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Abstract

To focus on the research issues surrounding collaborative behavior in multiple mobile-robotic systems, a great amount of
low-level infrastructure is required. To facilitate our on-going research into multi-robot systems, we have developed RAVE, a
software framework that provides a Real And Virtual Environment for running and managing multiple heterogeneous mobile-
robot systems. This framework simplifies the implementation and development of collaborative robotic systems by providing
the following capabilities: the ability to run systems off-line in simulation, user-interfaces for observing and commanding
simulated and real robots, transparent transference of simulated robot programs to real robots, the ability to have simulated
robots interact with real robots, and the ability to place virtual sensors on real robots to augment or experiment with their
performance.



1 Introduction

Methods for collaboration among multiple heterogeneous
mobile robots are a subject of ongoing research [6]. Devel-
oping a multiple-robot system requires many support capa-
bilities such as communications, user interfaces, and sup-
port for simulation.

In order to focus on algorithms and architectures for
collaborative behavior, we have created RAVE, a frame-
work that provides a Real And Virtual Environment for
running multiple mobile-robot systems. RAVE provides a
unique set of capabilities to facilitate development of such
systems. To allow multiple-robot systems to be developed
and tested in simulation and then seamlessly transferred to
real robots, RAVE allows any robot program to be run on
either a real or simulated robot. Through RAVE’s simula-
tion capabilities, virtual sensors can be used on both real
and simulated robots. Virtual sensors can model real coun-
terparts or can provide sensing capabilities not available on
robots in the test-bed. For example, this is useful to de-
termine if infrared proximity sensors would be helpful for
the test-bed robot, or if another sonar should be placed in
the rear of the robot for more robustness, etc. Investigat-
ing sensor configurations in software rather than hardware
saves an immense amount of time. RAVE also allows vir-
tual obstacles to be added to the world model. This is nec-
essary for running a system in simulation, but it also allows
real robots to operate in virtual or partially virtual environ-
ments. These simulation capabilities allow real and sim-
ulated robots to operate simultaneously and interact with
each other. This is particularly useful when the number of
real robots available is limited. RAVE provides a commu-
nications package that allows system components to com-
municate with each other across different computers on a
network; RAVE can run entirely on a single computer or
can be distributed over many computers.

There are three different types of graphical user inter-
faces (GUIs) in RAVE, each of which provides different
capabilities: an Observer can only view the state of the
system, a Commander can interact with the system by con-
trolling one or more robot teams, and a Super-User has the
greatest privileges and is able to control the execution of a
system run. The GUIs can be run remotely over the World-
Wide Web, allowing users to be geographically dispersed.

After reviewing related work in multiple-robot archi-
tectures and simulators in Section 2, we describe the over-
all structure of RAVE in Section 3, some of its details in
Section 4, and some applications in Section 5.

2 Related work

Researchers have proposed and developed a variety of
multi-robot architectures [2, 7, 9, 11, 12, 13, 14]. These

have largely concentrated on methods of cooperative mo-
tion and task planning, and placed themselves somewhere
along a deliberative-reactive continuum. Fully delibera-
tive systems exercise centralized control using a detailed
world model, whereas fully reactive systems expect over-
all system properties and behaviors to emerge from indi-
vidual robot behaviors that are not explicitly coordinated
with one another. We are not aware of fully delibera-
tive, centralized multi-robot architectures in the literature,
probably due to their brittleness in the face of dynamic,
unpredictable environments. Several architectures attempt
to merge the advantages of the deliberative and reactive
paradigms into hybrid systems [2, 9, 15]. 2 Reactive, or
fully decentralized, architectures include ALLIANCE [13],
CEBOT [7, 14], and ACTRESS [3, 8]. The primary goals
of ALLIANCE and its extension L-ALLIANCE, which au-
tomates the tuning of behavior control parameters, are to
achieve fault-tolerance and adaptivity without sacrificing
efficiency. Simulation is used to test subtask allocation
strategies, but does not appear to be integrated tightly into
the overall architecture when running real robots. Work us-
ing the CEBOT and ACTRESS architectures has concen-
trated on efficient communications strategies and coopera-
tive strategies for accomplishing various tasks.

Hybrid architectures include GOFER [9], AuRA [2],
and SIMNET [4]. GOFER combines traditional central-
ized AI planning techniques with the ability of individual
robots to form their own plans to react to changing circum-
stances. Under AuRA, individual robots behave reactively,
but also receive centralized guidance as appropriate. The
DARPA SIMNET is a military trainer which allows hun-
dreds of soldiers to train together in a fully virtual envi-
ronment populated with a large number of simulated au-
tonomous vehicles.

In conjunction with its work on AuRA, Georgia Tech
has developed the MissionLab toolset [10], which provides
a mission-planning GUI and the ability to run the same
code on real or simulated robots. The XRDev simulator
created by Nomadic Technologies also allows the execution
of the same code on real or virtual Nomadic Technologies
robots.

Work on multi-robot conceptual and software frame-
works has focused more on architectures for cooperation
(reactive, deliberative, hybrid, etc.) than on a general in-
frastructure which can accommodate a wide variety of ar-
chitectures.

3 Basic framework

The three main components of RAVE are: libraries for
robot programs, information servers, and a set of user in-
terfaces.
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3.1 Robot Libraries

Robot programs are linked to libraries that provide a stan-
dard interface to real or simulated robots. These libraries
form a layer of abstraction that separates the high-level
decision software from the low-level interaction with de-
vice drivers. This provides the facility for real robots
to sense virtual obstacles, the placement of virtual sen-
sors on real robots, and the interaction between real and
simulated robots. This layer of abstraction also allows
the direct transferring of programs from simulated to real
robots. Transferring of programs between real and simu-
lated robots is accomplished by dynamically loading the
appropriate drivers at execution. These drivers are deter-
mined by parsing the configuration file, which will be dis-
cussed further in Section 4.5.

Robots can be endowed with virtual sensors which are
not augmentations of a real sensor counterpart. For in-
stance, if the user of RAVE had acquired a mobile robot
chassis but had not yet determined the sensor suite, the
user could place any number of virtual sensors in appro-
priate (or completely inappropriate) locations and evaluate
the performance of the robot. This process can be repeated
until the user is satisfied with the locations and types of
sensors to be used. This can save much time and energy as
compared to experimentally determining the sensor suite in
hardware. Also, RAVE offers users the flexibility to write
a virtual sensor driver which has no real world analogue,
such as a sensor that detects the velocities of other robots,
or an indoor GPS sensor.

When virtual obstacles are injected into the world
model of a real robot, several issues arise. First is the is-
sue of sensor fusion. Detecting virtual obstacles requires
RAVE to have an appropriate model of the real sensor be-
ing augmented. Once the virtual component of the sensor
computes its reading, this result is then fused with the result
from the real component of the sensor and a single reading
is returned (refer to Figure 1).

RAVE allows for interaction between real and simu-
lated robots. This is useful when only a limited number
of real robots is available or when the abilities of the real
robots are not satisfactory or appropriate. For example,
predator-prey scenarios can be executed where the prey
might be a simulated robot. Since the prey is simulated,
its speed, size, and other attributes can be easily changed
to determine how well the predator strategy handles these
changes.

3.2 Information Servers

The two main servers in RAVE are the Environment Man-
ager and the GUI Server. These servers maintain the state
of the world, i.e., the positions of all robots and any virtual
obstacles. They distribute this information to their clients
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Figure 1: Diagram of a hybrid real and virtual sensor.

— the Environment Manager to all robots, the GUI Server
to all user interfaces. Thus, one key assumption in RAVE is
that robots can report their state to these servers in a timely
manner. The required frequency of these updates depends
on the time and distance scales of a particular application.

The Environment Manager distributes information to
both real and simulated robots for the computation of vir-
tual sensor readings. When the state of the world model
changes, the changes are reported to the Environment Man-
ager; when virtual obstacles are added to the world model
by the Super-User or the position of a robot changes, both
events are sent to the Environment Manager. Currently, the
Environment Manager supports arbitrary convex polygonal
obstacles and represents robots (both real and simulated) in
a similar fashion. Both obstacles and robots are stored in
two dimensions.

The GUI Server sends information to the various user
interfaces so that they can display the current state of the
system consisting of all robots and obstacles. This informa-
tion might include positions of virtual obstacles, positions
of robots, sensory information recorded by robots, etc..

There is no direct communication between the Envi-
ronment Manager and the GUI Server. If a system does
not have robots with virtual sensors, then the Environment
Manager need not be executed. Similarly, if there are no
GUIs observing the system then the GUI Server need not
be executed.

3.3 User Interfaces

A user interacts with RAVE through one of three types of
graphical user interfaces: an Observer, a Commander, or
the Super-User. The Observer can only view the state of the
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Figure 2: The World View panel.

system. In addition to viewing the state of the system, the
Commander can send commands to one or more teams of
robots. In addition to the privileges of the other GUIs, the
Super-User has the ability to control and modify not only
robots, but also the environment of a system. The Super-
User also sets the access rights to information that the other
user interfaces have available. The GUI Server is responsi-
ble for enforcing these permissions. In general, a given user
will only be permitted to see certain classes of information.
For example, a Commander GUI might only be able to see
the position of robots it commands, or an Observer GUI
might not be able to see the position of virtual obstacles.
GUIs may be run locally or remotely over the World-Wide
Web, allowing users to be geographically dispersed. The
RAVE architecture allows any number of GUIs to be con-
nected to a given system. Furthermore, the GUI executa-
bles are platform-independent, giving users the ability to
command, control, and observe a system from a variety of
computing environments.

Because of the overlapping functionality of the three
user interfaces, they are structured as a modular collec-
tion of components, each of which provides a panel to the
user or provides some additional capabilities to an existing
panel. The components of an Observer GUI are a subset
of those of a Commander GUI, and the components of a
Commander GUI are a subset of those of the Super-User
GUI.

The panels available in an Observer GUI are:

• World View panel — displays the location of robots
and virtual obstacles in the environment (see Fig-
ure 2)

• Sensor Display panel — displays sensor readings

from robots

• Map panel — displays the local maps from individ-
ual robots or a global map from a “map server”

• Chat panel — allows the user to send messages to
other GUIs

A Commander GUI has one additional panel:

• Joystick panel — provides a joystick interface to
control robots

and provides additional capabilities on the following
panels:

• World View panel — allows the user to send a goal
point to a robot

• Chat panel — allows the user to send messages to the
robots it commands

The Super-User GUI additionally contains the follow-
ing panel:

• Super-User panel — allows the user to select and ex-
ecute a scenario script and to issue super-user com-
mands

The Super-User panel is a front end to a “Super-User
process” that does the work of starting up the robots, GUIs,
and servers and sending messages to control the execution
of the system. This process interprets a “scenario script”
that a user constructs to specify what robots and GUIs
should be started, which Commander GUIs control which
robots, access privileges, and general coordination among
system components.

Because of the modularity of the GUIs, additional func-
tionality can be added to the GUIs by creating new com-
ponents. Components are dynamically loaded at run-time,
based on a configuration file.

3.4 Overall Architecture

Figure 3 shows the overall architecture of the RAVE frame-
work for an example with three robots, two simulated and
one real. Each robot provides regular position updates
to the Environment Manager, which in turn periodically
broadcasts the state of the world to all the robots. These
updates are needed by any robot with at least one virtual
sensor. Since both real and simulated robots may have vir-
tual sensors, both may need this information to compute
virtual sensor readings. Robots regularly report their po-
sition and some sensor data to the GUI Server, which in
turn periodically broadcasts this information to the user in-
terfaces. Here, we have illustrated two Observers, which
can only view a system run, and two Commanders, which
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Figure 3: Overall architecture of the RAVE framework

can also control the robots. Control commands are sent
directly to the robots; the two robots on the right are con-
trolled by one Commander, the leftmost by a second Com-
mander. This Commander GUI can be used regardless of
whether the robots are real or simulated, and regardless of
whether they communicate their state to an Environment
Manager. This allows RAVE to serve as a simulation and
development environment as well as a command and con-
trol interface for real applications.

4 Robots

In this section, we discuss the standard interface to robots
and robot configuration. We have taken an abstract view of
a robot in order to provide a standard interface that can be
used for a variety of different robot platforms. The four
main components of this structure are illustrated in Fig-
ure 4 and include sensors and sensor processing, the deci-
sion process, controllers and actuators, and communicators
and transmitters.

4.1 Sensors and Sensor Processing

Real or virtual sensors may be attached to a robot. Real
sensors sense the real world, while virtual sensors sense
only the virtual world. For every sensor used, whether real
or virtual, a sensor driver is needed. Real sensor drivers di-

rect queries to hardware, while virtual sensor drivers make
the queries into a virtual environment database that is pe-
riodically updated by the Environment Manager. At this
point, the virtual sensor driver can inject noise into the sen-
sor reading (e.g., statistical noise). Real and virtual sen-
sors can be fused together in a type of hybrid sensor. In
essence, a third sensor driver is executed which is respon-
sible for fusing readings from the real and virtual compo-
nents of the sensor. All this takes place without the robot
realizing whether the reading came from a real, virtual, or
fused hybrid sensor. Some processing of raw sensor data
(like filtering) may be closely associated with a sensor and
can effectively be viewed as a part of the sensor itself.

4.2 The Decision Process

RAVE defines the decision process as the entity that takes
sensor readings as input and generates controller com-
mands as output. RAVE does not require that the author
of a robot program be confined to using a specific architec-
ture to implement the decision process. Since the decision
process only deals with two abstract interfaces, the decision
process is the same for a real or simulated robot. Several
architectures have been tested and evaluated in RAVE, in-
cluding [1, 5].
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Figure 4: Abstract view of a robot.

4.3 Controllers and Actuators

The controller is an object that takes commands from the
decision process as input and issues commands that the ac-
tuator driver will understand as output. Since the controller
only deals with two abstract interfaces, the controller driver
is the same for a real or simulated robot. Actuators are de-
vices that the robot uses to influence its environment, real
or virtual. For instance, this may be a motor, or a servo-
ing mechanism on a pan-tilt camera apparatus. Again, for
every actuator used, real or virtual, an actuator driver is
needed. On real robots, these actuator drivers redirect ac-
tuation commands to hardware. On simulated robots, the
virtual actuator driver will cause the robot to update its po-
sition (whether the robot as a whole, or perhaps the azimuth
of the pan-tilt apparatus). It is at this level that the dynam-
ics of simulated robots are modelled. A simulated robot
may be modelled as a second-order system whose wheels
occasionally slip, or without any dynamics may at all, de-
pending on the driver used.

4.4 Communicators and Transmitters

A communicator is an object that takes messages from
the decision process as input and issues messages that the
transmitter will understand as output. A communicator
allows the robot to send a message under some message
model, for example, limited-range broadcast communica-
tion or point-to-point communication. Like a controller, a
communicator deals only with two abstract interfaces and
is independent of the robot being real or simulated. The
transmitter is a device, such as an Ethernet or RF link, that
enables the robot to send messages to other system compo-
nents.

The author of a robot program implements only the
decision process; the controller, actuator, communicator,
transmitter, and sensor drivers are provided by RAVE
through the robot libraries (discussed in Section 3.1).

4.5 Robot configuration

A robot’s sensor suite, as well as the type of controller and
communicator, is determined at run-time. When a robot
program goes through its initialization phase, a configura-
tion file is used to set up the appropriate drivers. Robot
programs can be written generally so they are able to work
with a variety of sensor configurations. It is then easy to test
the effect of various sensor suites on robot performance.
A typical robot configuration file would physically define
the robot itself, contain controller parameters, definitions
of various sensors to be used, and the positions of those
sensors.

5 Applications

The non-restrictive architecture of RAVE has allowed its
use in many domains. Presently, we use RAVE in a labora-
tory setting with a group of heterogeneous robots, outdoors
with a homogeneous group of two robots, and novel inter-
faces have been developed to facilitate the interaction with
teams of robots.

RAVE has been particularly useful in the development
of software for the Millibot project (see Figure 5). In
this project, we are developing a heterogeneous team of
small mobile robots (6x6x6 cm) for performing surveil-
lance tasks. Due to the small size, each Millibot has only
limited sensing and computation capabilities. Still, as a
team, they are able to accomplish interesting tasks such
as exploration and mapping of unknown environments. To
overcome their limited computational power, we have ex-
tended the RAVE framework to enable proxy-computation.
Within RAVE, a virtual robot (running on a retrofitted
model tank-robot that acts as the mothership for the Milli-
bots) is the coordinator for the team. This team leader com-
municates with each of the Millibots over a low-bandwidth
RF communication link, and acts as a proxy relaying mes-
sages from and to the commander over a more powerful
wireless Ethernet link. At the same time, the team leader
acts as a computation proxy for computationally-intensive
tasks that cannot be handled by the individual Millibots.
For instance, for each Millibot, the team leader executes an
extended Kalman filter to determine the position and ori-
entation of the Millibot. The team leader also performs the
high-level coordination between the Millibots in the team.
RAVE provided the basic functionality that allowed us to
rapidly create this hierarchical framework of robot teams
in which heterogeneous robots collaborate, guided by team
leaders that can in turn be part of other robot teams.

RAVE has also been used to command and control a
group of two homogeneous All-Terrain Vehicles (ATVs) in
an outdoor environment (see Figure 6). RAVE is used to
control the steering, gearing, throttle, and braking remotely
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Figure 5: Our little demons. Tanks are on the left, Millibots
on the right.

Figure 6: One of our larger, more dangerous beasts.

using wireless Ethernet. Autonomous navigation was also
demonstrated by entering GPS waypoints to the ATV via
RAVE. To simplify command and control of robots in out-
door environments we implemented RAVE on a hand-held,
pen-based wearable computer. A gesture-based interface
has also been developed for RAVE. This allows users of
RAVE to control teams robots by using natural, intuitive
hand motions. Users can thus interact with robots (both
real and simulated) on a “hands-free” basis.

Collaborative mapping is another application where the
capabilities of RAVE have proved invaluable. We are de-
veloping and testing our mapping algorithms on a homoge-
neous group of three retrofitted model tank-robots (20x10
cm), as shown in Figure 5, named “Patton”, “Rommel”,
and “De Gaulle”. In this system, each robot builds a lo-
cal map based on sonar readings as it is driven around by
a Commander. The Commander can request a local map
from any of its robots or from a “Map Server” (which is
specific to this application). The Map Server queries each
of the robots for its local map and generates a global map
using a Bayesian update method (illustrated in Figure 7).

6 Conclusions and Future Work

We have created a software framework that provides the
infrastructure required to explore collaborative behavior in
systems of multiple heterogeneous mobile robots. The key
features of this framework are: the ability of the same robot
program to run on either a real or a simulated robot, thus fa-
cilitating the transfer of a system developed or tuned in sim-
ulation to real robots; the provision of virtual sensors that
can be used on both real and simulated robots; the ability to
add virtual obstacles to the world model; the capability to
allow real and simulated robots to operate simultaneously
and interact with each other; support for multiple users to
command individual robots or teams of robots via a local
network or the World-Wide Web; and transparency of dis-
tributing computational processes over multiple computers.

Further work on RAVE will include the transition from
2-D to 3-D world modeling, the creation of complex virtual
sensors such as cameras, and the extension of simulation
management capabilities to include automated capture and
analysis of runs.
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