begins with the Run-
ners randomly distributed around a disc ten meters away
from the goal and the Defender in the goal location. A
game ends when either Runner enters the goal location
or the Defender tags one of the Runners. All robots are
restarted and the process is repeated. The reward func-
tion is not shared between the Runners; a Runner only
receives a reward when it scores, is tagged, or moves
too far from the goal, and receives no credit for what
the other Runner does. Thus, there is no explicit attempt
to encourage the Runners to collaborate. Collaboration
must be learned through attempts to maximize the indi-
vidual reward function of the Runner. The control soft-
ware was written using the Port-Based Adaptable Agent
Architecture (Dixon et al., 2000) and the simulations
were executed using the Real and Virtual Environment
engine (Dixon et al., 1999).

5

Runners

Defender Goal

Figure 7: The tag game used to demonstrate incremen-
tal learning.

4.1.2 Experimental Setup

To compare the performance of the incremental method
versus tabula rasa, we decided that both sets of Run-
ners would learn for 4,000 games. For the incremental
method, the task was manually decomposed into three
steps. First, one Runner plays 100 games by itself (no
Defenders). Basically, the Runner will learn to move di-
rectly for the goal. Next, the Runner uses the ability to
go to the goal as the previously learned information in a
series of 1,900 games where one Runner plays against
one Defender. This increment allows the robot to learn
how to score when a Defender is attempting to tag it.
Finally, two Runners use this as the previously learned
information for 2,000 games against one Defender.

The simulated robots were equipped with a omni-
directional camera that allows the robot to determine
the relative distance and bearing to the Runners, De-
fender, and goal (orientation and velocity of those ob-
jects cannot be determined without further processing
of the sensor information and was disregarded). The
distances were discretized into eight concentric circles
and the bearings were discretized into eight pie-wedges
(Figure 8) and each “bin” in the state-space is assigned
a unique number. Using this scheme requires 26 states
to represent the distance and bearing of a single object.
Since there are three objects in the game (the goal and
the two other robots), there are 218 = 262, 144 states
in the system. Q-Learning was selected as the RL algo-
rithm and a single-layer perceptron was chosen to rep-
resent the Q-function.

It is important to note that all the above decisions
were made prior to any results from these methods.
Four-thousand games seemed like a reasonable num-
ber of games to allow the Runners to develop a suffi-

Robot

Figure 8: The states for the Runners: distances were
discretized into eight concentric circles and bearings
into eight pie-wedges.

ciently good strategy for scoring. Similarly, the number
of games at each increment (100 then 1,900 then 2,000)
seemed like a reasonable number of games to learn the
sub-task and was chosen before results were obtained.

4.1.3 Experimental Results

After both the incremental and tabula rasa controllers
had learned for 4,000 games, we compute performance
metrics by allowing the Runners play against the De-
fender for 2,500 games. Each game is viewed as a
Bernoulli trial, and the probability of scoring from the
Bernoulli trial is viewed as the performance metric. The
probability of scoring for the tabula rasa Runners was
0.2916 while the incremental learning Runners had a
0.5724 probability of scoring. This is almost a 100 per-
cent improvement in performance. The error bars on
Figure 9 indicate the 95 percent confidence intervals on
the probability of scoring. Furthermore, the tabula rasa
Runners took 9.6 simulation days to learn during the
4,000 games, while the incremental learning Runners
took 3.6 simulation days, as shown in Figure 10. This
is an improvement of 166 percent. (A simulation day
is equivalent to the number of days of execution in real
time, multiplied by the simulation rate. Thus, a simula-
tion that took one day of real time to complete, and the
simulation rate was ten to one, would be equivalent to
ten simulation days.)

From these results, it is clear that incremental learn-
ing using our method can drastically improve the per-

6

Incremental Tabula Rasa
0

0.2

0.4

0.6

0.8

1
Runner Scoring Probability

Figure 9: The probability of scoring for the incremental
learning and tabula rasa Runners. The error bars indi-
cate the 95 percent confidence intervals for this proba-
bility parameter.

Incremental Tabula Rasa
0

2

4

6

8

10
Simulation−Days Taken

Figure 10: The number of simulation days required to
play the 4,000 games in the learning phase.

formance and decrease the time required to learn a task.

4.2 Composable Skill Synthesis

In composable skill synthesis, a problem is broken
down into a set of basic skills that the agent must pos-
sess in order to complete the task. Using the knowledge
of these basic skills, the agent may learn the more com-
plex target problem more quickly than if there was no
prior skill knowledge. The motivation of this work is
to encourage the reuse of previously acquired knowl-
edge and promote the composablility of autonomous
systems. In the context of this work, a skill is defined
as a reactive mapping of states to actions. Hence, any
policy learned by a RL agent qualifies as a skill. Addi-
tionally, this mapping policy need not be deterministic.

In the incremental learning problem of the previ-
ous section, the policy from a particular learning incre-
ment can be considered a skill that is provided to the
agent learning the next, more difficult problem. The
contrast between the work in this section and the incre-
mental learning work is that this section assumes the
pre-existence of some set of skills from which the agent
can draw knowledge. Now, the task of the designer be-
comes the selection of appropriately related skills from
this knowledge base and the incorporation of the skills
into the learning process. This creates the need to inte-
grate the knowledge from any number of source skills
into the learning process.

4.2.1 Exploration Control for Multiple Knowledge
Sources

The optimal method to integrate knowledge from mul-
tiple sources is not clear. In some cases, a temporally
controlled multiplexor, such as that in Section 4.1, may
work well. Note that the multiplexor method could
be extended to incorporate multiple knowledge sources.
However, in some situations that approach may not be
appropriate. Consider the example of a mobile robot
learning to navigate through a cluttered office building
to deliver mail. The prior skills might be avoidance of
static objects, avoidance of dynamic objects, and goal
homing. It is difficult to know a priori when each skill
would be needed in a dynamic environment. Thus, this
would be a situation where the agent should not be con-
strained to use one skill for some predetermined length
of time. Also, it is highly desirable for the agent to in-
corporate newly acquired information as soon as it be-
comes available.

We propose that knowledge from multiple sources
can be combined in the form of weighted action selec-
tion probability distributions. Thus, the agent can con-

7

sider all skills simultaneously and newly learned infor-
mation can be promptly incorporated into the control of
the agent.

Define p(a|s) as the probability of selecting action
a given the agent is in state s. Thus, pi(·|s) is the
action selection distribution for skill i ∈ {1, . . . , N},
where N is the number of source skills. Similarly, we
define pt0(·|s) as the distribution for the target skill at
time t. Let wj be the weight applied to distribution
j ∈ {0, . . . , N}. Defining the vectors

pt
4
= [pt0(·|s), pt1(·|s), . . . , ptN (·|s)]T

w
4
= [w0, w1, . . . , wN]T

and assuming all weights are greater than or equal to
zero, we can state the distribution of the exploration
controller module as

pECM (·|s) =
1

N∑
i=0

wi

wTpt

Actions to be executed in the environment are se-
lected from pECM . One approach is to select actions di-
rectly based upon the distribution. A second approach,
called ε-greedy, is to select the greedy action (i.e., the
action with the highest Q-value) from this distribution
with a probability of (N − ε(N − 1))/N and to select a
non-greedy action with uniform distribution otherwise.

Clearly, both ε-greedy selection and direct selection
from pECM have benefits and drawbacks which must
be considered during the design of the agent.

4.2.2 Experimental Setup

This section describes the experiments conducted using
the experimental controller described in the previous
section. The task is to navigate the grid world shown
in Figure 11. The agent must navigate from the start
position, marked with an S, to the goal position, marked
with a G without running into any objects (shaded ar-
eas).

While learning, a reward of +1 is received by the
agent for entering the goal position and a reward of -1
for striking any of the walls. A reward of 0 is received
after all other moves. Grid world sizes of 10 by 10 and
25 by 25 were used. The learning task is simple but
proves sufficient to demonstrate knowledge transfer.

The state of the agent is composed of the coordi-
nates of the grid square it occupies and its orientation.
The agent has eight possible orientations corresponding
to the primary and secondary compass directions (Fig-
ure 12). This means that for a 10 by 10 grid world,
the agent has 10 ∗ 10 ∗ 8 = 800 possible states. For

G

S

Figure 11: The grid world used in the skill transfer ex-
periments. The agent starts at S and navigates to the
goal point G.

a 25 by 25 grid world the number of states is 5000.
The actions available to the agent are to move forward
(FWD), turn clockwise (CW) one orientation position or
turn counter-clockwise (CCW) one orientation position.

One must be conscientious of the differences be-
tween this state space and other grid-world state spaces.
In this construction, the grid position directly behind
the agent is not a neighboring state. While it is a neigh-
boring grid position, it takes a sequence of five actions
to reach this position (a sequence of four turns to the
same direction followed by one forward action). Thus,
the grid positions and the system states do not have as
obvious of a relationship as they do in some other grid-
world examples. This type of representation was chosen
to better reflect the behavior of an actual robot, which
typically has a distinct front that faces the direction of
translation.

The experiments compared relative learning rates of
two types of agents. One agent is supplemented with
skill knowledge (the skill-based agent or SBA) and the
other is not (the tabula rasa agent or TRA). In all other
respects, the agents are the identical. Both agents utilize
tabular Q-learning methods. The tabular version of the
algorithm does not perform generalization and was cho-
sen for its simplicity and ease of analysis. To speed the
learning process, both agents we subjected to experi-
ence replay (Lin, 1992). In experience replay, the agent
updates its parameter estimates according to its previ-
ous episode, played in reverse order. The agent still up-

8

S
E

N
W

Figure 12: Possible agent orientations within the grid
world (N, NE, E, SE, S, SW, W, NW).

dates its estimates during the episode. In the work that
Lin performed, only the actions that corresponded to the
current policy were used in the experience replay. We
utilize tabular Q-learning and hence are able to replay
the entire episode.

The skills used in the SBA are object avoidance and
goal homing. Object avoidance (OA) is a hand-written
skill that directs the agent away from objects. This
skill assumes that the agent possess a sensor that can
view the eight neighboring grid positions and determine
whether or not there is an obstacle present. If there is
no object directly in front of the agent, the output of the
OA skill is a deterministic policy giving probability one
to the FWD action and probability zero to the turn ac-
tions (CW and CCW). If there is an object directly in
front of the agent, the skill gives probability zero to the
FWD action. The skill then identifies the non-occupied
grid position nearest to forward direction from among
the seven remaining neighbor cells. The skill policy is
to turn in the direction of the unoccupied cell. In the
event of a tie each of the turns (CW and CCW) are given
equal probabilities (of one-half).

The state information utilized by the OA skill is
not directly fed into the learning controller. How-
ever, the learning controller would eventually develop
an equivalent to this information in its own represen-
tation whether the object avoidance skill is provided a
priori or not. The primary difference between the OA
skill and the representation that the learning controller
will acquire is that the OA skill is more general. The

G

S

Figure 13: grid-world used to learn the goal homing
skill.

learning controller will obtain a representation of the
exact grid world presented. In a sense, it will learn a
map of the object locations in this particular world. The
OA skill is more general and is representative of a skill
that we might keep in a skill-base.

The goal homing (GH) skill, unlike the OA skill, is
learned. It is the result of learning a simplified grid-
world that is partially related to the target learning task
(Figure 13). The agent learns to reach the goal position
from the start position, but there are no objects in the
course (except the outer walls). The skill was trained
until the agent converged upon the optimal policy from
the start position given. It is not necessarily optimal
from all points in the state space. The policy produced
by the GH skill is computed using a Boltzman distribu-
tion such that

p(a|s) =
eQ(s,a)

∑
a′∈A

eQ(s,a′)

is the probability of taking an action, a, in a particular
state, s.

4.2.3 Experimental Results

The results of the experiments show the SBA outper-
forming the TRA. We assume here that some cost is as-
sociated with each action taken in the environment dur-
ing learning (perhaps computing expenses or execution
time). Thus, the number of actions needed to reach the

9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

Number of Learning Steps

R
ew

ar
d

pe
r

T
es

t R
un

Reward Earned per Test Run vs. Learning Step

TRA
SBA

Figure 14: Reward earned for a test run versus the num-
ber of learning steps taken for the 10 by 10 grid-world.
The skill-based agent clearly outperforms the tabula
rasa agent. The results are an average of 30 different
experiments for each agent type.

goal is used as a performance metric. When counting
actions taken by the agent, we often use the term steps.

Figure 14 shows the relative performance of the
two learning agents. Every 250 learning steps, the cur-
rent greedy policy of the RL controller is evaluated by
recording the number of steps needed to reach the goal
state. Evaluation ties for the greedy action are resolved
stochastically. At the time of action selection, one ac-
tion is chosen with uniform distribution over the set
of actions that the controller has deemed equally good.
This means that the agent may strike many walls before
reaching the goal and initially performs what is essen-
tially a random walk.

The SBA converges to the optimal solution in less
than 2,500 learning steps (see Figure 14). The TRA
eventually obtains the same solution, but it takes nearly
47,500 steps. The SBA is faster by nearly a factor of 20
in a world with only 1,224 reachable state-action pairs.
(Grid positions that contain objects are unreachable by
the agent and result in several unreachable state-action
pairs.)

The difference is even more dramatic in the 25 by
25 tests. This world has 9,744 reachable state-action
pairs making this world almost eight times as complex
as the 10 by 10 case. Over the course of 20 different ex-
periments, the SBA converges to an optimal solution in
an average of less than 4,000 steps while the TRA was
found to take well over 300,000 steps on the average.
The SBA is faster by a factor of more than 75.

5 Related Work

Much research has been conducted in the area of ex-
ploration for reinforcement learning agents. Whitehead
(Whitehead, 1991) showed that random exploration in a
deterministic world was yields a learning time that is ex-
ponential in the number of states. Thrun (Thrun, 1992)
showed that directed exploration can learn in time that
is polynomial in the number of states for determinis-
tic environments. Directed exploration methods do not
explore based on randomness, but instead use other in-
formation, such as state visitation counts, to guide the
search. Note that directed exploration may cause an off-
policy controller (Figure 4) to diverge. In the same pa-
per, Thrun also proves that learning time can be expo-
nential in stochastic environments no matter what ex-
ploration method is used. The role of the state-space
representation has on exploration and learning com-
plexity has been studied in (Koenig & Simmons, 1993).

There has been some prior work in the area of incor-
porating prior knowledge into a reinforcement learning
agent. Lin (Lin, 1992) addresses the issue of teaching
a RL agent. In his work, a teacher provides the agent
with a “lesson”. A lesson is a demonstration of how to
achieve the target task from a given initial state. The
learning information from this demonstrated episode is
played back for the RL agent which, in turn, updates its
utility estimates. This work is limited to using teachers
that know how to accomplish the entire task. A teacher
that is only sufficient in certain aspects of the task may
not be of any benefit to the learning agent. The work
also does not address the issue of multiple teachers.

Maclin and Shavlik (Maclin & Shavlik, 1996) have
created a system that incorporates user-given advice
into a reinforcement learning agent. The user provides
advice by issuing commands in an imperative program-
ming language. This advice is converted from rules to
weights for an artificial neural network (ANN) using
knowledge-based ANN (KBANN) methods and is di-
rectly installed into the ANN that estimates the value
function. Their methods were empirically found to per-
form well. In another study, (Maclin, 1995) demon-
strates an ability to overcome “bad” advice. However,
their approach is complex, involving a specialized pro-
gramming language and KBANNs which are often have
several hidden layers.

Whitehead (Whitehead, 1991) also studies methods
for incorporating prior knowledge into the reinforce-
ment learning process. He describes two approaches:
learning with an external critic (LEC) and learning by
watching (LBW). In LEC, a critic provides feedback to
the agent in supplement to the true environmental re-
ward signal. The LBW approach is similar to that used

10

by Lin.

6 Conclusions and Future Work

We have proposed an intuitive method for embedding
previously learned information and prior knowledge
into the controller of a reinforcement learning agent.
This method promises drastic improvements in the per-
formance of the RL agent, reductions in learning time,
and utilizes a representation that eases analysis and in-
creases intuition into the problem. Furthermore, we
have demonstrated that this method can be applied to
several types of relevant problems.

The results of the incremental learning section (Sec-
tion 4.1) demonstrate the feasibility of this approach
to improve the performance and reduce the learning
time of complex tasks significantly. However, the tar-
get task was decomposed manually and each increment
was chosen because it appeared to be relevant to ac-
complish the target task. The performance of the in-
cremental learning method is very sensitive to the in-
crements selected. If the increments were chosen in a
more Byzantine fashion, then the results would decline
(comparision experiments have been completed but not
enough data have been collected at this time). However,
the primary difference in results is in the learning time,
not in the performance of the system itself.

Future work in this area will involve the automa-
tion of the decomposition of the target task. Though
not mentioned in the results portion (Section 4.1.3 of
the incremental learning section, a considerable amount
of time was spent manually selecting and designing the
increments for the target task. This automation will de-
crease the amount of human intervention in the learning
process, and would hopefully increase the overall time
required to learn a task.

The results of the composable skills section (Section
4.2) demonstrate that it is feasible to incorporate knowl-
edge from multiple skill sources into a reinforcement
learning agent. The rate of learning was significantly
improved when prior skill knowledge was embedded in
the agent. The decrease in learning time, relative to a
tabula rasa system, was found to be greater as the state
space size was increased.

It is clear that the skills utilized in this experiment
(goal homing and object avoidance) are not both appli-
cable in all states of the system. It may be more appro-
priate to have a weighting function that varies over the
state space. However, such a variation in the weighting
function would be difficult to design. If the designer
knew the best weighting function beforehand, the prob-
lem of composing the skills is already solved. Thus, it
becomes useful for the agent to adjust its weights as it

learns more about its environment. The way in which
the agent modifies its weights and the way in which it
determines which weights to modify are important is-
sues. Future work is planned in this area.

The skills utilized were also highly related to the
target skill (finding the goal without collisions). This
high relatedness leads to a large improvement in learn-
ing rate. If inappropriate skills are selected, it is doubt-
ful that the agent will outperform a tabula rasa system
by such a large margin. Thus, either the designer must
always make good decisions about which skills to in-
clude or the agent must be able to disregard skills that
turn out to be poor selections. This behavior, the abil-
ity to ignore bad advice, would be important in an au-
tonomous agent. The problem is one of lowering the
weight of a source skill that provides bad action selec-
tions and is therefore related to the above problem of
varying weights in general.

It is not clear from this study how each skill effected
the learning process. We feel that the inclusion of either
of the skills alone would have dramatically increased
the speed of learning. The inclusion of a second skill
may have only offered a small increase beyond that.
The effects of each skill must be better understood be-
fore any weight update rule can be derived and before
clear design guidelines can be laid out.

Acknowledgments

We would like to thank Enrique Ferreira, Jonathan Jack-
son, and Bruce Krogh for their contributions to this
work.

This work was supported in part by DARPA/ETO
under contract F30602-96-2-0240 and by the Institute
for Complex Engineered Systems at Carnegie Mellon
University. We also thank the Intel Corporation for pro-
viding the computing hardware.

References

Baird, L. C. (1995). Residual algorithms: Reinforce-
ment learning with function approximation. Proceed-
ings of the Twelfth International Conference on Ma-
chine Learning (pp. 30–37).

Baxter, J. (1994). Learning internal representations.
Doctoral dissertation, The Flinders University of
South Australia.

Bellman, R. E. (1957). Dynamic programming. Prince-
ton, NJ: Princeton University Press.

11

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-
dynamic programming. Belmont, MA: Athena Sci-
entific.

Boyan, J. A., & Moore, A. W. (1995). Generalization
in reinforcement learning: Safely approximating the
value function. Advances in Neural Information Pro-
cessing Systems (pp. 369–376).

Bradtke, S. J. (1993). Reinforcement learning applied
to linear quadratic regulation. Advances in Neural
Information Processing Systems (pp. 295–302).

Dixon, K. R., Dolan, J. M., Huang, W., Paredis, C. J.,
& Khosla, P. K. (1999). RAVE: A real and virtual
environment for multiple mobile robot systems. Pro-
ceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems.

Dixon, K. R., Pham, T. Q., & Khosla, P. K. (2000). Port-
based adaptable agent architecture. International
Workshop on Self-Adaptive Software.

Kaelbling, L. P., Littman, M. L., & Moore, A. W.
(1996). Reinforcement learning: A survey. Journal
of Artificial Intelligence Research, 4, 237–285.

Koenig, S., & Simmons, R. G. (1993). Complexity anal-
ysis of real-time reinforcement learning. Proceedings
of the Eleventh National Conference on Artificial In-
telligence (AAAI). (pp. 99–105).

Lin, L. (1992). Self-improving reactive agents based on
reinforcement learning, planning and teaching. Ma-
chine Learning, 8, 294–321.

Luce, D. (1959). Individual choice behavior. New York,
NY: John Wiley.

Maclin, R. (1995). Learning from instruction and ex-
perience: Methods for incorporating proceedural
domain theories into knowledge-based neural net-
works. Doctoral dissertation, Computer Sciences De-
partment, University of Wisconsin, Madison.

Maclin, R., & Shavlik, J. (1996). Creating advice-
taking reinforcement learners. Machine Learning,
22, 251–282.

Matarić, M. J. (1994). Reward functions for accelerated
learning. Proceedings of the International Confer-
ence on Machine Learning (pp. 181–189).

Moore, A. W., & Atkeson, C. G. (1993). Prioritized
sweeping: Reinforcement learning with less data and
less real time. Machine Learning, 13, 103–130.

Pratt, L. (1994). Experiments on the transfer of knowl-
edge between neural networks. Cambridge, MA:
MIT Press.

Samuel, A. L. (1959). Some studies in machine learning
using the game of checkers. IBM Journal of Research
and Development, 3, 210–229.

Sharkey, N. E., & Sharkey, A. J. (1993). Adaptive gen-
eralisation and the transfer of knowledge. AI Review,
7, 313–328.

Tesauro, G., & Sejnowski, T. J. (1992). A parallel net-
work that learns to play backgammon. Artificial In-
telligence, 39, 357–390.

Thrun, S. B. (1992). Efficient exploration in reinforce-
ment learning (Technical Report CMU-CS-92-102).
Carnegie Mellon University, Pittsburgh, PA.

Tsitsiklis, J. N., & Van Roy, B. (1995). An analysis of
temporal-difference learning with function approxi-
mation. IEEE Transactions on Automatic Control,
42, 674–690.

Watkins, C. J. (1989). Learning with delayed re-
wards. Doctoral dissertation, King’s College, Cam-
bridge University.

Whitehead, S. (1991). A study of cooperative mech-
anisms for faster reinforcement learning (Technical
Report 365). University of Rochester, Rochester, NY.

Wiering, M., & Schmidhuber, J. (1998). Efficient
model-based exploration. Proceedings of the Fifth
International Conference on Simulation of Adaptive
Behavior.

12

