
Task Automation by
Interpreting User Intent

PhD Proposal

Kevin R. Dixon

Thesis Committee:
Pradeep K. Khosla, Bruce H. Krogh, Maja J. Matari�, 

Christiaan J.J. Paredis, Sebastian B. Thrun

24 April, 2001



2

• Current development systems require 
traditional-programming methods.
• Requires computer-programming and domain 

expertise.

Introduction and Motivation



3

Introduction and Motivation

• Most domain experts have little procedural-
programming knowledge.

• Acquiring programming expertise is expensive.

• Users tend not to automate daily tasks.
• Many industrial tasks are still performed manually.



4

Introduction and Motivation

• Develop an improved paradigm for automating tasks.

• Increase user productivity by creating a more natural 
programming process.

• Remove computer programmers from the design 
loop.



5

Approach

• Allow users to “program” automation 
tasks by demonstration.

• Called “Learning by Observation” or 
“Programming by Demonstration”



6

Goals of Research

• Address uncertainty in sensing.
• Interpret intent of user demonstrations.

• Insensitive to changes in the environment.

• Incorporate multiple demonstrations to 
improve performance.

• Integrate the user into the design loop.



7

Presentation Overview

• Learning by observation overview.
• Related work.
• System design.
• Sample implementation.
• Proposed work.
• Evaluation of research.
• Expected contributions.



8

Learning by Observation:
Inherent Problems

• Must contend with usual sensor-based 
uncertainty.

• Environment is dynamic.

• Many demonstrations may be required to 
achieve generality.
• But available data will be sparse.



9

Learning by Observation:
Interpreting User Intent

• In many tasks, repeating the actions of 
the user verbatim is not desirable.

• Humans tend to be imprecise and make 
unintended actions.

• The LBO system must interpret the 
intent of the user.



10

Learning by Observation:
Definitions

• Task: sequence of actions designed to 
achieve an overall goal.

• Subgoals: set of states sufficient to complete 
the task.

• Environment Description: information 
conveying anything that could affect the task.



11

Learning by Observation:
Related Work

• Most previous systems segment fit observations to 
predefined symbols called primitives:
• HMMs: Yang, Xu, and Chen [1994]
• TDNNs: Friedrich et al. [1996]
• DTW: Ikeuchi et al. [1994], Matari� [2000]
• Ad Hoc: Bentivegna and Atkeson [1999]

• Primitives are used to reconstruct the demonstration.

• Most do not incorporate multiple demonstrations.



12

Learning by Observation:
Related Work

• Manually associating subgoals in the 
environment: Morrow and Khosla [1995].
• Assembly tasks.

• Allowing user to modify LBO output: 
Friedrich et al. [1996].
• Editing predicate-calculus statements.



13

Problem Description

• Input: Observations from repeated user task 
demonstrations and environment information.

• Output: Generative model (production 
program, controller, etc.)



14

System Design:

• Analysis, synthesis, and production.

• Data collection.

• System is broken up into two main phases.



15

System Design:
Determine Environment Configuration

• Description of all objects that could affect the task.



16

System Design:
Observe User

• We plan to use cameras to observe users performing tasks.
• Other modal inputs may be considered.

• We want to instrument users in an unobtrusive fashion.

• Assume the state of the user is observable through sensors. 



17

System Design:
Compute Subgoals

• Repeating raw observations verbatim can lead to several 
problems.

• Segmenting observations into symbols ignores uncertainty.
• Use likelihood of predictive model to determine subgoals. 



18

System Design:
Associate Subgoals to Environment

• Most tasks are defined with respect to objects in the 
environment.

• Associate subgoals automatically with objects in the 
environment.

• Potential problems: object occlusion, incorrect associations.



19

System Design:
Another Demo?

• The user can demonstrate the task as many times as desired.



20

System Design:
Map Demos to Common Environment

• Environment configuration may be different for each 
demonstration and cannot use object tracking.

• Map demonstrations to a “canonical” environment to minimize 
configuration-specific user behavior.



21

System Design:
Map Demos to Common Environment

• Determining the mapping is an optimization problem, solutions depend on 
the objective function used.

• Implicit assumptions about likely perturbations are built into the objective 
function.

• Must be able to map environments with extraneous and occluded objects.



22

System Design:
Determine Task Structure

• Combine observations from all demonstrations to determine 
the intent of the user, captured by an FSA.

• FSA output should be necessary set of subgoals to complete 
the task, including branching.



23

System Design:
Perform Task

• Map canonical environment to current environment.
• Mapping must work in both directions.

• Used necessary subgoals from FSA to perform the task.



24

System Design:
User Modification?

• Integrate the user into the design loop to improve LBO system 
performance.

• Modifications should alter the way that the task structure is 
determined.



25

System Design:
Sample Implementation

• Simulator description.
• Computing subgoals.
• Map demonstrations to common environment configuration.
• Determine Task Structure
• Performance Metric



26

Sample Implementation:
Simulator

• Tasks consist of click-and-drag 
operations with the mouse
• Mouse state is given directly by 

simulator.

• Environment is comprised of planar 
polygons.
• Configuration consists of corner 

locations, found by vision algorithms.



27

Determining Subgoals

• Assume user follows smooth trajectories between 
subgoals.

• Estimate the parameters of a time-varying linear 
system using a moving average.

• When likelihood of predicting next state drops 
dramatically, mark previous state as subgoal.



28

Determining Mapping

• Attach springs from each corner to all others.

• Repeat for resultant frame.
• Minimize change in force for all objects.

Weighted bipartite graph matching: Linear Program.
• Gets confused easily…



29

Sample Task
start

finish

• First, find corners.

• Asked four hapless grad 
students to demonstrate 
the task five times.

• Next, observe user and 
determine subgoals.

• Determine subgoal-
environment associations.



30

Sample Task

• Resulting subgoals determined 
from 20 user demonstrations.

• From these data, we must 
determine the structure of the 
task.

• Description of training 
algorithms and performance 
comparison.



31

Acyclic Probabilistic Finite Automaton
Training Algorithm

• Each demonstration is an ordered set of subgoals.

• Build a DAG that is comprised of all 
demonstrations.

• Treat demonstrations as stochastic to combine 
similar subgoals.



32

Sample Task

• Output of APFA algorithm.

• Appears to capture intent of 
users well.

• But what does well mean?



33

• What’s missing from the diagram is a way of 
measuring which is better.

• Preliminary answer: Normalized string edit distance.
• Percentage of subgoals that must be added, deleted, or 

modified to get “correct” answer.
• APFA algorithm: 0.11
• HMM algorithm: 0.95

• These are scores for canonical environment, not 
ensemble averages.

Quantifying Well



34

Proposed Work

• Determine “ergodic” performance metric of LBO 
system.

• Incorporate robust mapping algorithm that can 
handle object occlusion.

• Develop theory behind APFA-training algorithm.
• Incorporate users into design loop of LBO system.

• Integration of vision algorithms.



35

Evaluation of Research

• Cross-validation sets will be used on hand-
crafted problems to evaluate subsystems.

• Target task is arc welding.
• Feedback from domain experts will be 

used to evaluate viability of system.



36

Expected Contributions

• Demonstrate that an LBO system is a viable 
automation tool.

• Create an LBO system resilient to environment 
perturbations.

• Determining subgoals in a non-symbolic fashion.
• Incorporating multiple demonstrations to increase 

performance.
• Devising an algorithm to determine the structure of 

underlying tasks.



37

Preliminary Timetable

18 monthsSeptember 02May 01Total

3 monthsSeptember 02July 02Write report

4 monthsJuly 02April 02Experiments with domain experts 
and integrating their feedback

4 monthsMarch 02December 01Controlled experiments on robot 
manipulators.

3 monthsNovember 01September 01Integration of vision algorithms.

4 monthsAugust 01May 01Verification of algorithms in 
simulation.

DurationEnd dateStart dateTask


