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Abstract

Despite the numerous advances in human-robot interaction, most development systems still require that users have
substantial knowledge of procedural-programming techniques as well as the specific robot system at hand. For
the vast majority of the population, this effectively precludes the use of robots in most cases. If robots are to
make headway into everyday situations, then users must be able to program robots in a more natural and intuitive
manner. This dissertation explores a method of programming robots to automate motor tasks by inferring the
intent of users based on demonstrations of a task. In order to understand such a system, we decompose it into
simpler components: modeling user subgoal selection and the response of users to different conditions.

We have developed a learning algorithm that constructs a statistical model of user subgoal selection based on
previous observations. After deriving the algorithm, we provide theoretical guarantees about the model. To vali-
date the theoretical underpinnings of the algorithm, we isolate the performance of modeling user subgoal selection
by removing extraneous factors such as sensor noise and environment considerations. To this end, we present
experimental results in predicting the waypoints of manipulator-robot programs. We show that the algorithm
produces submillimeter prediction errors on real-world data.

We hypothesize about the response of users to different conditions with a model of sequenced linear dynamical
systems. We first develop the concept that a single dynamical system can represent a simple trajectory using a
closed-form least-squares procedure. Since our approach is based on the least-squares principle, it is simple to
combine multiple demonstrations, giving the system a better generalization of “what the user would have done”
in novel conditions. To represent more complicated trajectories, we segment it and represent each segment by a
single dynamical system.

These algorithms form the core of a mobile-robot system that learns motor skills by observing users demon-
strating a task. From these observations, the system extracts task subgoals and automatically associates them with
objects in the environment, so that as the objects move, the subgoals are updated accordingly. This system can
learn from multiple demonstrations, as well as demonstrations performed in different environment configurations.
In laboratory experiments, we show that the system accurately infers user intent.
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Chapter 1

Introduction

Despite the numerous advances in human-computer interaction, most development systems still require that users

convey knowledge to robots through procedural-programming techniques. For the vast majority of the population,

this transfer of knowledge is limited by the programming expertise of the user. Most users have neither the

experience nor the inclination to program robots to perform their tasks. In industrial settings, many companies do

not have the resources to automate production; the down-time required to reprogram the facilities may interrupt

production and the expense required to obtain programming expertise may be too great.

The goal of this work is to create a system that increases the knowledge transferred between users and robots.

Consider the case of industrial robotic arc-welding. When a new product arrives that the factory is to produce, a

skilled manual arc-welder typically practices welding the product together by hand to determine the best sequence

of welds. The arc-welder then collaborates with a computer programmer to write the procedural code to create

a robot program that automates the process that the arc-welder has performed by hand. The conventional design

process is shown in Figure 1.1. Clearly, this process could be streamlined by creating a system that observes the

arc-welder performing the task by hand and synthesizes the information to create the robot program needed to

automate production. This approach is known as Learning By Observation (LBO), and the design process with an

LBO system is shown in Figure 1.2. Such a system allows users to “program” automation tasks by demonstration,

instead of writing software in a conventional procedural-programming language.

1
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Figure 1.1: The typical industrial task-automation design loop.
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Figure 1.2: The industrial task-automation design loop with Learning By Observation.

1.1 Goals

The goal of this work is to develop a framework to automate low-level tasks by observing user demonstrations. In-

formally, a low-level task is one where an observable state1 sequence is sufficient to extract the necessary informa-

tion needed to complete the task. This information then maps onto a sequence of motor commands specifying how

a robot should achieve the desired goal. For this reason, we call these motor-skill tasks, which form the foundation

of industrial automation (Kurtz & Kuper, 1986). The vast majority of industrial robotic tasks, such as painting,

welding, palletizing, foundry work, and fixturing fall into this category. A system that can automate motor-skill

tasks by observing users performing tasks manually would dramatically improve the industrial-automation design

process. The goal of a motor-skill task is a desired state, which may be a function of the environment and other

factors. Furthermore, the goal can usually be decomposed into a sequence of subgoals, whose relative ordering

may, or may not, be important. Consider the case of welding the joints of a rectangle. If the goal is to weld the

object together, then a subgoal might be the welding of a particular corner. The position of the weld is determined

by the size, location, and orientation of the rectangle, making the desired subgoal state a function of the environ-

ment. Since the goal of a motor-skill task may be modulated, the sequence of motor commands extracted from

user demonstrations can be a function of sensory information.

The fundamental question in this work is:

• “Can we design a system that automates motor-skill tasks from observations of user demonstrations?”

To answer this question, we must first specifically describe the requirements to which the system must adhere.
1By observable state, we mean those state variables that can be inferred from an observed trajectory. This definition permits temporary

occlusion (unobservability) of relevant state variables during demonstration.
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1.2 System Requirements

From the highest level, an LBO system “watches” users demonstrating a task. The LBO system then synthesizes

that information to perform the task in the future. This implies that the LBO system has access to some actuation

system capable of reproducing the necessary commands, e.g., a robot. This description naturally leads to some

requirements that can be imposed.

With any system, there is a trade-off between ease of use and ease of design, and LBO is no exception.

Generally speaking, placing more burden on users simplifies the design of an LBO system. Requiring users

to provide detailed information about a demonstration, or integrating sophisticated instrumentation, may help

to create a better-performing LBO system. However, if taken too far, this could defeat the purpose of LBO,

which is simplifying task automation. Consequently, we have adopted the philosophy that the method by which

the LBO system observes users should be as unobtrusive as possible. Our LBO system employs a scanning

laser range finder to observe user demonstrations, which produces two-dimensional polar-coordinate readings at

a predetermined horizontal plane. Such a sensor greatly simplifies the demonstration process, as we require no

additional instrumentation of users or the environment, but it does increase the burden on the LBO system. For

example, a laser is a line-of-sight sensor, meaning that the LBO system must deal with temporary occlusion of

users. Furthermore, our learning algorithms are unsupervised. That is, we do not require users to provide any

additional information about a task demonstration; our LBO system learns to automate tasks from observations

alone, without user intervention. This reduces the burden on users to think in terms of what information our LBO

system requires. To compensate for this, in an anthropomorphic sense, our learning algorithms must infer the

intent of users from observations gleaned from task demonstrations. It is no secret that getting inside the mind of

a human is never easy.

We also require that the LBO system be able to perform tasks in different environments. This implies, first of

all, that the LBO system must be able to sense the state of the environment. When presented with novel conditions,

the system must ultimately determine a single sequence of motor commands to perform a task. Since there may be

many possibilities to complete a task, such a system is inherently biased and gives preference to some possibilities

over others. Because the LBO system is emulating user actions, it is hypothesizing about what the user would

have done under these conditions. This implies that the LBO system has a model of how the behavior of users

changes with different conditions. To infer user intentions, the LBO system should be able to learn from multiple

demonstrations of a task. Furthermore, to help the LBO system better understand how the behavior of users

changes, it should be able to learn from demonstrations performed under different conditions.
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Figure 1.3: Building a hypothesis of user intent and performing the task under different conditions.

1.2.1 Implementation

We assume that users have a desired sequence of subgoals in mind when performing a task. In this work, a subgoal

is a vector in the state-space of users, such as their {x, y} position. These subgoals are subsequently modified to

compensate for changes in the environment and other external factors. While subgoals are invariant for the task,

the specific actions that users perform to achieve the subgoals are specific to the current operating conditions. The

purpose of the LBO system is to provide the necessary sequence of motor commands specifying how to achieve

the subgoals in the requisite order. To this end, the LBO system extracts a set of subgoals from observations of

user demonstrations and develops a hypothesis about the internal user model, as shown in Figure 1.3(a). When

asked to automate a task, the LBO system computes from the estimated user model the necessary sequence of

actions, or estimated subgoals, that the user would have performed under those same conditions, Figure 1.3(b).

1.3 Methodology

LBO systems are inherently complex. To understand the performance of any complex system, it is necessary to

decompose the system into smaller components. To this end, we attempt to isolate certain salient problems of

LBO: modeling user subgoal selection and the response of users to different conditions.
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1.3.1 Modeling User Subgoal Selection

As described in the following chapters, a natural model of user subgoal selection is a Continuous-Density Hidden

Markov Model (CDHMM). However, one of the hallmarks of LBO is the extreme scarcity of data upon which to

train the system. This is because LBO systems gather observations from human activity, and each demonstration

may be of significant duration. As such, it may require hours, days, or months to obtain a sufficient number of

examples for successful learning. Our CDHMM learning algorithm is designed to cope with the characteristic

difficulties of LBO: real-time operation and limited training data. The hypothesis is then as follows:

Hypothesis 1.1. CDHMMs are an effective model of user subgoal selection.

The modeling of subgoal selection from observations of user demonstrations with a CDHMM is a mathemati-

cal abstraction of the underlying phenomenon. Testing the hypothesis that CDHMMs are an effective model of user

subgoal selection, then, requires two steps. The first phase involves theoretical guarantees about the model, i.e.,

assuming that users create subgoals as a CDHMM, what provable statements can be made about the performance

of the model? These statements take the form of propositions and answer the questions:

• What tasks can be automated?

• What computing resources are needed to estimate the model?

• How many demonstrations are needed to achieve a desired performance?

Even with the answers to these questions, it remains to be seen if real-world data, in the form of user demon-

strations, are well modeled by this abstraction. To isolate the performance of the LBO system in modeling user

subgoal selection, we remove extraneous factors such as sensor noise and environment considerations. We are

then left with the simplified problem of inferring the user model from sequences of subgoals. An essential capa-

bility for any LBO system is predicting the next subgoal in a sequence, which is necessary because, if an LBO

system cannot accurately predict a subsequent subgoal, then there is little hope it can generate the sequence of

subgoals necessary to automate an entire task. We analyze the performance of the CDHMM in modeling user sub-

goal selection on real-world data with the application of Predictive Robot Programming (PRP). From a high-level

perspective, in PRP, users provide subgoals directly to the LBO system, which are measured precisely and have

negligible sensor noise. Even then, the subgoals must be considered noise-corrupted due to the poor repeatability

and low precision of humans. The system estimates a model that describes how users create subgoals, without

consideration for how the environment effects performance. While users are performing a task, the PRP system

predicts only the next subgoal, shown graphically in Figure 1.4. By analyzing the accuracy of these predictions,

we characterize the ability of a CDHMM to model user subgoal selection.
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Subgoals:
y0,y1, . . . ,yn
Environment:

Hypothesis

ŷn+1

Prediction:

Figure 1.4: Isolating user-subgoal-selection modeling performance with Predictive Robot Programming.

1.3.2 Hypothesizing About User Actions

As mentioned previously, a subgoal is a vector in the state-space of the user. In many motor-skill tasks, the specific

actions necessary to achieve a subgoal are equally as important as the subgoal itself. Consider a hypothetical LBO

system learning to drive a car on a given route based on a user demonstration. The subgoals might be the locations

of the intersections along the way. However, the specific actions needed to reach the destination are as important

as the subgoals themselves. For example, driving in a straight line between the intersections would result in

disaster for most automobiles if there are any curves in the road. An LBO system, such as this hypothetical driving

example, or ours, must hypothesize about what actions the user would perform to achieve the subgoals. In other

words, the LBO system must infer user intent. The hypothesis is then as follows:

Hypothesis 1.2. We can form accurate hypotheses of what actions the user would perform in novel conditions

based on previous demonstrations of a task.

We create a mathematical abstraction of user intent, with a model of sequenced linear dynamical systems. We

then explore provable statements that can be made about the performance of the model, which take the form of

propositions and answer these questions:

• Can we optimally represent hypotheses of user actions to novel conditions?

• Under what conditions will the model succeed and fail?
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1.3.3 Learning By Observation

Once again, it remains to be seen how well this mathematical abstraction models real-world data. We verify

these ideas in laboratory experiments with our LBO system called “Dollop,” which embodies the key features that

complicate LBO systems, such as sensor noise and environmental considerations. In these experiments, a mobile

robot learns motor-skill tasks by observing users with a laser. From these observations, the system automatically

extracts the task subgoals. Dollop can incorporate multiple demonstrations of a task, in addition to demonstrations

performed in different environment configurations. From these examples, Dollop forms a hypothesis about user

intent, giving the system the ability to complete the task successfully under novel conditions. Consequently,

Dollop serves as the basis for verifying the key concepts needed in an LBO system.

1.4 Contributions

The main contributions of this work are:

• A CDHMM structure-estimation algorithm (Dixon et al., 2004). This algorithm is designed to cope with

the characteristic difficulties of LBO: scarce training data and real-time operation. The algorithm can oper-

ate in an online fashion, as observations become available, or as batch processing, on a complete data set.

We provide a theoretical analysis showing the strengths and weaknesses of the algorithm.

• Design and analysis of a Predictive Robot Programming system (Dixon & Khosla, 2003). In addition

to isolating variables to study LBO performance, the application of PRP is worthwhile in its own right to

decrease manipulator-robot programming time. We show that the PRP system has a median prediction error

less than 0.5% of the distance traveled during prediction on a set of data from complex, real-world robotic

tasks. We also present laboratory experiments showing that the PRP system results in a significant reduction

in programming time, with users completing simple robot-programming tasks over 30% faster when allow-

ing the PRP system to compute predictions of future positions.

• Trajectory representation using Sequenced Linear Dynamical Systems (Dixon & Khosla, 2004b). We

have derived a novel method to represent hypotheses of user actions by estimating a sequence of linear dy-

namical systems that describes a demonstration. We show optimality of the formulation and provide a proof

of stability of the induced supervisory control law.

• Development of a computational approach to Learning By Observation (Dixon & Khosla, 2004a). We

leverage the analyses from the previous contributions to develop an LBO system that learns motor-skill
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tasks from user demonstrations. Multiple demonstrations can be incorporated to improve system perfor-

mance, and demonstrations can be performed in different environment configurations. We present laboratory

experiments showing that the LBO system accurately infers user intent.

1.5 Outline

This dissertation is outlined at follows:

• Chapter 2: Background provides a review of the relevant previous work in the related areas, such as rep-

resenting motor commands, LBO, and HMMs.

• Chapter 3: The Learning Algorithm derives the CDHMM structure-estimation learning algorithm used

throughout this work.

• Chapter 4: Predictive Robot Programming analyzes the ability of our system to predict waypoints in

complex, real-world manipulator robot programs. We also present results showing a reduction in the time

needed to program simple tasks in a laboratory setting.

• Chapter 5: Hypothesizing About User Actions describes the representation of hypotheses of user actions

with Sequenced Linear Dynamical Systems.

• Chapter 6: Learning By Observation describes our motor-skill LBO system, Dollop, with experimental

results in a laboratory setting.

• Appendix A: Technical Details to preserve continuity, we have put the proofs to most propositions, as

well as lengthy derivations, in the appendix. The exception is when the proof is particularly instructive or

extremely short.



Chapter 2

Background

This chapter describes the body of research related to the key ideas in this dissertation.

2.1 Introduction

As mentioned previously, we decompose Learning By Observation into two distinct components, modeling the

response of the user to different conditions and user subgoal selection. In this chapter, we describe research

related to each of these problems. Fundamental to modeling user response to different conditions is a method for

encoding motor commands (Section 2.2). We use CDHMMs (Section 2.3) to model user subgoal selection during

task demonstrations. In Section 2.4 we discuss theoretical results that provide constraints about the tractability of

this approach. In Section 2.5 we place our work in the context of research related to LBO.

2.2 Encoding Motor Commands

This section describes methods by which various systems encode motor commands. Essentially, there are two

broad choices regarding the strategy to represent a user demonstration. The optimal-control approach attempts to

describe a user demonstration by a control law, which is a collection of coupled functions that may be stochastic

in nature. The behavior-based approach describes a user demonstration by a set of predefined “primitives.” By

sequencing the behaviors appropriately, a system can represent user demonstrations in a symbolic manner.

9
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2.2.1 Control Laws

The most straightforward method for encoding actions is a control law (Antsaklis & Michel, 1997), that is, a

function that maps the current state of the system to a set of motor commands. The use of control laws to model

biological systems goes back at least half a century (Ashby, 1952) and remains a popular approach to construct

biologically plausible theories about brain behavior (Friston & Price, 2001).

Optimal Control

The field of optimal control (Stengel, 1986), where a control law is computed that minimizes some cost function,

has been extremely successful for encoding motor commands. These techniques made possible automatic piloting

of aircraft, cruise control in automobiles, and travel to the moon (Betts & Erb, 2003). Economists have made

extensive use of optimal-control theory (Dorfman, 1969), and it has been applied to disease-therapy research

(Stengel et al., 2002). A method for creating nonlinear controllers that approximately track a desired trajectory has

been demonstrated for aerial vehicles (van Nieuwstadt & Murray, 1998). Ghahramani and Roweis (1999) use an

iterative algorithm to approximate a demonstrated trajectory, and Ijspeert et al. (2001) describe an approach using

nonlinear attractor dynamics for motor-skill learning problems. Kaiser et al. (1995) designed a neural-network

system that creates a nonlinear force feedback controller based on error backpropagation (Mitchell, 1997).

The underlying mathematical model of the optimal-control formulation is the Markov Decision Process (MDP)

(Boutilier et al., 1999). An MDP is a model where the current state of the system and a control law uniquely

determine the cost function. Furthermore, the probability distribution of the next state of the system given the

current state and the control law is conditionally independent of all other information, i.e., the Markov assumption.

By making some state variables unobservable, an MDP becomes a Partially Observable Markov Decision Process

(POMDP) (Kaelbling et al., 1998). Despite known hardness results for POMDPs (Lusena et al., 2001), these

models have shown themselves extremely useful in practical applications (He & Shayman, 2000; Pineau et al.,

2003).

Reinforcement Learning

While optimal-control techniques have been around since the 1950s, there has been more recent interest in apply-

ing these concepts to situations where there are unknown dynamics or extremely large state spaces. This subfield

is known as Reinforcement Learning (RL) (Kaelbling et al., 1996; Sutton & Barto, 1998). The basic algorithms of

RL, such as Q-learning (Watkins & Dayan, 1992) and TD(λ) (Dayan, 1992), are theoretically well founded and

provide optimality results, but most approaches are heuristic and approximate in nature (Bertsekas & Tsitsiklis,

1996). This is, after all, because the goal of RL is solving intractable optimal-control problems. Despite known
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divergence results when using a broad class of function approximators (Tsitsiklis & Van Roy, 1995), many re-

searchers have successfully used neural networks in RL applications (Zhang & Dietterich, 1996). The best-known

example of an RL application is the system that learned to play the game of backgammon, called TD-Gammon

(Tesauro, 1995). By playing many games against itself, TD-Gammon learned to play at a level competitive with

the best players in the world.

2.2.2 Behavior-Based Systems

Behaviors are variously known as skills (Kaiser et al., 1996), schemas (Arkin & Balch, 1997), primitives (Mor-

row & Khosla, 1995), basic operations (Friedrich et al., 1996), and atomic actions (Kuniyoshi et al., 1994). An

often-implied definition of a behavior is a function that generates motor commands based on the current and pre-

vious states of the system (Matarić, 1992). For this reason, a behavior is a generalization of a control law. A

typical behavior-based system contains multiple behaviors that execute in parallel with a scheduling algorithm

switching between the different behaviors in response to sensory input; some systems allow multiple behaviors

to issue motor commands simultaneously (Matarić, 1997). This scheduling algorithm is similar to the concept of

sliding control (Slotine, 1984). As a general design principle, a behavior should be modular, permitting its reuse

in different applications. Furthermore, behaviors are typically designed to achieve some goal. Common examples

of these include “avoid stationary objects,” “wall following,” “pick up object,” and “navigate to landmark” (Arkin,

1998). As such, complex external behavior emerges from the complex interplay of simple internal behaviors.

Given these building blocks, the primary difficulty in creating behavior-based systems is designing the scheduling

algorithm that sequences the behaviors to achieve a high-level goal. These scheduling algorithms can be quite

complex, as Fagg et al. (1994) write: “However, despite some of the recently reported successes of reactive or

behavior-based approaches, hiding behind most successes is a graduate student who spends many hours carefully

designing, testing, and redesigning the set of control modules, until the desired behavior is achieved....” Con-

sequently, there has been a substantial amount of research in trying to learn the scheduling algorithm (Maes &

Brooks, 1990; Mahadevan & Connell, 1992) and many recent behavior-based systems use a learning procedure

to tune the scheduling algorithm (Kaminka et al., 2002). There has also been recent work in using auction-based

methods to design the scheduling algorithms, on both hand-crafted (Gerkey & Matarić, 2002; Zlot et al., 2002)

and learned (Bererton et al., 2004) reward functions.

The scheduling algorithm must select from a discrete set of behaviors, and it is common to define a behav-

ior in terms of symbolic pre-conditions and post-conditions. Nicolescu (2003) describes the behaviors Local-

ize, GetBox, Goto(Door), OpenDoor, GoThroughDoor, and Goto(Home). For example, the behavior

OpenDoor requires the pre-conditions AtPlace(Door)=true and DoorOpened=false. The behavior

achieves the post-conditions DoorOpened=true and HaveBox=false. To achieve a high-level goal, e.g.,

carrying a box from a room through a door to a home position, a behavior-based system typically schedules the
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behaviors in terms of predicate calculus (Russell & Norvig, 2002). While predicate-calculus problem solvers offer

a clean avenue to achieve a goal, this approach ignores the uncertainty inherent in mobile robotics (Thrun, 2001).

Behavior-based robotics has had wide spread success in both research and practice. Unquestionably, the most

resounding success of behavior-based robotics was the Mars rover, Sojourner (Gat et al., 1994). Behavior-based

robots also dominate the robotic soccer competition, RoboCup (Lenser et al., 2002). Further examples of behavior-

based systems are also given throughout the remainder of this chapter.

2.2.3 Our Approach

For the motor-skill learning tasks that we consider, we do not need the high-level representation that behavior-

based systems offer. We have, therefore, formulated motor-command encoding as an optimal-control problem

(Chapter 5). Essentially, we compute a sequence of control laws that minimize the error between what the LBO

system does and what the user demonstrated. This gives our LBO system the ability to hypothesize what the user

would do by examining the response of the control laws to novel conditions. The formulation also allows multiple

demonstrations to be incorporated into the hypothesis to improve its generalization.

2.3 Hidden Markov Models

According to Rabiner and Juang (1986), a Hidden Markov Model (HMM) “is a doubly stochastic process with an

underlying stochastic process that is not observable (it is hidden), but can only be observed through another set of

stochastic processes that produce the sequence of observed symbols.” Informally, an HMM has a set of states and

a random process that transitions between states at discrete time steps according to state-transition probabilities.

Given the current state of the HMM, the probability of the next state is conditionally independent of all other

information. That is, the current state uniquely determines the probability of subsequent states. At each discrete

time step, an observation is generated according to a specific probability distribution depending only on the current

state. To an observer of an HMM, the observations are visible, while the underlying state sequence is hidden. A

typical HMM is defined to have a finite set of states and a finite set of possible observations (alphabet size). A

common practice for converting continuous data into discrete data is known as Vector Quantization (VQ) (Rabiner

& Juang, 1993). VQ and its adaptive counterpart, Learning Vector Quantization (Kohonen, 1988), attempt to

put a continuous vector into a finite number of “bins.” For many automation tasks, quantizing the observation

vectors is simply not an option and observations will remain continuous vectors. In other words, there are an

uncountable number of possible symbols that users can produce. Consequently, there is a class of HMMs that has

a finite number of states and continuous-density observations (Juang et al., 1986). This type of HMM is called

a Continuous-Density Hidden Markov Model (CDHMM), which forms the substrate of our LBO system. There
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are also extensions of CDHMMs to include an uncountable number of states, i.e., the state variable is continuous

(Thrun et al., 1999).

2.3.1 “The Three Basic Problems for HMMs”

Rabiner (1989) identifies what are typically called “The Three Basic Problems for HMMs.”

Evaluation

The evaluation problem is, given an HMM and an observation sequence, how do we compute the probability that

the observed sequence was produced by the model? The answer to this question is solved efficiently using an

algorithm, similar to Dynamic Programming (DP), called the “forward procedure.”

Decoding

The decoding problem is, given an HMM and an observation sequence, how do we determine the optimal sequence

of HMM states that explains the observations? Not specifying the term “optimal” makes this question somewhat

ambiguous. In most applications, the optimality criterion is taken as maximum likelihood and then the decoding

problem can be computed efficiently using a DP algorithm called the “Viterbi algorithm.”

Training

The training problem is, given an HMM topology and an observation sequence, how do we tune the parameters

of the HMM to maximize the likelihood of the observation sequence? Taken at face value, this is a hopeless

problem, since there are results suggesting that globally optimal training of HMMs is not possible in polynomial

time (Abe & Warmuth, 1992). However, it is possible to arrive at a locally optimal solution using an iterative

Expectation-Maximization approach (Bilmes, 1997). When applied to HMMs, this is called the Baum-Welch or

forward-backward algorithm (Rabiner, 1989).

2.3.2 The Question Not Asked

Rabiner (1989) notes that “by far the most difficult” of the Three Basic Questions is the training problem. Con-

spicuously absent from those questions is the much more difficult problem of how to estimate the structure of an

HMM from an observation sequence, in addition to finding the optimal parameters. Once again, taken at face
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value, this is an inherently ill-posed problem, since an infinite number of HMMs can produce any particular ob-

servation sequence. In Section 2.4 we describe some research in estimating the structure of various graph-based

models.

2.4 Structure Estimation

Most of the research in structure estimation for HMMs can be traced back to Gold (1967). In the seminal paper,

Gold (1967) writes, “In finite identification, the learner is to stop the presentation of information at some finite

time when it thinks it has received enough, and state the identity of the unknown object. This is not possible

unless there is some finite time at which the information distinguishes the unknown object. That is, no other object

satisfies the information.”

2.4.1 Structure Learning in Deterministic Finite-State Automata

Initial research in structure estimation focused on learning with Finite-State Automata (FSAs); Ron (1995) gives

a comprehensive survey. The most fundamental form of structure estimation, a deterministic FSA, was shown

by Angluin (1978) to be NP -complete even when given both positive and negative observation sequences, i.e.,

examples that the target FSA could have and could not have generated. From this foundation, it follows that the

more sophisticated structure-estimation problems are intractable as well. Kearns and Valiant (1994) showed that

deterministic FSA structure estimation from an observation sequence is at least as hard as factoring, regardless of

the choice of representation used in the learning algorithm. This implies that structure estimation in deterministic

FSAs is as difficult as breaking many current cryptographic protocols. However, when the learning algorithm is

provided access to an oracle that can provide answers to queries, then the deterministic FSA structure-estimation

problem becomes tractable (Angluin, 1987). Rivest and Shapire (1994) derive a polynomial-time algorithm for

exactly learning the structure of an FSA when the learner is allowed to experiment and given access to an oracle.

When deterministic automata become stochastic, either with probabilistic transitions between states or noise-

corrupted observations, the results become worse. Rudich (1985) gives an algorithm for estimating the structure

of a Markov chain in the limit of infinite observations, but the computational complexity is intractable. Gillman

and Sipser (1994) show that even when given access to an oracle, an ergodic HMM learning algorithm requires an

exponential number of queries for exact learning.
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2.4.2 Structure Learning in Hidden Markov Models

In the machine-learning field there is a substantial amount of research on structure estimation in HMMs. Due

to the inherently ill-posed nature of the structure-estimation problem, some researchers have focused on special

subclasses of HMMs to deliver better results. Ron et al. (1998) have derived a state-merging algorithm that

constructs correct, in the Probably Approximately Correct sense, discrete-symbol Probabilistic Finite Automata

(PFAs). The running time is polynomial in the number of observations and alphabet size, provided the states of the

target PFA are distinguishable and acyclic. There is a similar state-merging algorithm that estimates general PFA

topologies in the limit of infinite training data (Carrasco & Oncina, 1999). The theoretical results of these works

rely on enumerable alphabet sizes, whereas LBO requires multivariate real-valued vectors to describe human

actions. Several researchers have also pursued more heuristic approaches to HMM structure estimation. For

example, Stolcke and Omohundro (1994a) incorporated a prior topology distribution favoring simple models and

performed a best-first state-merging to induce the structure of an HMM from observations. Brand (1999) used

an entropy-based prior to cause parameter extinction in ergodic HMMs. But such heuristics make it difficult to

provide performance guarantees. Singh et al. (2002) used early-stopping techniques to determine the phonetic

units for a speech recognizer. The process of determining the atomic units of speech has much in common with

representing the “primitives” needed to complete a set of tasks. However, the large cross-validation sets found in

the speech-recognition domain, required for early-stopping, are not available in LBO.

There has also been recent interest in estimating the structure of HMMs in the statistics and information-

theory fields, where it is called order estimation (Ephraim & Merhav, 2002). Results from these fields deal with

bounding the asymptotic likelihood of under- or over-estimating the number of states (Merhav et al., 1989) and

there have been generalizations to handle continuous observations (Rydén, 1995). While theoretically appealing,

these approaches rely on the existence of a globally optimal maximum-likelihood estimation procedure for HMMs,

which is known to be intractable (Abe & Warmuth, 1992). There has been more recent work on restricting the

classes of HMMs in order to derive viable results (Gassiat & Boucheron, 2003). However, these results are focused

on asymptotic performance and not computational complexity. Even the tractable approaches specify termination

only in a finite number of steps (Ephraim & Merhav, 2002) and, consequently, these guarantees are not appropriate

for real-time use in an LBO system.

We have created a CDHMM learning algorithm motivated by the characteristic difficulties of LBO (Chapter 3).

First, the algorithm must be able to operate in real time, so its computational complexity must be low and it

cannot rely on asymptotic performance. Furthermore, the algorithm cannot expect large amounts of training data,

such as the large corpora of data in the speech-recognition domain. Rather, our learning algorithm is designed

to identify the relatively short-sequence similarities found in LBO. We have, therefore, focused our attention

on a low-complexity algorithm that produces the “right” observation at the “right” time, rather than asymptotic

sequence guarantees such as those described by Ephraim and Merhav (2002).
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2.5 Learning By Observation

We use the term Learning By Observation (LBO) to describe the umbrella concept of a computer-based system

learning from observations obtained from user demonstrations of a task. The goal of an LBO system is to synthe-

size the information in order to automate the task. LBO is variously known as Programming By Demonstration,

Teaching From Example, Learning By Experience, or some permutation thereof. From our perspective, the most

important distinction occurring in LBO systems is whether a particular system imitates or interprets intent from

user demonstrations.

2.5.1 Imitation

Imitation is an enormously well-studied phenomenon in psychology and biology (Zentall & B.G. Galef, 1988).

This work is concerned with computational aspects of imitation and the application to robotics. We, therefore,

restrict our attention to what it means for a robotic system to “imitate” a user (Kawamura et al., 2000). Schaal

(1999) describes imitation in terms of a control policy that maps the current state of the system to a set of motor

commands. Many approaches have attempted to compute this mapping directly, using look-up tables or function-

approximation techniques. In fact, this method forms the basis of industrial robotics (Craig, 1989), where users

supply robots with the precise sequence of motor commands to perform and there is no learning involved. This

requires that the workspace be extremely well calibrated and structured, since industrial robots cannot adapt their

response to unspecified conditions.

The most straightforward implementation of LBO is one where the actions of the teacher are repeated directly

(Gaussier et al., 1998). Asada and Asari (1988) created a system that learned to imitate the forces exerted by

users during a demonstration. Hayes and Demiris (1994) developed an LBO system that allowed the transfer of

knowledge between robots using direct imitation of the actions of the teacher-robot. Schaal (1997) extends this

concept by incorporating RL techniques to refine the action sequence learned from users. Many researchers have

developed LBO systems that attempt to reproduce a predefined sequence of features, such as contact points or

higher-level concepts. Chen and Zelinsky (2003) use a symbolic configuration-space description to represent a

simple assembly task. Suboptimal human demonstrations were ameliorated by “filtering” the observations and by

incorporating extensive domain knowledge with heuristic methods. Friedrich et al. (1996) developed a system that

decomposed a task, demonstrated by users, into a sequence of predefined primitives. The commands were executed

in sequence from a pre- and post-condition theorem-proving model (Fikes & Nilsson, 1971). This representation

restricts its use to well-structured, static environments that do not require sensory feedback. Kaiser and Dillman

(1996) further extended this work by learning the primitives involved in a user demonstration. Ijspeert et al. (2002)

have developed a computational method for movement imitation that can incorporate multiple demonstrations of

a task to improve performance. This system can also modulate the learned trajectory based on objects in the
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environment. Kang and Ikeuchi (1995) decompose camera images into a set of primitives to imitate a human

demonstration of a grasping task. Yang et al. (1994) have developed a system that learns to perform simple

telerobotic tasks from a user demonstration. Hugues and Drogoul (2002) learn to imitate the slalom skills of users

from demonstrations by incorporating extensive environmental information.

2.5.2 Interpretation

Some LBO systems go further than imitation strategies and attempt to interpret the intent of users from demon-

strations. Informally, user intent is the set of invariants occurring in the demonstrations (Billard et al., 2003;

Alissandrakis et al., 2002). The concept of inferring user intent is relatively new and few LBO systems have incor-

porated this idea into the system during the design process. Iba et al. (2003) have developed a system that attempts

to simplify the robot-programming process by reducing the number of instructions that must be provided by users

by inferring their intent. Intille and Bobick (1999) created a system to infer the goals of American football players

from visual-scene analysis. Skubic and Volz (2000) construct a Finite-State Machine (FSM) based on the contact

information of objects in the environment from user demonstrations. Multiple demonstrations can be incorporated

into the FSM to derive a better generalization of the correct sequence of contacts. Similarly, Nicolescu and Matarić

(2001) created a system that decomposes a demonstration into a symbolic set of robotic behaviors. Using dynamic

programming and human feedback, an FSM behavior network is constructed from multiple examples of a task.

Intentions are inferred by allowing users to give the system feedback from a predefined vocabulary.

In unstructured environments, LBO systems will be presented with unfamiliar situations that may cause their

performance to decline, unless properly designed. The obvious problem with imitation-based approaches is that

users cannot possibly demonstrate the correct action for every possible situation that the LBO system may en-

counter. However, most LBO systems only incorporate user models in ad hoc situations to improve upon previ-

ously poor system performance. Consider the case of two imitation-based systems (Pomerleau, 1991; Bentivegna

& Atkeson, 1999) that were forced to use a more general approach due to the uncertainties of the real world

(Pomerleau, 1996; Bentivegna et al., 2003). Pomerleau (1991) developed an LBO system that learned to imitate

the vehicle-steering skill of human drivers using a neural network that mapped camera images to steering com-

mands. However, he noted that, “since the person steers the vehicle down the center of the road, the network will

never be presented with situations where it must recover from misalignment errors. When driving for itself, the

network may occasionally stray from the road center, so it must be prepared to recover from steering the vehicle

back to the middle of the road (Pomerleau, 1996).” To achieve acceptable performance, Pomerleau (1996) mod-

ified camera images to emulate driver recovery using extensive knowledge of human-driving ability, essentially

inferring the intent of users. These improvements allowed the system to drive successfully in unstructured en-

vironments. Bentivegna and Atkeson (1999) designed an LBO system that learns to roll a ball through a maze

while avoiding holes from user demonstrations. This imitation-based approach encountered problems similar to
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the vehicle-driving system; that is, it is not possible for users to demonstrate the correct action in every location of

the maze, and during normal operation users only roll the ball through a small subset of possible positions. The

initial solution imitated user actions from a nearest-neighbor rule. That is, for a given ball location and velocity,

lookup the action performed by users in the closest conditions, in the Euclidean sense. In the hole-filled maze,

however, similar Euclidean positions may require vastly different actions, e.g., to avoid a hole. The proposed

solution was to allow the LBO system to generate a large number of self-simulated demonstrations, without user

intervention, which greatly improved the performance of the LBO system (Bentivegna et al., 2003). This system

is still imitative but uses simulation to give itself an essentially limitless number of examples to imitate.

Our approach to LBO incorporates a CDHMM to model user subgoal selection from demonstrations of a

task (Chapter 3). Our LBO system infers user intent by forming hypotheses of user actions to different condi-

tions (Chapter 5) and updating the subgoals of the LBO system according to “what the user would have done”

(Chapter 6).

2.5.3 HMM-based LBO Systems

Several researchers have also used HMMs to describe human actions. Typically, these systems create an individual

HMM for each action that users may perform during a given task. The topologies of these constituent HMMs are

determined a priori according to some predefined structure, such as left-right models (Hannaford & Lee, 1991)

and the HMMs are typically optimized by the Baum-Welch algorithm using a labeled demonstration. To encode

higher-level knowledge, these models are sometimes connected together in a task-specific manner, creating a sort

of “grammar” that constrains the set of possible actions (Hovland et al., 1996). This grammatical concept has

recently been extended to recognize unknown actions (Iba et al., 2003). HMM-based LBO systems have also

been used in the telerobotic manipulation domain for analysis of force/torque actions (Hannaford & Lee, 1991),

flipping eggs (Pook & Ballard, 1992), consistency analysis of human actions (Tso & Liu, 1997), learning new

skills (Yang et al., 1997), and real-time operator assistance (Hundtofte et al., 2002; Li & Okamura, 2003). In

addition to their applications in speech recognition (Rabiner, 1989), HMMs have also been used extensively in

recognizing handwriting of various languages (Bahlman & Burkhardt, 2001; Solis et al., 2002), and finding genes

in DNA sequences (Krogh et al., 1994).

As mentioned previously, we employ a CDHMM to model user subgoal selection. Other HMM-based LBO

systems have relied on knowing the structure of the target task in advance. However, our approach differs from

previous work in that we do not know the set of tasks that users may perform a priori. To cope with this issue,

we have developed a learning algorithm that estimates the structure, or topology, of a CDHMM based on user

observations. After estimating the structure of the model, any of the well-known fixed-topology algorithms, such

as the Baum-Welch algorithm, can be applied to optimize the model parameters.
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2.6 Some Fundamental Definitions from Linear Algebra

Several propositions in this work rely on fundamental results from linear algebra (Strang, 1993; Golub & Van

Loan, 1996), and we give the definitions here. A positive-definite (PD) matrix, C, is defined as any matrix that

satisfies the inequality xTCx > 0, for any x 6= 0. Similarly, a positive-semidefinite (PSD) matrix, C, is defined

as any matrix that satisfies the inequality xTCx ≥ 0, for any x 6= 0. The trace of a square matrix, C, is the sum

of its diagonal elements and is written as

tr[C] ,
∑

i

Ci,i.

The number of linearly independent rows (or columns) of a matrixC is called the rank. An orthonormal matrix

has orthogonal unit basis vectors as its columns and, consequently, its transpose is its inverse. The Singular-Value

Decomposition (SVD) of a real matrix C is defined as

C ≡ UΣVT,

where U and V are orthonormal and Σ = diag(σ2
1, . . . , σ

2
r , 0, . . . , 0), where r is the rank of C. The singular

values are sorted in descending order as σ2
1 ≥ · · · ≥ σ2

r > 0. It can be shown that the SVD always exists for any

matrix (Golub & Van Loan, 1996). LetCR be the right pseudo-inverse ofC, which is defined in terms of the SVD,

CR , V diag(1/σ2
1, . . . , 1/σ

2
r , 0, . . . , 0)UT.

If the matrixC has full row rank, thenCR≡ CT
(
CCT

)−1
. If the matrixC has full row rank and is square (hence

it has full column rank as well), then the right pseudo-inverse becomes the inverse CR≡ C−1.

For vectors, the Euclidean distance, or L2 norm, is defined as ‖x‖22 , xTx. The Frobenius norm of a matrix,

C = [c1 · · · cN ], is defined as

‖C‖2F ,
∑

i

∑

j

C2
i,j

=
∑

j

‖cj‖22 .

For the Frobenius norm, it can be shown that, if V is an orthonormal matrix, then ‖C‖F = ‖CV ‖F . The

Mahalanobis distance (Duda et al., 2001), sometimes called the weighted-Euclidean norm, is defined as

‖x− y‖2C , (x− y)TC(x− y),
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where C is a symmetric PD matrix, sometimes called a precision matrix. It is easy to show that all the norms

defined above are metrics, are positive definite and symmetric, and obey the triangle inequality.

2.7 Summary

We have formulated the encoding of motor commands using optimal control, in lieu of a behavior-based approach,

since motor-skill learning problems do not need the high-level representation offered by behavior-based systems.

Previous theoretical research into HMM structure estimation indicates that any approach will either rely on infinite

data, severely restrict the class of possible models, or be heuristic in nature. To build a realizable LBO system,

we cannot rely on infinite (or very large amounts of) training data, and restricting the class of models implicitly

restricts the set of tasks that can be automated. As a result, our structure-estimation approach will be heuristic

in nature, using a similarity-based state-merging algorithm. Finally, to be able to cope with the unpredictable

operating conditions that the LBO system will encounter, the system must interpret user intent instead of merely

imitating user actions.



Chapter 3

The Learning Algorithm

We derive a new learning algorithm that estimates the structure of Continuous-Density Hidden

Markov Models (CDHMMs) based on observation sequences from a target CDHMM. The algorithm

uses a best-first state-merging scheme to produce an estimated CDHMM whose underlying graph

is irreducible, having a locally minimal number of nodes. The worst-case running time is quadratic

in the number of observations. We then derive a bound showing that the estimate of the target

CDHMM improves as additional observations are incorporated. We also show how the estimated

CDHMM can be used to predict future observations, and we give a causal statistic that indicates

how accurate a prediction is likely to be.

3.1 Introduction

Previous theoretical research in estimating the structure of HMMs from observation sequences (Section 2.4) in-

dicates that the problem is inherently intractable; any approach must rely on infinite data, severely restrict the

class of possible HMMs, or be heuristic in nature. After reviewing the literature in Section 2.4, we did not find

a structure-estimation algorithm that was appropriate for a motor-skill LBO application; consequently, we have

derived a CDHMM structure-estimation learning algorithm motivated by the characteristic difficulties of LBO.

We begin by describing how our system models the user (Section 3.2) and motivate the learning algorithm from a

high-level perspective (Section 3.3). The remainder of the chapter then formalizes the learning algorithm, begin-

ning by precisely defining the terms and structures needed (Section 3.4). We define node similarity and show that

the best-first merging algorithm only produces graphs with a locally minimal number of nodes (Section 3.5). We

then show that the worst-case running time of the learning algorithm is quadratic in the number of observations

(Section 3.6). The topological structure embodied in the graph is converted to a CDHMM using a simple one-shot

21
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Figure 3.1: Evolution of the user model from a deterministic to a doubly stochastic system.

estimation (Section 3.7). Next we derive a bound showing that, as more tasks are incorporated into the CDHMM,

the probability of generating the “correct” observation increases asymptotically (Section 3.8). We also compare

the behavior of our learning algorithm to maximum a posteriori structure estimation (Section 3.9). We then show

how the CDHMM computes predictions of future observations (Section 3.10) and describe a parameter that the

PRP system uses to indicate its prediction confidence (Section 3.11).

3.2 Modeling the User

From the perspective of users, they select the task from their repertoire and begin performing it. Various con-

figurations of the workspace may cause users to perform the same task in different ways. For example, consider

the welding of a door frame. The goal of the task, and the intention of users, is somewhat independent of the

order of specific actions taken to complete the task. Users may be able to achieve the goal by welding the corners

in any order. In this sense, if the workspace is modified, the intention remains the same; the goal of the task is

irrespective of the location, orientation, and size of the door frame in the workspace. With these assumptions, a

reasonable user model is a Finite-State Machine (FSM). This type of model outputs a deterministic symbol at each

discrete time step based on the current state. All branching is deterministic, based on inputs to the FSM. However,

for a particular task there may be many possible ways for users to achieve the desired goal, and it is difficult to

instrument fully any realistic working environment. It is unreasonable to require users to explain the exact reasons

for choosing a particular action during each step of a complex task. Furthermore, the behavior of users will be

modified by, e.g., obstacles in the workspace. Consequently, there will always be hidden, or latent, causes for user

behavior. This means that transitions between states in the user model appear stochastic in nature. With these

assumptions, the FSM user model becomes a Markov chain. Due to the poor repeatability and low precision of

humans, observations can be considered noise-corrupted. In laboratory experiments, we have found the one-sigma

Cartesian error to be approximately 2 centimeters for users moving a robot to a point in space with no external

references. In most automation tasks, this error is too large to ignore. Therefore, the model of a user repertoire is

a type of doubly stochastic random process, or Hidden Markov Model (HMM). The evolution of the user model is

shown in Figure 3.1.
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Hypothesis

x0,x1, . . . ,xn
Observations:

Figure 3.2: Conceptual modeling of users.

x3x3
x1
x2

x1
x2

Figure 3.3: Hypothetical merging of two nodes in a graph.

3.3 Learning Algorithm Overview

We have created a learning algorithm that is designed to cope with the characteristic difficulties of LBO: sparse

training data, real-time operation, and a wide range of target tasks. We assume that the system has no a priori

knowledge of what tasks users may demonstrate. Therefore, we must induce the structure of the CDHMM, as

well as parameters for the model, from observations alone (Figure 3.2). We consider users as generating each task

according to a random walk through an unknown target CDHMM. The learning algorithm begins by assigning one

observation to each node in a graph and encoding temporal information by edge connectivity, as in Figure 3.4(a).

The algorithm then searches for the most similar nodes in the graph and, if these nodes are sufficiently similar,

then the nodes are merged. That is, a new node is created containing the observations from the old nodes, and

the edges of the old nodes are reconnected to the new node, as in Figure 3.3. This merging process repeats until
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Figure 3.4: The maximal-node graph is constructed from three demonstrations of a task in Figure 3.4(a). Results
of state merging using strict and loose similarity are shown in Figure 3.4(b) and Figure 3.4(c), respectively.

no similar nodes remain, as in Figure 3.4. At this point, the graph contains the estimated topology of the target

CDHMM, i.e., the node connectivity, as well as the edge counts and the observations assigned to each node. The

learning algorithm produces general directed graphs that may be cyclic, self-looping, or acyclic. In principle,

any of the well-known fixed-topology HMM estimation procedures, such as the Baum-Welch algorithm (Rabiner,

1989), could be used to optimize the model parameters from the structure embodied by the graph. However, we

use a simple one-shot procedure to determine the parameters of the CDHMM. For example, the edge counts can

be quickly converted to transition probabilities by simple division. The observation-generation probability density

functions can be estimated by fitting a parametric model to the observations assigned to each node, e.g., the mean

and covariance of a Gaussian. We use one-shot estimation, in lieu of an iterative Expectation-Maximization (EM)

approach (Dempster et al., 1977), for computational expediency and because we typically lack the data required

for complete EM re-estimation procedures.
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3.4 Definitions

To estimate the structure of the CDHMM, we use a type of directed multigraph called an observation graph and

given by the 7-tuple GX = (V, V 0, E,X ,V , f, g) where

• V is the set of nodes;

• V 0 is the set of initial nodes;

• E is the set of directed edges;

• X ⊆ Rd is the set of observations of dimension d;

• V : V →M(X ) is the multiset of observations assigned to each node;

• f : E → Z≥0 is the edge-count function;

• g : V 0 → Z≥0 is the initial-count function.

The depth of an observation graph is determined by a breadth-first search from the set of initial nodes, V 0.

Since the graph may be cyclic, a node may exist at multiple depths. A CDHMM is given by the quintuple

λ = (Q,X , a, b, π) where

• Q is a finite set of states;

• X ⊆ Rd is the observation set of dimension d;

• a : Q×Q → [0, 1] is the stationary state-transition probability mass function (pmf);

• b : X ×Q → [0,∞) is the stationary observation pdf;

• π : Q → [0, 1] is the stationary initial-state pmf;

In this work, a task is defined as a finite sequence of observations.

3.5 Learning Algorithm Derivation

Central to the learning algorithm is the definition of similarity. We extend the use of the Mahalanobis distance

to compute the similarity between observations assigned to different nodes in the graph. Our measure (Morgan,

2000) of similarity is defined as

µC(Vvi ,y) ,
∑

x∈Vvi
‖x− y‖2C (3.1)

·
=

∑

x∈Vvi
(x−y)TC(x−y),

where the symmetric PD precision matrix C provides a notion of the a priori expectation of node variance. We

also define µC(∅,y) = 0.
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Figure 3.5: The concept of similarity is a continuum.

Lemma 3.1. µC(Vvi ,y), defined in Equation 3.1, is a measure on the multisetM(X ) and is minimized when y

is the sample mean of Vvi .

The proof is given in Section A.1.1.

Consider the objects shown in Figure 3.5, there are several possible groupings of similar objects. Furthermore,

there are “strict” and “loose” definitions of similarity, as well as values in between; the notion of similarity is a

continuum. It is natural to apply a stricter definition when objects are not as distinct. This concept is related to the

“Universality of the Principles of Categorization” from cognitive psychology. Rosch et al. (1976) write, “On the

most general level, categories form so as to be maximally differentiable from each other. This is accomplished by

categories which have maximum cue validity – i.e., categories that have the most attributes common to members

of the category and the least attributes shared with members of other categories.” With this in mind, there seem

to be two degrees of freedom in determining similarity: the expected variation of the objects and an absolute

“threshold.” If there is not much variation in the objects, such as in Figure 3.5(b), then the discrimination between

objects must increase to identify similarity, and the converse also applies. In our learning algorithm, two nodes are

considered similar if

µC(Vvi ∪ Vvj , 〈Vvi ∪ Vvj 〉) ≤ ε,

where ε ≥ 0 provides a continuous definition of similarity. Small values of ε imply a strict definition of similarity,

while large values imply a loose definition. Intuitively, if a node vi can be found with the capacity to add all the

observations from node vj , then the two nodes will be merged. This process repeats until no similar nodes exist.
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x0

η

(a)

x1

x0 η

(b)

x1

x0 η

x2

(c)

Figure 3.6: Illustration of adding the two-dimensional vectors x0, x1, and x2 to node vi. The solid circle repre-
sents the region within which a future vector must lie to ensure that µC(Vvi , 〈Vvi〉) ≤ ε. Consequently, the circle
has radius η = ε − µC(Vvi , 〈Vvi〉). The dashed circle is the image of the previous region. The centroid of the
circles shifts according to the sample mean, 〈Vvi〉, of the observations already assigned to the node.

The nodes in the maximal graph in Figure 3.4(a) are merged using a strict and a loose definition of similarity,

in Figure 3.4(b) and Figure 3.4(c), respectively. The resulting graphs are different, since the definition of simi-

larity was different. In Section 4.3.2, we show how modifying the definition of similarity effects the prediction

performance of the PRP system. With respect to computing the similarity between observation sequences, Equa-

tion 3.1 is memoryless in that the measure does not consider the similarity of ancestor or descendant observations.

Consequently, it is possible for two sequences to be similar for a single observation while being dissimilar for all

others. While recursive similarity may be appropriate in some domains (Ron et al., 1998), memoryless similarity

seems more appropriate for identifying similarities common in LBO (cf. Figure 4.1). In a sense, the parameter ε

behaves like an initial node “capacity,” or a region within which future observations must lie. Let x0 be the first

observation assigned to node vi. Any future observations assigned to node vi must lie inside a hyperellipse of

radius ε, whose axes are defined by the eigendecomposition ofC, and centered about x0. Due to the non-negative

nature of Equation 3.1, as more observations are added to node vi, the capacity for the node to accept more ob-

servations decreases, shown graphically in Figure 3.6. In the following lemma we show that the acceptable region

necessarily becomes smaller as observations are assigned to a node and that the subsequent regions are completely

contained within the initial hyperellipse. This behavior is central in deriving an algorithm that produces irreducible

observation graphs.
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Lemma 3.2. For any multiset B and for all submultisetsA ⊆ B and for all supermultisets C ⊇ B,

µC(A, 〈A〉) ≤ µC(B, 〈B〉) ≤ µC(C, 〈C〉).

The proof is given in Section A.1.2.

Corollary 3.2.1. For any τ ≥ 0 and multisets Ã and B̃ such that τ < µC(Ã ∪ B̃, 〈Ã ∪ B̃〉) implies that for all

supermultisetsA ⊇ Ã and B ⊇ B̃, τ < µC(A ∪B, 〈A ∪B〉).

Proof. By direct extension of Lemma 3.2.

For a state-merging approach such as ours, we want to define what it means for a graph to be irreducible, or

compact. Intuitively, a compact graph is one where all similar nodes are merged but all dissimilar nodes are left

unmerged. The following definition states this in precise terms.

Definition 3.1. For some ε ≥ 0, an observation graph is ε-compact with respect to µC :M(X )→ [0,∞), if for

all nodes vi 6= vj at the same depth

• µC(Vvi , 〈Vvi〉) ≤ ε,
• ε < µC(Vvi ∪ Vvj , 〈Vvi ∪ Vvj 〉).

While the definition of ε-compact implies a sort of irreducible graph, it does not necessarily imply a globally

minimal number of nodes. It is entirely possible that merging nodes in a different order would result in fewer

nodes. From this perspective, ε-compactness implies a type of locally minimal number of nodes. If we are striving

for ε-compact graphs, then, by Corollary 3.2.1, we can merge node vi and node vj such that

µC(Vvi ∪ Vvj , 〈Vvi ∪ Vvj 〉) ≤ ε

and be assured that the observation graph will remain ε-compact. Indeed, this same test can be applied to an

individual observation to implement an online scheme. This insight leads to Algorithm Learn-Structure in

Figure 3.7.

Theorem 3.3. Learn-Structure produces only ε-compact observation graphs.

Proof. The algorithm satisfies the first predicate of Definition 3.1 (µC(Vvi , 〈Vvi〉) ≤ ε), since it will not add

an observation, xn, to a node, vi, unless µC(Vvi ∪ {xn}, 〈Vvi ∪ {xn}〉) ≤ ε. Consider the second predicate of

Definition 3.1 (ε < µC(Vvi ∪ Vvj , 〈Vvi ∪ Vvj 〉)). Take any two nodes and, without loss of generality, assume
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Algorithm Learn-Structure

X = {X0,X1, . . . ,XM} is the multiset of all tasks.
ε ≥ 0 is the similarity threshold.

1: V := ∅, E := ∅
2: GX := (V, V 0, E,X ,V , f, g)

3: for allX i ∈ {X0,X1, . . . ,XM}
4: GX := assimilate-task (GX ,Xi, ε) (Figure 3.8)
5: end for all

Figure 3.7: The structure-estimation learning algorithm.

node vi was created before node vj . There must exist an observation xvj ∈ Vvj and a submultiset Ṽvi ⊆ Vvi such

that

ε < µC(Ṽvi ∪ {xvj}, 〈Ṽvi ∪ {xvj}〉).

Otherwise, node vj would never have been created. Loosely speaking, the observation xvj could not “fit” into any

existing node (assimilate-task Line 7). From Corollary 3.2.1,

ε < µC(Ṽvi ∪ {xvj}, 〈Ṽvi ∪ {xvj}〉)
⇒

ε < µC(Vvi ∪ Vvj , 〈Vvi ∪ Vvj 〉)

and therefore the algorithm produces only ε-compact observation graphs.

3.6 Learning Algorithm Running Time

Lemma 3.4. The sufficient statistics of µC(Vvi , 〈Vvi〉) are

ξi = |Vvi |; κi =
∑

x∈Vvi
xTCx; σi =

∑

x∈Vvi
x.

The update rule for computing the union of two multisets (Vvk = Vvi ∪ Vvj ) is

ξk = ξi + ξj ; κk = κi + κj ; σk = σi + σj .
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Function assimilate-task
GX = (V, V 0, E,X ,V , f, g) is the observation graph.
Xi = {xi0,xi1, . . . ,xiNi} is the task to assimilate.
ε ≥ 0 is the similarity threshold.

1: for all xn ∈Xi = {xi0,xi1, . . . ,xiNi}
2: εmin := min

vi∈V
µC(Vvi ∪ {xn}, 〈Vvi ∪ {xn}〉)

3: if εmin ≤ ε then
4: vnew := arg min

vi∈V
µC(Vvi ∪ {xn}, 〈Vvi ∪ {xn}〉)

5: Vvnew := Vvnew ∪ {xn}
6: end if
7: else if εmin > ε then
8: create empty node vnew

9: V := V ∪ {vnew}
10: Vvnew := {xn}
11: gvnew := 0

12: if n > 0 then
13: E := E

⋃{eprev→new}
14: feprev→new := 0

15: end if
16: end else if
17: if n > 0 then
18: feprev→new := feprev→new + 1

19: end if
20: else if n = 0 then
21: V 0 := V 0 ∪ {vnew}
22: gvnew := gvnew + 1

23: end else if
24: vprev := vnew

25: end for all
26: return (V, V 0, E,X ,V , f, g)

Figure 3.8: Assimilating tasks into an observation graph.
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Using sufficient statistics, Equation 3.1 can be computed as

µC(Vvi , 〈Vvi〉) ≡ κi −
1

ξi
σi

TCσi.

The proof is given in Section A.1.3. The significance of Lemma 3.4 is that the function µC(Vvi ∪ Vvj , 〈Vvi ∪ Vvj 〉)
can be computed in constant time, irrespective of the number of observations assigned to either node. This is useful

in providing a bound on the computational complexity of the algorithm.

Corollary 3.4.1. The computational complexity of computing µC(Vvi ∪ Vvj , 〈Vvi ∪ Vvj 〉) is O(d2), where d is

the dimension of an observation.

The proof is given in Section A.1.4.

Though not required by the algorithm, we simplify the running-time analysis by assuming that each task is of

length N .

Theorem 3.5. The worst-case computational complexity of Learn-Structure to assimilateM tasks of length

N is O(M2N2d2), where d is the dimension of an observation.

Proof. We make two reasonable assumptions, namely:

• Appending a value to a multiset is constant-time (A := A ∪ {x}).
• Accessing any node is constant-time (vi ∈ V ).

With these assumptions, there is one line of non-constant cost inside the locus of assimilate-task , finding

the minimum similarity measure (Line 2). This line forms an arithmetic series on the number of nodes in the

observation graph. From Corollary 3.4.1, the update rule for the union of two multisets is independent of their

cardinalities and has cost O(d2). Since this cost is embedded in an arithmetic series on the number of nodes,

the worst-case running-time occurs when the number of nodes is maximized, i.e., when no nodes are merged.

Therefore, the worst-case computational complexity for assimilating M tasks of length N is

O(
M∑

m=1

N∑

n=1

mnd2) ∈ O(M2N2d2),

which is quadratic in the number of observations.
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3.7 Estimating CDHMM Parameters

In this section we present a simple one-shot procedure for estimating CDHMM parameters from an observation

graph. We use one-shot estimation, in lieu of an EM-type approach, for computational expediency and because

we typically lack the data required for complete EM re-estimation procedures. The EM algorithm is a two-step

process. First, infer the values of hidden variables from the data set given parameter values, which is the Expecta-

tion (E) step. Next, use the estimated values of the hidden variables to compute the ML estimate of all parameters,

which is the Maximization (M) step. This two-step process repeats until convergence in the likelihood of the data

set (Boyles, 1983). Since the EM algorithm maximizes data likelihood, it will attempt to assign parameter values

that cause the data likelihood to tend to infinity, particularly when data are scarce (Redner & Walker, 1984). For

HMM training, this corresponds to states producing only the observed data, and having no generalization ability.

However, there are well-known modifications for this problem, such as constraining the set of possible parameter

values (Hathaway, 1986), but this can, in practice, be difficult to implement. The function graph-to-HMM in

Figure 3.9 simply computes the maximum-likelihood CDHMM parameters from the information contained in the

observation graph, which is a single “Maximization” step from the Baum-Welch algorithm, which is a special

case of the EM algorithm. For example, the probability of transitioning from state qi to state qj is the number of

times the observation graph recorded a transition from node vi to node vj , divided by the number of observations

assigned to node vi, written as aj|i = fei→j/|Vvi |. The initial-state probabilities are computed similarly. We do not

assume any distribution for the observation-generation pdfs, bi(x), beyond requiring that the mean of the pdf be

the sample mean of the observations assigned to the node, Ex{x|qi,λ}= 〈Vvi〉. In practice, however, we typically

fit a Gaussian distribution to the observations assigned to each node, which is a O(d2) computational-complexity

procedure.

Lemma 3.6. graph-to-HMM converts a |V |-node observation graph to a CDHMM with a running time of

O(|V |2 + |V |b), where O(b) is the cost of evaluating the parameters of the observation-generation pdf.

Proof. There are two lines that dominate the function graph-to-HMM , creating the observation-generation

pdf (Line 6) and creating the state-transition pmf (Line 9). For this analysis, we define the cost of Line 6 as

O(b). Because Line 6 executes once for each state, the total running time of Line 6 is O(|V |b). Creating the state-

transition pmf entry (Line 9) is constant, but executes once for each state and loops over all states, giving a running

time of O(|V |2). Since these lines execute in sequence, graph-to-HMM converts a |V |-node observation graph

to a CDHMM with a running time of O(|V |2 + |V |b).
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Function graph-to-HMM
GX = (V, V 0, E,X ,V , f, g) is the observation graph.
M is the number of sequences assimilated into GX .

1: Q := ∅
2: λ = (Q,X , a, b, π)

3: for all vi ∈ V
4: create new CDHMM state qi
5: Q := Q ∪ {qi}
6: create bi from Vvi with Ex{x|qi,λ}= 〈Vvi〉
7: πi := gvi/M

8: for all vj ∈ V
9: aj|i := fei→j/|Vvi |
10: end for all
11: end for all
12: return (Q,X , a, b, π)

Figure 3.9: Converting an observation graph to a CDHMM.

Algorithm Learn-HMM

X = {X0,X1, . . . ,XM} is the multiset of all tasks.
ε ≥ 0 is a similarity threshold.

1: V := ∅, E := ∅
2: GX := (V, V 0, E,X ,V , f, g)

3: for allX i ∈ {X0,X1, . . . ,XM}
4: GX := assimilate-task (GX ,Xi, ε) (Figure 3.8)
5: end for all
6: λ := graph-to-HMM (GX,M) (Figure 3.9)

Figure 3.10: The complete CDHMM-learning algorithm.
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3.8 Bounding State Error

Assume that the observation sequences are actually generated by an unknown target CDHMM in an independent

identically distributed (iid) manner. We derive a bound showing that, as more tasks are incorporated, states in

the target CDHMM are estimated with asymptotically increasing accuracy. It is typical to provide HMM bounds

regarding an observation sequence (Ephraim & Merhav, 2002), whereas we provide a bound on individual obser-

vations. This appears to be the strongest statement we can make, since our definition of similarity, Equation 3.1,

is memoryless. First, we precisely define the idea that an estimated CDHMM will produce “close” to the correct

observation at the correct time. Let cn be the random variable denoting the current state of the CDHMM at time

n.

Definition 3.2. A CDHMM, λ1, γ-represents a state in another CDHMM, q2 ∈ λ2, if there exists a state, q1 ∈ λ1,

at the same depth n such that

‖Ex{x|cn=q1,λ1}− Ex{x|cn=q2,λ2}‖C < γ.

If λ1 γ-represents state q2 in λ2 then we write λ1
γ→ q2 ∈ λ2. This defines what it means for different

CDHMMs to generate observations within γ of each other at the correct time. Essentially, γ is a radius of ac-

ceptable error. Intuitively, it is easier to estimate a state in the target CDHMM if it generates observations more

frequently. Furthermore, if a state emits observations with high variance, then it will be more difficult to distinguish

between different states. This intuition is formalized in the following theorem.

Theorem 3.7. Let λ̂ be a CDHMM estimated from Learn-HMM with ε ≥ 0 and M iid tasks of length at least n,

generated by some target CDHMM, λ∗. If the state q∗ ∈ λ∗ generates observations with finite first and second

moments, then

Pr
{
λ̂

γ→ q∗ ∈ λ∗
}

>

(
1− (1−p∗)M

)(
1− tr[CVar(x|q∗,λ∗)]

(γ−√ε)2

)
,

where γ >
√
ε, p∗ = P(cn=q∗|λ∗) > 0, and Var(x|q∗,λ∗) is the observation-generation variance of state

q∗ ∈ λ∗.

Proof. Let m be the random variable summing the number of times cn = q∗ over each of the M tasks. The

probability that state q∗, with prior probability p∗, generated at least one observation at time n in M iid tasks is

Pr {m > 0|p∗,M} = 1− Pr {m = 0|p∗,M}
= 1− (1− p∗)M .
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Let x ∼ p(x|q∗,λ∗), where p(x|q∗,λ∗) has finite mean y∗ and finite variance Σ∗. By the triangle inequality

and reflexive property,

‖y∗ − 〈Vvi〉‖C ≤ ‖x− y∗‖C + ‖x− 〈Vvi〉‖C .

From Theorem 3.3, ‖x− 〈Vvi〉‖C ≤
√
ε, for any x ∈ Vvi . Since Ex

{
x|qi, λ̂

}
= 〈Vvi〉 (graph-to-HMM Line

6), the state q∗ ∈ λ∗ will be γ-represented by the estimated CDHMM if q∗ generates at least one observation such

that

‖x− y∗‖C ≤ γ −√ε.

By assumption γ >
√
ε, and from the Multivariate Chebyshev’s Inequality (Section A.1.6),

Pr
{
‖x−y∗‖C < γ −√ε

}
> 1− tr[CΣ∗]

(γ −√ε)2
.

Multiplying the prior by this conditional probability yields

Pr
{
λ̂

γ→ q∗ ∈ λ∗
}

> (1− (1−p∗)M )

(
1− tr[CΣ∗]

(γ −√ε)2

)
,

which completes the claim.

Perhaps a picture (Figure 3.11) can best illustrate the mechanics of Theorem 3.7. In the multidimensional

case, the circles are actually hyperellipses determined by the eigendecomposition of the precision matrix C. For

clarity in this example, we will refer to the hyperellipses as circles. The analysis begins by constructing several

circles. One circle is centered at the mean of the observations from target state q∗. The radius, γ, is determined

by the precision matrix C and the variance of observations, Var(x|q∗,λ∗). Another circle has unknown origin,

〈Vvi〉, determined through a sort of worst-case analysis. From Theorem 3.3, all observations assigned to node vi
lie within a circle of radius

√
ε. Provided that γ >

√
ε, it is possible that, even in the worst case, an observation

within a radius of γ−√ε from the origin Ex{x|q∗,λ∗}can belong to node vi within a circle of radius γ. Because

of this, we bound the probability that the state q∗ emits observations inside the circle of radius γ−√ε. This

bound does not assume an underlying form on the observation-generation distributions for the target CDHMM,

p(x|q∗,λ∗), and is proportional to the eigenvalues of the variance of the distribution. In more concrete terms,

Pr
{
λ̂

γ→ q∗ ∈ λ∗
}

>

(
1− (1−p∗)M

)

︸ ︷︷ ︸
(?)

(
1− tr[CVar(x|q∗,λ∗)]

(γ−√ε)2

)

︸ ︷︷ ︸
(�)

.
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Figure 3.11: Two-dimensional illustration of Theorem 3.7.

The term (�) is in many ways an “inherent” error rate, which decreases as the

• observation variance decreases;

• similarity radius (ε) decreases;

• acceptable error (γ) increases.

The term (?) increases asymptotically as the number of tasks M increases at a rate determined by the prior

probability p∗ that the state q∗ generates an observation. This implies that the bound in Theorem 3.7 asymptotes

to the inherent error rate of the target CDHMM, as in Figure 3.12, and the estimated CDHMM probably generates

the correct observation at the correct time.

We would like to derive the converse bound that each state in the estimated CDHMM is γ-represented by a

state in the target CDHMM. Intuitively, if a state is assigned more observations, the probability increases that it

is “close” to a state in the target CDHMM. In Theorem 3.8, we derive a bound showing that an estimated state is

closer to a target state as it is assigned more observations.

Theorem 3.8. Let λ̂ be a CDHMM estimated from algorithm Learn-HMM with similarity threshold ε ≥ 0 and

M iid tasks generated from some target CDHMM, λ∗. Let state qi ∈ λ̂ result from node vi in the observation

graph with |Vvi | observations. Then

Pr
{
λ∗

γ→ qi ∈ λ̂
}

> 1−
(

tr[CΣ∗]
(γ −√ε)2

)|Vvi |
,
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Figure 3.12: Asymptotic nature of the bound in Theorem 3.7 for a fixed inherent error rate with p∗ = 0.05, γ = 1,
and ε = 0.25.

where Σ∗ is the maximum observation-generation variance of any state in the target CDHMM λ∗.

The proof is given in Section A.1.5.

3.9 Relationship to Maximum A Posteriori Structure Estimation

Stolcke and Omohundro (1994b) introduced the idea of using Maximum A Posteriori (MAP) structure estimation

to derive a best-first state-merging HMM algorithm. With this scheme, the algorithm merges two HMM states

with the largest increase, if any, in the posterior likelihood. In this framework, the objective is to maximize the a

posteriori likelihood of prediction, conditioned on past observations,

p
(
xcn|Xc

0:n−1,λ
)

p
(
xcn−1|Xc

0:n−2,λ
)
· · ·p(xc1|xc0,λ) p(xc0|λ) = p(Xc

0:n|λ) .

Using the Bayesian formulation,

λ∗ = arg max
λ

p
(
{X0,X1, . . . ,XM}|λ

)
p(λ)

p({X0,X1, . . . ,XM})
= arg max

λ
p
(
{X0,X1, . . . ,XM}|λ

)
p(λ) .
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3.9.1 Conditional Prediction Likelihood

If the tasks are iid, then the conditional likelihood of a CDHMM, λ, generating the tasks is

p
(
{X0,X1, . . . ,XM}|λ

)
=

M∏

c=1

p(Xc|λ)

=
M∏

c=1

∑

qi∈Q
p(cN=qi,X

c|λ)

·
=

M∏

c=1

∑

qi∈Q
αN (i), (3.2)

where αN (i) are the HMM “forward variables” (Rabiner, 1989). However, the computation of Equation 3.2

requires Dynamic-Programming (DP) complexity, over each task assimilated into the model. Since Equation 3.2

will be evaluated for each hypothesis CDHMM, this cost can be prohibitive in any state-merging scheme. In the

speech-recognition field, it is common to avoid the DP complexity of Equation 3.2 by approximating it with the

single best path through the HMM, known as the Viterbi Approximation,

α̂cλ , max
q0,...,qN

p(xcN |cN=qN ,λ) P(cN=qN |cN−1=qN−1,λ) · · ·p(xc0|c0=q0,λ) P(c0=q0|λ)

= max
q0,...,qN

p(Xc, q0, ..., qN |λ)

∼=
∑

q0,...,qN

p(Xc, q0, ..., qN |λ)

= p(Xc|λ)
·

=
∑

qi∈Q
αN (i).

⇒
M∏

m=1

α̂mλ
∼= p

(
{X0,X1, . . . ,XM}|λ

)
.

In other words, the Viterbi Approximation assigns each observation to a single state in the HMM and multiplies

the observation likelihood of that state by the corresponding transition probabilities. Though Stolcke and Omo-

hundro (1994b) mentioned applying the Viterbi Approximation for computational considerations, we derive the

MAP structure-estimation algorithm from a measure-theoretic point of view, which naturally leads to the Viterbi

Approximation. Let the multiset of observations assigned to state qi by the Viterbi Approximation be Vqi and
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assume each state in the HMM has a Gaussian distribution with constant covariance,

bi(x) ∼ N (µi,Σ),

log bi(x) = A− 1

2
‖x−µi‖2Σ−1 .

Theorem 3.9. Let state qk ∈ λ̃ be the result of merging state qi and state qj in the CDHMM λ, from M iid tasks

and constant-variance Gaussian states. The log conditional-likelihood ratio is then

log

M∏

m=1

α̂m
λ̃
− log

M∏

m=1

α̂mλ = µΣ−1(Vqk , 〈Vqk〉)− µΣ−1(Vqi , 〈Vqi〉)− µΣ−1(Vqj , 〈Vqj 〉)

+
∑

ql∈Q

(
fel→i log

fel→i+fel→j
fel→i

+ fel→j log
fel→i+fel→j

fel→j

)

+
∑

ql∈Q

(
fei→l log

ξi
ξi+ξj

fei→l+fej→l
fei→l

+ fej→l log
ξj

ξi+ξj

fei→l+fej→l
fej→l

)
,(3.3)

using the sufficient statistics of Equation 3.1 from Lemma 3.4.

The proof is given in Section A.1.7.

The log conditional-likelihood ratio in Equation 3.3 is very close to our similarity measure, Equation 3.1.

However, Equation 3.3 contains two extra terms that reward the algorithm for merging states that cause a reduction

in the number of edges in the CDHMM. This will necessarily result in merging selections different from Learn-

HMM and will, most likely, result in more states for a given data set, which we show empirically in Section 4.4.1.

3.9.2 Model Prior

Stolcke and Omohundro (1994b) suggest the model-description length as the CDHMM prior, p(λ), which gives

preference to HMMs with fewer states and transitions, implicitly implementing an “Occam factor.” The derivation

of the prior is given in Section A.2.1, but is summarized here as follows:

p(λ)
∼∝ |Q|−|E|

∏

qi∈Q
|Var(x|qi) |−1. (3.4)

Let state qk in CDHMM λ̃ result from merging state qi and state qj in CDHMM λ. Let |Q| and |E| be the number

of states and edges in CDHMM λ, respectively. Let |Ẽ| be the number of edges in CDHMM λ̃, which has |Q|− 1
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states. The log prior-likelihood ratio is

log p
(
λ̃
)
− log p(λ) ∼= |E| log |Q| − |Ẽ| log(|Q|−1) + |Var(x) |. (3.5)

Using the log conditional-likelihood ratio from Equation 3.3 and the prior from Equation 3.5, we can compute the

log posterior-likelihood ratio

log p
(
λ̃|X

)
− log p(λ|X) ∼=

(
log

M∏

m=1

α̂m
λ̃
− log

M∏

m=1

α̂mλ

)
+
(

log p
(
λ̃
)
− log p(λ)

)
. (3.6)

The MAP structure-estimation algorithm finds the states qi and qj such that Equation 3.6 is maximized. If that

value is greater than zero, then state qi and state qj are merged. This process repeats until there are no more state-

merging candidates that increase the posterior. In Section 4.4.1, we compare the empirical performance of the

MAP best-first state-merging algorithm to our CDHMM structure-estimation learning algorithm, Learn-HMM .

3.10 Predicting Observations

In the prediction phase, we use the CDHMM estimated by our learning algorithm to compute predictions of

future observations. Optimal prediction, given a model, is a mature topic and can be found in many references

(Duda et al., 2001). There are several reasonable choices for a prediction criterion, such as Maximum Likelihood

(ML), Maximum A Posteriori, expectation, etc. In our experiments, ML estimators have performed the best. To

compute a prediction, we condition the CDHMM probability distributions on observations from the current task

and determine the most likely next observation,

x̂∗n = arg max
xn

p
(
xn|Xc

0:n−1,λ
)
,

where Xc
0:n−1 = {xc0, . . . ,xcn−1} is the sequence of observations from the current task. In order to compute this

estimator, we need many “stepping stones.” The complete derivation is given in Section A.2.2, but we summarize

it here. Using standard HMM notation (Rabiner, 1989), we define the “forward variables” to be the conjunctive

likelihood of being in state qj at time n while observing the current task,

αn(j) , p(cn=qj ,X
c
0:n|λ)

·
=





bj(xn)
∑
qi∈Q

aj|iαn−1(i), n > 0

bj(x0)πj , n = 0
. (3.7)
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The probability of being in state qj at time n, given observations from the current task up to time n−1, is the pmf

νn(j) , P
(
cn=qj |Xc

0:n−1,λ
)

·
=

∑
qi∈Q

aj|iαn−1(i)

∑
qk∈Q

αn−1(k)
. (3.8)

Lemma 3.10. The cost of computing νn(j) for all states qj ∈ λ is O(n|Q|2b), where |Q| is the number of states

in the CDHMM and O(b) is the cost of evaluating an observation pdf.

Proof. This DP complexity is due to the n-step recursion forming an arithmetic series over each state in the

CDHMM. Since each step requires evaluating an observation pdf, which is of O(b) complexity, the running time

is O(n|Q|2b).

With this notation, we evaluate the ML prediction as

x̂∗n
·

= arg max
xn

∑

qj∈Q
bj(xn)νn(j). (3.9)

It is also straightforward to derive predictions for any time in the future. Equation 3.9 involves the maximization

of a linear combination of nonlinear functions. Except in degenerate cases, Equation 3.9 cannot be solved in

closed form and we must resort to iterative multivariate maximization techniques, which can be relatively costly

(Bertsekas, 1995). However, in practice, a locally optimal solution can be found quickly.

3.11 Prediction Confidence

Regardless of the criterion used (ML, expectation, etc.), a prediction will exist even if the current task is not

consistent with the estimated CDHMM. This may result in computing inaccurate predictions. Ideally, the system

would suggest only the most accurate predictions to users. However, the target observation is not known at the

time of the prediction, so we indicate the confidence, φn ∈ [0, 1], based on information available at the time of

prediction. Confidence of φn = 1 indicates that observations from the current task fit perfectly with the model,

while φn = 0 indicates minimum certainty. To this end, we compute the divergence of the CDHMM from complete

internal uncertainty while observing the current task. Let the number of states in the CDHMM be |Q| ≥ 2. In our

work, we define confidence as the Kullback-Leibler divergence taken log base |Q| between the next-state random



42 CHAPTER 3. THE LEARNING ALGORITHM

variable, cn, and the uniform distribution

φn ,
DKL(cn ‖ 1

|Q|)

log2 |Q|
(3.10)

=

∑
qj∈Q

νn(j) log2(|Q|νn(j))

log2 |Q|

=

log2 |Q|
∑
qj∈Q

νn(j)

log2 |Q|
+

∑
qj∈Q

νn(j) log2 νn(j)

log2 |Q|

= 1−

∑
qj∈Q

−νn(j) log2 νn(j)

log2 |Q|

= 1− H(cn)

log2 |Q|
,

whereH(·) is entropy. Since cn is a discrete random variable with |Q| ≥ 2 possibilities, the confidence is bounded

on the closed interval 0 ≤ φn ≤ 1 for any state distribution and any observation sequence. Intuitively, if many

states in the CDHMM are likely to produce the next observation, then the prediction confidence will be low. On the

other hand, a prediction based on the contributions from few states will result in high confidence. As mentioned

earlier, the ideal case is if prediction confidence correlates with prediction error with a normalized correlation co-

efficient of−1. On real-world data (Section 4.3.3), Equation 3.10 has a significant negative normalized correlation

coefficient with prediction error, with ρ = −0.89.1 Using this confidence value, we can infer which predictions

will be more accurate in a causal manner.

3.12 Probability of Similarity

To make the experimental results easier to present, we compress the infinite interval, ε ∈ [0,∞), to a bounded

interval, δ ∈ (0, 1]. There are many possibilities to determine δ, and we assume that users make positioning errors

about a desired observation according to a Gaussian distribution. We then require that an observation be emitted

with high probability,

Pr
{
‖x−〈Vvi〉‖2C ≤ ε

}
> 1− δ. (3.11)

1We have been unable to derive a proof guaranteeing a negative correlation, though a proof does seem possible.
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Figure 3.13: Cumulative Distribution Function of a chi-square random variable with 7 degrees of freedom, χ2
7.

Graphically, we compute Equation 3.11 by fixing a value of, e.g., 1−δ = 0.7 and finding the intercept on the cdf
at ε ≈ 8.4.

The squared Mahalanobis distance of a Gaussian random variable is a chi-square random variable. Using this for-

mulation, we evaluate Equation 3.11 from the cumulative distribution function (cdf) of the chi-square distribution,

ε ∈
{
w

∣∣∣∣∣δ = 1− γ(d2 ,
w
2 )

γ(d2 , 0)

}
, (3.12)

where γ(·, ·) is the incomplete gamma function. Since any chi-square pdf is positive on the interval (0,∞), its

cdf will be a bijection on (0,∞) → (0, 1]. The solution to Equation 3.12 is shown graphically in Figure 3.13.

As δ → 0, the definition of similarity becomes loose, ε → ∞, inducing a simpler CDHMM. As δ → 1, the

definition of similarity becomes strict, ε→ 0, inducing a more complex CDHMM. From this perspective, δ can be

considered as a type of “complexity parameter.” The experimental results in this work will vary the parameter δ.

3.13 Relationship to Learning By Observation

The CDHMM structure-estimation learning algorithm forms the substrate of our LBO system. As used in our

system, we estimate the structure of a CDHMM that describes the subgoals of a demonstration. This estimated

CDHMM can then be used to predict future subgoals (Chapter 4) or to complete entire tasks (Chapter 6). Because
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Figure 3.14: Finite-looping tasks are not well represented by our learning algorithm.

the data are sparse in LBO, the algorithm estimates the simplest CDHMM that the data suggest, using a similarity-

based merging criterion, from a memoryless definition of similarity. Since the running time of the algorithm is

low, worst-case quadratic, it should be able to operate in real time.

3.14 Summary

We have derived a new learning algorithm that uses a state-merging scheme to estimate the structure of CDHMMs

based on observations from a target CDHMM. Given an ordered set of observations, the CDHMM is uniquely

determined by the parameter ε ≥ 0, which is a function of the parameter δ ∈ (0, 1] (cf. Section 3.12). Decreasing

the parameter, δ → 0, induces a simpler CDHMM, while increasing the parameter, δ → 1, induces a more complex

CDHMM. We showed that the algorithm produces only CDHMMs with a locally minimal number of states, and

the worst-case computational complexity is quadratic in the number of observations. We also derived a bound

showing that the estimate of the target CDHMM improves as more observations are incorporated. Predictions of

future observations are computed from an ML estimation procedure, Equation 3.9, by conditioning the CDHMM

probability distributions on observations from the current task. In order to avoid burdening the user with inaccurate

suggestions, the system suggests only predictions with high confidence, φn (Equation 3.10).

Despite different initial formulations, our best-first similarity-based state-merging algorithm has much in com-

mon with the best-first MAP state-merging algorithm of Stolcke and Omohundro (1994b). Our merging criterion,

Equation 3.1, implicitly assumes a constant-variance Gaussian distribution for each state in the CDHMM, while,

in principle, the MAP formulation allows arbitrary distributions. Furthermore, our merging criterion is memory-

less, whereas the MAP formulation implicitly considers the similarity of ancestor and descendant observations.

Our formulation lends itself to a theoretical analysis regarding computational requirements and estimation per-

formance, which is difficult for the MAP formulation due to the application-specific distributions placed on the

system.

In the introduction, we posed several questions about the ability of our algorithm to model user subgoal selec-

tion (Section 1.3.1). Specifically, the first question was:

• What tasks can be automated?

In principle, because our learning algorithm constructs CDHMMs with general underlying graphs (e.g., cyclic,
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self-looping, or acyclic), any task can be represented by our algorithm. The most difficult tasks for our system

to automate are those that contain finite looping. For example, assume that some task loops three times (a → b)

followed by a termination sequence (c), so that we have the observation sequence {a, b, a, b, a, b, c}. Because our

learning algorithm estimates the structure of CDHMMs using a memoryless merging criterion, the ML prediction

following “b” will always be “a,” and never the termination “c,” as shown in Figure 3.14. Despite this limitation,

our structure-estimation algorithm still automates real-world tasks effectively, which we show experimentally in

the following chapter. The second question asked in the introduction was:

• What computing resources are needed to estimate the model?

In Theorem 3.5, we showed that the worst-case running time of the algorithm was quadratic in the number of

observations. This is an appealing limit but, as is the case in all big-oh analyses, it still remains to be seen how

this translates into running-time on a real computer, which we show in the following chapter. The third question

asked in the introduction was:

• How many demonstrations are needed to achieve a desired performance?

In Theorem 3.7, we derived a bound showing that, as more tasks are incorporated, states in the target CDHMM

are estimated with asymptotically increasing accuracy. To solve for the number tasks needed to achieve a desired

performance is simply a matter of rearranging the equations to solve for the number of tasks as a function of

performance. The importance of Theorem 3.7 is that the state-estimation bound increases asymptotically, not in

its numeric value. This bound was derived from Markov’s inequality (Section A.1.6), which is one of the most

general bounds possible on random variables and, practically speaking, the numeric value of bounds derived from

Markov’s inequality will be hopelessly loose, and ours is no exception. But Theorem 3.7 gives a bound on the

number of demonstrations needed to achieve a desired performance.



46 CHAPTER 3. THE LEARNING ALGORITHM



Chapter 4

Predictive Robot Programming

In this chapter, we analyze the performance of the learning algorithm in modeling user subgoal

selection with Predictive Robot Programming (PRP). This application gives the ability to test the

performance of the system by removing sensor noise and environment considerations. The PRP

system constructs a CDHMM model of user subgoal selection by incorporating information from

previously completed tasks. With this model, the PRP system computes predictions about where

users will move the robot. Users can reduce programming time by allowing the PRP system to

complete the task automatically. We analyze the performance of the PRP system on two sets of data.

The first set is based on data from complex, real-world robotic tasks. We show that the PRP system is

able to compute predictions for about 25% of the waypoints with a median prediction error less than

0.5% of the distance traveled during prediction. We also present laboratory experiments showing

that the PRP system results in a significant reduction in programming time, with users completing

simple robot-programming tasks over 30% faster when using the PRP system to compute predictions

of future waypoints.

4.1 Introduction

Programming a manipulator robot is an arduous task. A robot program typically consists of three main com-

ponents: a sequence of positions through which the robot must travel, conditional branching statements, and

process-specific instructions. Of these components, robot programmers usually spend the majority of their time

defining the sequence of positions, called waypoints. While critical to the success of all robot programs, specifying

waypoints is currently an overly complex and time-consuming process. Consequently, one of the main inhibitors

of robotic automation is the time needed to program the manipulator.

47
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Industrial robot programming has evolved into two mutually exclusive methods, offline and online program-

ming, each having its advantages and disadvantages. In offline programming, users move a simulated robot to

each waypoint with a simulated model of the workspace. Offline-programming packages allow users to design

robot programs in simulation without bringing down production and can optimize programs according to almost

any imaginable criterion. Typical optimizations involve production speed, material usage, or power consumption.

To achieve the high accuracy required in many applications, the physical workspace must be well calibrated with

respect to the simulated environment. Otherwise, extensive online fine-tuning will be needed, which detracts from

the largest benefit of offline programming, namely, lack of production downtime. Offline systems generally re-

quire that programs be written in a sophisticated procedural-programming language. Consequently, users of these

systems must be experts at the industrial process as well as at computer programming. Indeed, expertise in either

of these fields is a job skill in its own right.

Despite the advantages of offline packages, online programming is more commonly used in practice. In online

programming, an actual part is placed in the workspace exactly as it would be during production. Users create

robot programs by moving the end-effector between waypoints with some type of control device, typically a

joystick or push buttons. Even though online systems generate procedural-programming code, users can create

robot programs without editing this code, and it is typically viewed as less intimidating and more intuitive than

offline programming. One potential disadvantage of online systems is that production and programming cannot

occur in parallel; production must be halted during reprogramming. If reprogramming cannot be completed during

normal downtime, such as weekends, then cost will be incurred in the form of lost production. Therefore, the set

of tasks viable for online programming is constrained by programming time. A reduction in this time would allow

its use in areas previously off limits.

In this chapter, we present a novel Predictive Robot-Programming (PRP) system1 that allows users to leverage

their previous work to decrease future programming time. Specifically, this system assists users by predicting

where they may move the end-effector and automatically positions the robot at the estimated waypoint. The PRP

idea of automatically completing a task based on a few observations is conceptually similar to word-completion

routines in word-processing programs and text-messaging in mobile phones. In that application, users are pre-

sented with a word completion based on a few keystrokes, in the hope of reducing the time needed to type a

message. The domain of word completion is well defined: it is a dictionary. In PRP, there are an uncountable

number of tasks that a manipulator robot may perform and no corpora of example programs. Further complicating

any prediction scheme are the inherent imprecision and poor repeatability of humans and the tendency of users to

perform the same task in different manners. Consider the case of welding the joints of a rectangle, where if the

goal is to weld the object together, then the corners may be welded in any order. Such ambiguity complicates any

prediction scheme. Our PRP system addresses this uncertainty during both modeling and prediction.
1Our PRP system is called Adaptive Experience Suggestion, Observation, and Prediction (AESOP) by the ABB Corporation.
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Figure 4.1: Waypoints from two subroutines in the same robot program. While they are different at the subroutine
level, there are repeated subtasks occurring in translated and rotated form, such as the “U-shaped” pattern. The
relative movement of the robot with respect to the end-effector during these subtasks is the same.

Manipulator robots perform a wide variety of industrial applications; as the capabilities of robots increase,

they are performing more sophisticated tasks. Simple tasks can take days to program, while more complex tasks

can take weeks or months. Despite their complexity, most tasks can usually be decomposed into simpler subtasks,

which may be repeated throughout the program directly or in some modified form. Most robot programmers either

do not recognize the similarity or create these subtasks from scratch each time due to the cumbersome nature

of current programming environments. For example, in Figure 4.1 we show the waypoints from two different

subroutines in an arc-welding robot program. While they are clearly different at the subroutine level, there are

repeated subtasks, such as a “U-shaped” pattern, which is rotated differently in the two subroutines. However, the

patterns have the same movements with respect to the end-effector. Such repeated subtasks tend to be specific to

a particular robot program. That is, the similarity arises from the physical workpiece and the industrial process at

hand. If a different workpiece is supplied or a different industrial process employed, then the pattern of similarity

would change. While users are creating waypoints, the PRP system must be able to identify similarities, if any, to

the many previously created subtasks and then suggest future waypoints. If users allow the PRP system to move the

robot, then the end-effector is automatically positioned at the predicted waypoint. Compared to the time needed

to move a robot manually, automatic positioning of a robot is essentially instantaneous, which reduces overall

programming time. The prediction process can execute in a closed- or open-loop fashion. During closed-loop

operation, the PRP system moves the robot to a single predicted position and users may fine-tune the waypoint

with a conventional control device. In the open-loop mode, the PRP system automatically completes the task

for users without adjustment to the waypoints. Both prediction modes have their advantages and disadvantages.
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Closed-loop prediction tends to produce more accurate waypoints, because user feedback reduces error. Open-loop

prediction is faster, since the PRP system does not have to wait for user intervention.

4.2 Representing Waypoints

Using our terminology, the task subgoals are the waypoints of the program. General-purpose six-degree-of-

freedom (6DOF) manipulators can be described by a Cartesian-space location and orientation of the end-effector.

In this work, the surjective Cartesian-space description is preferable to the bijective joint-space representation, be-

cause the Cartesian-space description forms a kinematics-free coordinate transform. With the use of this Cartesian-

space end-effector description, a waypoint is given by the homogeneous coordinate transform matrix nwG that

maps some global reference frame G to the frame of the nth waypoint. A robot program can be described by the

sequence of waypoints W = {Gw0,
Gw0, . . . ,

GwN} that specify the location and orientation of the end-effector

at discrete intervals.

In three-dimensional space, the position of an object can be described by a location and an orientation. While

the location is typically given by a rectangular {x, y, z} description, there are many orientation representations

used. Three common orientation descriptions used in practice include rotation matrices, Euler angles, and unit

quaternions (Mason, 2001). Rotation matrices are a poor choice, since the predicted orientation is an average of

observed orientations. In general, the average of two orthonormal matrices is not orthonormal. Other common

representations for three-dimensional orientation involve Euler angles. Similar orientations may have extremely

different Euler-angle representations, e.g., the Z-Y -X Euler angles {π, 0, 0} and {−π, 0, 0} are equivalent. The

element-by-element average of these two representations is {0, 0, 0}, which describes a much different orienta-

tion.2 These discontinuities made Euler angles somewhat unreliable in our experiments. The solution in two

dimensions, using sines and cosines to ensure angle continuity, becomes a rotation matrix in the three-dimensional

case. For these reasons, we use a unit quaternion to represent orientation. While quaternions also have discontin-

uous representations and must be of unit length, they have yielded the best performance in our experiments.

For notational convenience, we use a column vector to represent a waypoint, xn = vec(nwn+1). Describing

orientation information with unit quaternions means that xn is a (7× 1) vector.
2It is typical to restrict angles to the semi-open interval (−π, π]. This example still applies as the value in the second Euler angle gets

very close to −π.
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4.2.1 Rotation and Translation Independence

A homogeneous coordinate-frame transform, awb, is defined by the matrix

awb ,
[

aRb
a
apb

0 1

]
,

where aRb is a (3× 3) orthonormal matrix describing the rotation from frame a to frame b and the (3× 1) vector
c
apb specifies the translation from frame a to frame b in coordinate frame c. Many references, e.g., Craig (1989),

have derived the following properties from the definitions above:

c
apb = −cbpa,
c
apb = c

apd + c
dpb,

c
apb = cRd

d
apb,

aRb = aRc
cRb,

aRb = (bRa)
−1 = (bRa)

T
,

aRa = I.

The product of two homogeneous coordinate transforms, called “compounding,” is written

awb
bwc =

[
aRb

a
apb

0 1

][
bRc

b
bpc

0 1

]
(4.1)

=

[
aRb

bRc
aRb

b
bpc + a

apb

0 1

]

=

[
aRc

a
bpc + a

apb

0 1

]

=

[
aRc

a
apc

0 1

]

·
= awc.



52 CHAPTER 4. PREDICTIVE ROBOT PROGRAMMING

2

1

3

G G 0

2

1

3
0

Figure 4.2: Though different in the global reference frame, G, the relative-movement information between these
two programs is the same.

Essentially, Equation 4.1 describes the relative change in rotation and translation between the frames a and c. The

inverse transform bwa, which “undoes” the transform awb, can be derived from the earlier properties

bwa =

[
bRa

b
bpa

0 1

]

=

[
(aRb)

T −bapb
0 1

]

=

[
(aRb)

−1 −bRa
a
apb

0 1

]

=

[
(aRb)

−1 −(aRb)
−1a

apb

0 1

]

= (awb)
−1.

Note that the inverse transform always exists, since the only matrix inversion involves an orthonormal matrix,

which must be full rank.

For any PRP system to be useful, it must be able to recognize and predict patterns in a rotation- and translation-

independent manner. Without this ability, the PRP will not be able to assist users when they perform the same

task in a different area or orientation in the workspace. As we demonstrate shortly, describing a robot program

by relative-movement information, instead of absolute-position information, has the distinct advantage of yielding

rotation and translation independence. For example, the two robot programs shown in Figure 4.2 are quite different

in absolute terms but have the same relative-movement description. Using a relative-waypoint representation, the

PRP system is able to recognize patterns and predict waypoints independent of rotation and translation. The

following definition precisely delineates the concept of the relative-waypoint representation.
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Definition 4.1. Given a sequence of homogeneous coordinate-frame transforms with respect to a common frame,

G,

W = {Gw0,
Gw0, . . . ,

GwN},

and its Sequential Relative Homogeneous Coordinate-frame Transform (SRHCT) is given by

W̃ = {0wG
Gw1,

1wG
Gw0, . . . ,

N−1wG
GwN}

= {0w1,
1w2, . . . ,

N−1wN}.

This definition yields the following intuitive result.

Theorem 4.1. A robot program specified by its SRHCT is independent of an initial rotation and translation.

Proof. Suppose we have a robot program with an arbitrary number of waypoints, W = {Gw0,
Gw0, . . . ,

GwN}.
We give the robot program an initial rotation and translation by premultiplying each waypoint by some homoge-

neous coordinate transform, HwG, to yield

WH = {HwG
Gw0,

HwG
Gw1, . . . ,

HwG
GwN}

= {Hw0,
Hw1, . . . ,

HwN}.

The SRHCT of the rotation and translated program is then

W̃H = {0wH
Hw1,

1wH
Hw2, . . . ,

N−1wH
HwN}

= {0w1,
1w2, . . . ,

N−1wN}.

Note that the SRHCT of the original robot program is, by definition,

W̃ = {0wG
Gw1,

1wG
Gw2, . . . ,

N−1wG
GwN}

= {0w1,
1w2, . . . ,

N−1wN}.

Since W̃H ≡ W̃, a robot program specified by its SRHCT is independent of an initial arbitrary rotation and

translation.

Theorem 4.1 implies that that robot programs can be recognized independent of an initial rotation and trans-

lation. The ith SRHCT robot program is written as X i = {xi0,xi1, . . . ,xiNi}. The input to algorithm Learn-

HMM (Figure 3.10) is the multiset of SRHCT robot programs X = {X0,X1, . . . ,XM}. Note that there is no
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Figure 4.3: An error of 9◦ per rotation results in a compounded error of almost 50% of the leg length.

requirement that the robot programs have a common length or even describe the same physical task. The algorithm

could assimilate tasks corresponding to, e.g., arc-welding a bed frame, spot welding a ship hull, painting a car, etc.

Once the robot programs have been assimilated into a CDHMM and the user begins creating a new robot program,

we compute predictions of the next waypoint, x̂∗n, based on Equation 3.9. However, x̂∗n is a stacked column vec-

tor of the relative waypoint n−1ŵn, which specifies the estimated relative movement of the end-effector from its

current position, Gwn−1. Therefore, the estimated position of the next waypoint is found by postmultiplying the

estimator, n−1ŵn, by the current position of the end-effector in the global frame

Gŵn = Gwn−1
n−1ŵn.

The relative-movement description requires that the user specify the orientation of the end-effector very pre-

cisely. If the user repeats a task with a slight difference in orientation, then the Cartesian errors occurring between

the two demonstrations can quickly accumulate and become large, similar to the compounding of dead-reckoning

errors in a mobile robot (Thrun, 1998), as in Figure 4.3. But the compounding of errors in Figure 4.3 is certainly

a worst-case scenario because, in the PRP domain, a human is controlling the robot and “closes the loop” to nul-

lify much of the residual prediction error. However, the ability to compute rotation- and translation-independent

predictions is critical to the success of the PRP system, since the similarities embedded in a robot program occur

at different orientations and locations in the workspace, as in Figure 4.1.

4.2.2 Scale Invariance

If the PRP system has assimilated a robot program moving along a rectangle, it will be of little or no help in

predicting the waypoints of different-sized rectangles, even rectangles with the same aspect ratio. The ability

to recognize and predict scaled versions of previously assimilated tasks is called scale invariance. As mentioned

earlier, the PRP system is able to recognize patterns independent of their location and orientation by using rotation-

and translation-independent features, the SRHCT. While the same approach would work for recognizing scaled
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Figure 4.4: The waypoints (1–6) from the pattern on the right form a scaled subtask (ψ = 2) of waypoints (6-11)
from the pattern on the left.

tasks, no feature transform appears feasible for predicting the waypoints of scaled tasks. For instance, we could

reduce a robot program to a sequence of rays. To recognize a task based on previously assimilated tasks, we could

compute the likelihood of the various rays. However, these half-infinite lines are of little help when trying to

predict the position of the next waypoint, as they yield only the direction of the prediction. We considered a few

scale-invariant feature transforms but none yielded the ability to predict reliably. Thus, we have turned to a more

brute-force approach: iterative locally optimal maximum likelihood.

In this formulation, we want to find the value, ψ ∈ (0,∞), that scales waypoints in the current task, X c
0:n =

{xc0, . . . ,xcn}, such that the likelihood of the scaled task is maximized given the estimated CDHMM,

ψ̂∗ = arg max
ψ

p(xc0, . . . ,x
c
n|ψ,λ) (4.2)

= arg max
ψ

∑

qj∈Q
p(cn=qj ,X

c
0:n|ψ,λ)

·
= arg max

ψ

∑

qj∈Q
αn(j, ψ).

In the PRP domain, we do not want to multiply each element of a stacked waypoint, xn, by the scale factor, ψ.

Typically, we would like to scale only the Cartesian coordinates of the waypoint and leave the orientation compo-

nents alone. If the CDHMM observation pdf is Gaussian, this implies that the covariance matrix, Σ, is symmetric

block-diagonal, with one block corresponding to the Cartesian coordinates and the other block corresponding to

the orientation information. In real-world terms this arrises from the assumption that users make Cartesian errors
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independent of orientation errors. With this in mind, we define the “scale matrix” such that

Ψi,j ,





0, if i 6= j

1, if i = j and not scaled

ψ, if i = j and scaled

(4.3)

∂

∂ψ
Ψi,j =





0, if i 6= j

0, if i = j and not scaled

1, if i = j and scaled
·

= Ψ′i,j .

Then a scaled waypoint is found by premultiplying the stacked waypoint by the scale matrix, Ψxn, which is a

column vector with the Cartesian elements scaled by ψ and the orientation elements unscaled. Similar to Equa-

tion 3.7, we define the scaled forward variables as

αn(j, ψ) ,





bj(Ψxn)
∑
qi∈Q

aj|iαn−1(i, ψ), n > 0

bj(Ψx0)πj , n = 0
. (4.4)

The complete derivation for the following equation is given in Section A.2.3. Assuming the observation pdfs

are Gaussian, the partial derivative of Equation 4.4 with respect to the scale factor is

∂

∂ψ
αn(j, ψ) =

{
(Ψ′xn)

T
Σ−1(µj−Ψxn)

}
αn(j, ψ) + bj,ψ(xn)

∑

qi∈Q
aj|i

∂

∂ψ
αn−1(i, ψ). (4.5)

Since Equation 4.5 is recursive, the appropriate initial conditions at the beginning of time are needed (the partial

derivative of Equation 4.4). We cannot solve for the optimal ML estimator of the scale factor explicitly, since

Equation 4.5 is a sum of transcendental terms. We can only hope to find locally optimal ML solutions by iterative

line-search techniques, such as cubic interpolation, gradient ascent, etc. (Bertsekas, 1995).

Once we find the (locally optimal) ML estimator of the scale, ψ̂∗, we compute predictions based on the

scaled task by substituting Equation 4.4 into the ML prediction, Equation 3.9. The scaled task is computed by

premultiplying each observation by the ML scale matrix, Ψ, from Equation 4.3,

Xi,ψ̂∗ = {Ψxi0,Ψxi1, . . . ,ΨxiNi}. (4.6)

However, even if we are able to identify scaled (sub)tasks based on having a CDHMM, we must still incorpo-

rate scaled tasks into a CDHMM. When we execute the Learn-HMM algorithm, this leads to a “chicken and egg”
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Algorithm Learn-Scaled-HMM

X = {X0,X1, . . . ,XM} is the multiset of all tasks.
ε ≥ 0 is a similarity threshold.
ψmin is the minimum bracket for the scale.
ψmax > ψmin is the maximum bracket for the scale.

1: V := ∅, E := ∅
2: GX := (V, V 0, E,X ,V , f, g)

3: for allX i ∈ {X0,X1, . . . ,XM}
4: ψ̂∗ := compute-scale (GX ,Xi, ψmin, ψmax) (Figure 4.6)

5: X i,ψ̂∗ from Equation 4.6

6: GX := assimilate-task (GX ,Xi,ψ̂∗ , ε) (Figure 3.8)
7: end for all
8: λ := graph-to-HMM (GX,M) (Figure 3.9)

Figure 4.5: The algorithm for assimilating scaled tasks into an HMM.

problem: without a CDHMM, we cannot determine the ML scale of a task; without any tasks, we cannot create a

CDHMM. In Figure 4.5, we give an algorithm that uses the tasks already assimilated into the CDHMM to estimate

the ML scale. We then scale the task according to Equation 4.6 and assimilate this scaled task into the CDHMM.

However, the estimate is unreliable if a scaled version of the task has never been assimilated before. In this case,

we assimilate the task unscaled. The bracketing of the scale can arise from the physical nature of manipulator

robots. All robots have finite accuracy and reachability, and these numbers can serve as a bracket on the ML scale.

4.3 Offline Programming

In this section, we analyze the performance of the PRP system on five programs created using a conventional

offline-programming environment (Figure 4.7). The programs have between 252 and 1899 waypoints with 16

to 196 subroutines. Collectively, these programs took over 70 work days to complete by a professional robot

programmers. The programs were created to automate arc-welding production at several factories in Sweden.

Each program was designed to produce a different type of product, from round tables to bed frames. Since the

robot programs were developed independently of our PRP system, the behavior of the users was unmodified by

these experiments. The programs provide the substrate to verify experimentally the ability of PRP to generate

accurate predictions of users creating waypoints for complex, real-world tasks. In Section 4.3.2, we analyze the

prediction accuracy of the PRP system as the complexity of the estimated CDHMM changes, by varying the

parameter δ, and show that the system is capable of performing real-time operation. In Section 4.3.3, we show that

prediction confidence, φn, strongly correlates with prediction accuracy. In Section 4.3.4, we test the hypothesis
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Function compute-scale
GX = (V, V 0, E,X ,V , f, g) is the observation graph.
Xi = {xi0,xi1, . . . ,xiNi} is the task to assimilate.
ψmin is the minimum bracket for the scale.
ψmax > ψmin is the maximum bracket for the scale.

1: N := maximum depth of GX
2: if Ni ≤ N then
3: λ := graph-to-HMM (GX,i) (Figure 3.9)
4: ψ := arg max

ψ
p
(
Xi|ψ,λ

)

5: if ψmin ≤ ψ ≤ ψmax then
6: ψ̂∗ := ψ

7: end if
8: else then
9: /∗ scale is outside bracket: assume 1.0 ∗/
10: ψ̂∗ := 1

11: end else
12: end if
13: else then
14: /∗X i too long for G ∗/
15: ψ̂∗ := 1

16: end else
17: return ψ̂∗

Figure 4.6: Computing the ML scale for a task.
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Figure 4.7: Screen shot from the offline package showing the workspace and waypoints of a program with 18
subroutines.

that users are well modeled by a CDHMM by observing the prediction accuracy of the PRP system as more

waypoints are incorporated into the learning algorithm.

4.3.1 Methodology

To compute waypoint predictions, we segment the programs along the subroutines contained in each program.

We emulate users creating the robot program by feeding the subroutine waypoints into the PRP system in a serial

fashion. The PRP system computes a prediction of the next position by conditioning the CDHMM on previous

waypoints from the subroutine (Equation 3.9). If the PRP system has sufficient confidence in the prediction

(Equation 3.10), then we consider the prediction valid and compute its error. To determine the prediction error,

we compare the predicted waypoint to the next waypoint in the subroutine and consider any difference to be an

error in the prediction. At the end of each subroutine we incorporate its waypoints into the CDHMM, building an

estimated user model. After predicting the final waypoint in a program, we reinitialize the CDHMM tabula rasa
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Figure 4.8: Flow chart for computing predictions for the offline programs.

and start the prediction of the next program. A flow chart of this procedure is given in Figure 4.8.

The definition of similarity, Equation 3.1, incorporates a symmetric PD precision matrix, C, that represents

the inverse covariance matrix of human error when defining a waypoint. We computed the covariance matrix

by having users repeatedly move a robot to a point in space and analyzing the residual error.3 Robotic arc-

welding requires approximately 1 millimeter of Cartesian accuracy and about 0.1 radians of angular accuracy. The

results presented in this work employ these physical tolerance constraints as a threshold for determining a “useful

prediction,” meaning that a waypoint within these tolerances will generally require no fine-tuning by the user.

At the end of welding, it is common to execute a gross repositioning where the robot moves across the

workspace to the next weld, typically on the order of a meter. These movements tend not to be predictable and a

small percentage error in predicting the gross repositioning will dominate the mean over many precise movements.

We are more interested in the typical prediction error, which is better conveyed by the median.

4.3.2 Performance as a Function of Model Complexity

In Figure 4.9 we plot two measures of model complexity, CDHMM states and running time. As expected, the num-

ber of CDHMM states tends to increase as δ increases. Also, running time increases as the number of CDHMM
3The covariance matrix was computed from online-programming experiments, whereas this section deals with offline-programming.

From our experience, the principal directions of variance appear to be similar, but the eigenvalues are smaller when using an offline
environment.
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Figure 4.9: Model complexity as a function of δ.
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Figure 4.10: Median Cartesian error and angle error as a function of δ.
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Figure 4.11: Percentage of predictions and useful predictions as a function of the confidence threshold.

states increases. Importantly, Figure 4.9 shows the average time per waypoint taken to estimate a CDHMM and

compute a prediction. This time, ∼25 milliseconds, is suited for real-time use in a robot-programming environ-

ment.

To determine the performance of the system as a function of model complexity, we held out one program and

computed the performance on the remaining four programs. The held-out program is meant as a sort of test set, but

since data are so sparse it is difficult to draw any statistically significant conclusions based on this four-program

training set and one-program test set. Indirectly, the parameter δ also determines the accuracy of predictions by

controlling the complexity of the CDHMM. In Figure 4.10, we plot the average median error on the four-program

training set as a function of δ. For all values of δ, the angle error is extremely small, less than 0.2 milliradians or

about 0.3% of the angle changed during prediction. This is because robots tend to change orientation in a fairly

predictable manner during welding and gross repositioning. By exploiting this information, the PRP system can

generate extremely accurate angle predictions. However, the Cartesian movements of the robot are determined by

the size of the objects in the workspace, a much more unpredictable quantity. When the parameter is too small,

the learning algorithm produces a CDHMM that is too simple to represent users. When the parameter is too large,

the CDHMM begins to overfit the data. In PRP, as in many machine-learning applications, “everything should be

made as simple as possible, but not simpler,” and the correct complexity depends on the tasks at hand. In our case,

the Cartesian error bottoms out on the interval δ ∈ (0.5, 0.9). This implies that a value in the neighborhood of

δ ≈ 0.7 induces the right amount of complexity on the training set.
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Figure 4.12: Median Cartesian error and angle error as a function of the confidence threshold.

4.3.3 Performance as a Function of Confidence

In this section we determine the correlation of prediction confidence to prediction accuracy. Specifically, we

discard predictions with confidence below a threshold and analyze the accuracy of the remaining predictions. The

hypothesis is that higher-confidence predictions are more accurate than lower-confidence predictions. Inevitably,

as the confidence threshold increases there will be accurate predictions discarded due to insufficient confidence.

Loosely speaking, the PRP system may have a “lucky guess”; without knowing the target waypoint at the time

of prediction, it is impossible to discriminate between lucky guesses and well-informed estimates. Using the

training set, we can determine a confidence threshold that strikes a balance between quality and quantity. We fix

the value of δ = 0.7 and have the learning algorithm construct a CDHMM based on Figure 4.8 for each program

in the four-program training set and analyze the performance of the PRP system as a function of confidence

threshold. In Figure 4.11 we plot the percentage of useful predictions as a function of the confidence threshold on

the four-program training set. The percentage of useful predictions generally increases as the confidence threshold

increases until about φn ≥ 0.8, when the percentage plateaus. In Figure 4.12 we plot the average median error as

a function of the confidence threshold. For all confidence thresholds the angle error is extremely small, between

0.06 and 0.2 milliradians. The median angle movement during prediction was about 65 milliradians, meaning that

the angle prediction error is between 0.09% and 0.3% of the angle change. However, the Cartesian prediction error

improves as the confidence threshold increases, until it bottoms out at around 0.03 millimeters for φn ≥ 0.8, well

below the physical tolerance required by arc-welding. The median Cartesian movement during prediction was



64 CHAPTER 4. PREDICTIVE ROBOT PROGRAMMING

200 400 600 800 1000 1200 1400 1600
10

−4

10
−3

10
−2

10
−1

Waypoint Number

M
ed

ia
n 

(m
)

Cartesian Error

(a)

200 400 600 800 1000 1200 1400 1600
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

M
ed

ia
n 

(r
ad

)

Waypoint Number

Angle Error

(b)

Figure 4.13: Median error as a function of the number of waypoints assimilated into the CDHMM.

about 100 millimeters, meaning that the Cartesian prediction error is about 0.03% of the movement of the robot

during a prediction. Empirically, based on this data set, confidence is related to Cartesian error with a normalized

correlation coefficient of ρ = −0.89, significant to a p-value of p� 0.01. This strong correlation implies that, on

the training set, higher-confidence predictions tend to be more accurate.

4.3.4 Temporal Performance

In this subsection we use parameters that performed well on the training set, δ = 0.7 and φn ≥ 0.7, to analyze

the performance on the hold-out test program. The CDHMM is initialized tabula rasa and incorporates waypoints

from the test program incrementally according to the procedure in Figure 4.8. In Figure 4.13(a), we plot the median

prediction error on the hold-out program as the user creates waypoints. After about 400 waypoints have been

incorporated, the median Cartesian error stabilizes at around 0.25 millimeters. The median Cartesian movement

during prediction was 50 millimeters, meaning that the Cartesian prediction error is about 0.5% of the movement

of the robot during a prediction. Likewise, the median angle error stabilizes around 0.02 milliradians after about

150 waypoints. The median angle movement during prediction was 0.1 milliradians, meaning that the angle

prediction error is about 20% of the angle change. Both of these values are well below the physical tolerance of

1 millimeter and 0.1 radians required by arc-welding. This asymptotic-like behavior of the PRP prediction error
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suggests that the estimate of users improves until sufficient information about the task has been acquired.4 The

PRP algorithm computed predictions with confidence φn ≥ 0.7 for about 25% of the waypoints on the hold-

out program, which originally took over eight work weeks to create by a professional robot programmer using a

conventional offline-programming package. Allowing the PRP system to move the robot to predicted waypoints

automatically could save several days in programming time. It it important to remember that none of the programs,

either in the training set or the hold-out, were created with a PRP system in mind. In other words, the programs

were not created with any motivation for reusing previous work. The predictability of the waypoints results from

the inherent similarity of the underlying tasks. It seems plausible that a programmer creating waypoints with a

PRP system would be more likely to create waypoints in a predictable fashion, resulting in greater time savings,

making robot-programming environments incorporating a PRP system even less cumbersome.

4.3.5 Discussion of Results

The results contained in this section validate the core principles of PRP. For the different programs analyzed, the

PRP system computed predictions with confidence φn ≥ 0.7 for between 10% and 30% of possible waypoints.

The median Cartesian prediction error for each program was between 0.03 millimeters and 0.25 millimeters, or

0.03% and 0.5% of the distance moved during prediction. The median angle prediction error for each program

was between 0.06 milliradians and 0.2 milliradians, or 0.09% and 20% of the angle change during prediction. All

of these values are well under the useful physical tolerances required by arc-welding of 1 millimeter of Cartesian

accuracy and 0.1 radians of angular accuracy. On average, about 60% of predictions computed by the PRP system

with a confidence of φn ≥ 0.7 were useful. The high accuracy of predictions indicates that the CDHMM can

identify the inherent similarity contained in complex, real-world robot programs. Since the programs were created

without consideration for PRP, the predictability of the waypoints is due to the underlying similarity of the tasks

themselves. The PRP system was able to estimate a user model and compute predictions in about 25 millisec-

onds, which is sufficient for real-time operation. The asymptotically decreasing nature of prediction error, as a

function of the number of waypoints incorporated into the learning algorithm, shows that the modeling of a robot

programmer by a CDHMM is appropriate. The strong correlation between prediction accuracy and prediction con-

fidence gives the PRP system a causal statistic for determining which predictions may be inaccurate. By “filtering”

predictions based on confidence, the PRP system can avoid burdening the user with unhelpful suggestions.

Since the programs were created independently of PRP, we have no way of directly translating these results

to programming-time savings. However, we can estimate hypothetical savings in programming time based on

the results by assigning a time benefit for useful predictions and a time penalty for non-useful predictions. A

reasonable benefit for a useful prediction is roughly 90%, since it may take the user a short amount of time to
4Parenthetically, all programs in the training set also showed the same general asymptotically decreasing shape in their error plots.
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Figure 4.14: Median Cartesian error and angle error as a function of the confidence threshold for the MAP
structure-estimation algorithm.

determine if the predicted waypoint is sufficiently close to the desired position. A penalty of 10% for a non-

useful prediction seems appropriate, since a prediction can be rejected out of hand by pressing an “undo” button.

Using typical values for the PRP system parameters, δ = 0.7 and φn ≥ 0.7, would result in a 10% reduction

in programming time, which translates to 7 work days saved on the programs analyzed in this section. With a

benefit of 75% and a penalty of 25%, the programming-time reduction is 7%. However, some waypoints, such as

approach points, do not require much accuracy. Also, it seems likely that many non-useful predictions will also

benefit the user; a prediction that is close to the intended waypoint, but still requires some fine-tuning, probably

takes less time than the user moving the robot manually. Consequently, the binary classification of predictions

as useful and non-useful probably represents a lower bound on programming-time savings. In Section 4.5.3 we

present results on reducing programming time in laboratory experiments.

4.4 Empirical Comparisons

In this section, we compare the performance of our system to existing methods.
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4.4.1 Comparison to Maximum A Posteriori Structure Estimation

In this subsection, we compare our learning algorithm to the MAP structure-estimation algorithm by Stolcke and

Omohundro (1994b), derived in Section 3.9.5 In Figure 4.14 we plot the average median error as a function of

the confidence threshold for the MAP structure-estimation algorithm. The average median Cartesian error is al-

most two orders of magnitude larger than for similar confidence thresholds compared to our learning algorithm,

about 1.5 millimeters compared to about 0.03 millimeters, respectively. On average, the MAP algorithm created

CDHMMs with about 249 states, whereas our algorithm created CDHMMs with an average of 199 states for

δ = 0.7.6 This is due to the term in the MAP merging criterion that penalizes the algorithm for merging states

that would increase CDHMM perplexity, cf. Theorem 3.9. CDHMM perplexity is defined as the mean number of

outbound transitions from states in the model (Rabiner & Juang, 1993). Since our algorithm does not consider

CDHMM perplexity, it able to merge more states. Not surprisingly, the CDHMMs estimated from our learn-

ing algorithm have substantially higher perplexity than CDHMMs from the MAP structure-estimation algorithm.

Specifically, our algorithm estimated CDHMMs with an average perplexity of 1.54, whereas the MAP algorithm

estimated CDHMMs with an average perplexity of 1.13, giving our CDHMMs about 36% higher average perplex-

ity. For the short-sequence similarities, such as those found in PRP (Figure 4.1), this increased perplexity does not

appear to hurt performance. However, Stolcke and Omohundro (1994b) developed their MAP structure-estimation

algorithm for speech-recognition applications, where long similarity sequences are expected. Their goal was to

create a learning algorithm that kept model perplexity as low as possible to recognize the long speech sequences.

4.4.2 Comparison to Prediction-State Probability

We compare the performance of prediction confidence to prediction-state confidence, which is defined as the

probability of the most-likely state given the current task, maxj νn(j), cf. Equation 3.8. In Figure 4.15 we plot the

percentage of useful predictions as a function of the prediction-state probability on the four-program training set.

In Figure 4.16 we plot the average median error as a function of the prediction-state probability. Empirically, based

on this data set, prediction-state probability is related to Cartesian error with a normalized correlation coefficient

of ρ = −0.82, significant to a p-value of p � 0.01. While this prediction-state probability correlates well with

prediction accuracy, it is not as strong as that of prediction confidence, where the normalized correlation coefficient

was ρ = −0.89. However, the correlation of prediction-state probability with Cartesian error is limited to a small

range of prediction-state probability, between about 0.3 and 0.5, which significantly limits its usefulness. The

correlation for values of prediction-state probability greater than 0.5 is ρ = −0.45, whereas prediction confidence
5Comparisons are based on a reversed-engineered implementation of the algorithm by Stolcke and Omohundro (1994b) that we created.
6The total time taken to run the entire battery of experiments using our algorithm was 29.186 seconds, while the MAP structure-

estimation algorithm took 542.066 seconds. This is hardly a fair comparison, since we have clearly spent more time optimizing our
algorithm than a reverse-engineered implementation based on the pseudo-code from other researchers.
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Figure 4.15: Percentage of predictions and useful predictions as a function of the prediction-state-probability
threshold.
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Figure 4.16: Median Cartesian error and angle error as a function of the prediction-state-probability threshold.
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Figure 4.17: The four patterns for user demonstrations with 13, 6, 10, and 10 waypoints respectively.

has a correlation of ρ = −0.92 over the same interval. For high values of both statistics, the Cartesian prediction

error is about the same, but prediction confidence is more gradual way to filter out the less accurate predictions.

4.5 Online Programming

In this section we analyze the performance of the PRP system in an online-programming environment. We col-

lected 44 robot programs from 3 users in a laboratory setting. All users had previous experience with online robot

programming and were allowed to practice moving the robot until they felt comfortable controlling it. In our

terminology, the repertoire of the user consists of the four simple tasks shown in Figure 4.17. The two right-most

programs, comprising 10 waypoints each, represent standard arc-welding tasks. The two left-most programs, com-

prising 13 and 6 waypoints respectively, are planar geometric movements. The mean distance between waypoints

in these programs was 186 millimeters. These programs were created in a laboratory setting specifically to test

the viability of PRP as a robot-programming tool. In Section 4.5.2 we analyze the performance of the PRP system

when the learning algorithm incorporates programs in different orders. In Section 4.5.3 we show that the PRP

system contributes to a significant reduction in programming time.

4.5.1 Methodology

To create a program, users move the robot with a joystick (Figure 4.18). When users feel that the end-effector is

sufficiently close to the desired waypoint, they press a button on the teach pendant to indicate that the current robot

position should be stored as the next waypoint in the program. We left the definition of “sufficiently close” to the

users, which resulted in substantially larger deviations than required for a program to be viable for arc-welding.

To compute the precision matrix from Equation 3.1, we asked users to move the end-effector repeatedly to an

unreferenced point in space by controlling the robot with the joystick. We then computed the residual error and
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Figure 4.18: Creating waypoints for the patterns in Figure 4.17 with an ABB IRB140.

set the precision matrix equal to the inverse of the covariance, C = Var(x)−1. Similarity in robot programs may

occur in short subsequences. In these cases, conditioning the CDHMM on waypoints from the entire program

may cause the PRP system to generate poor predictions (Equation 3.9), even if we discard predictions below a

confidence threshold (Equation 3.10). This can be avoided by computing predictions based on a horizon, h, of

recent waypoints,

x̂∗n = arg max
xn

p
(
xn|Xc

n−h:n−1,λ
)
.

The experiments in this section will explicitly incorporate this notion of a horizon.

4.5.2 Leave-One-Out Performance

As mentioned previously, our CDHMM structure-estimation learning algorithm is sensitive to the order in which

robot programs are incorporated into the model. To analyze this effect, we created 44 permutations of the 44 robot
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Figure 4.19: Median number of states as a function of δ, over the 44 different orderings of the online robot
programs collected from Figure 4.17. The error bars indicate the minimum and maximum states induced by the
permutations.

programs from Figure 4.17 so that their waypoints were introduced into the learning algorithm in a differing order.

In Figure 4.19 we plot the median number of states as a function of δ. The error bars in Figure 4.19 show the

minimum and maximum number of states caused by the different permutations. Figure 4.19 implies that varying

the parameter δ has a much greater impact on model complexity than does the order in which the robot programs

are introduced into the learning algorithm.

Using the 44 permutations, we also computed the leave-one-out statistics for the accuracy of two prediction

criteria. The first criterion uses only high-confidence predictions (φn ≥ 0.8) over a relatively long horizon (h = 3).

The second criterion allows for lower-confidence predictions (φn ≥ 0.5) over a shorter horizon (h = 2). In Fig-

ure 4.20 we plot the Cartesian error for the 44 permutations as a function of δ for the two prediction criteria. The

average median Cartesian error for both criteria, for most values of δ, was about 15 millimeters, or 8% of the

distance traveled by the robot. The substantial overlap between the distributions means that neither criterion is

different in a statistically significant sense. While the impact of model complexity, induced through δ, has a sig-

nificant impact on Cartesian prediction accuracy,7 the influence from the order in which programs are incorporated

into the CDHMM dominates.
7High-confidence: ρ=−0.83, Low-confidence: ρ=−0.61; both have a p-value of p� 0.01.
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Figure 4.20: Cartesian errors caused by the different orderings of the online robot programs as a function of δ.
The solid surface is the central 50% distribution for a high-confidence prediction criterion and the mesh surface
shows the central 50% distribution for a low-confidence prediction criterion.

4.5.3 Impact on Programming Time

Users of the PRP system will be most interested in the reduction of the time needed to create robot programs. To

determine the impact on programming time, users were asked to complete one of the tasks from Figure 4.17. The

baseline is the time taken to create a robot program without PRP prediction support. The PRP system constructed

a CDHMM from waypoints of other robot programs using a value of δ = 0.8. We then asked users to create

the programs with the PRP system offering prediction support with two different prediction criteria. As in Sec-

tion 4.5.2, one criterion incorporates high-confidence predictions over a long horizon (φn ≥ 0.8, h = 3) and the

other criterion allows low-confidence predictions over a short horizon (φn ≥ 0.5, h = 2). During programming,

users move the robot with a joystick. When users feel that the current end-effector position is sufficiently close to

the target waypoint, they press a button on the teach pendant. If the PRP system computes a prediction of sufficient

confidence, this waypoint is suggested to users with an audible signal. Users can ignore the suggestion or they can

allow the PRP system to move the robot to the predicted waypoint automatically by holding down another button.

Users can stop the PRP system from moving the robot by releasing the button if, for example, there is an obstacle

in its path. It is not uncommon for users to decide that the prediction must be refined. Fine-tuning can be done

using conventional joystick positioning, or the previous waypoint can be restored by pressing an “undo” button.

This fine-tuning or undoing time was included in the total programming time for that PRP prediction criterion

result.

The impact of the PRP system on programming time is summarized in Table 4.1. The first row shows the
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Prediction mean std change Wilcoxon
Criterion (sec) (sec) Conf

None 292.2 78.61 N/A N/A
φn≥0.8,h=3 193.2 32.07 −33.88% 99.95%

φn≥0.5,h=2 178.0 33.39 −39.08% 99.99%

Table 4.1: Programming time used to complete the tasks in Figure 4.17 with no prediction, high-confidence pre-
diction, and low-confidence prediction.

baseline programming time used to complete the tasks without PRP prediction support. The second and third

rows show the impact of PRP prediction using the high-confidence and low-confidence criteria, respectively. The

Wilcoxon rank sum test confidence values (Fraser, 1957) in the final column indicate the statistical significance

between the PRP prediction criteria and the baseline programming times. From Table 4.1 we see that programming

time was reduced by over one third when using either PRP prediction criterion, with high statistical confidence.

The difference in programming time between the two PRP prediction criteria was not significant.

4.5.4 Discussion of Results

The results contained in this section demonstrate the viability of PRP as a robot-programming tool. The prediction

error for these online-programming tasks was much larger than the offline-programming counterparts. In the

online-programming experiments, the prediction error was about 15 millimeters, or 8% of the distance traveled by

the robot. In the offline-programming experiments, the prediction error was less than 0.25 millimeters, or 0.5%

of the distance traveled by the robot. The prediction error for the online-programming experiments of about 15

millimeters is too large for arc-welding applications. This difference is primarily due to users providing their

own definition of “sufficiently close” in the online-programming case, as opposed to the offline-programming

experiments that required waypoints viable for arc-welding. Despite this variation, the PRP system was able to

assist users in reducing programming time by over a third, in a statistically significant manner.

Not recorded in Table 4.1 was the number of collisions with objects in the environment. However, collisions

are not uncommon during conventional operation when humans create automation programs, since, for example,

arc-welding requires submillimeter separation from the workpiece. Industrial manipulators are designed to handle

the eventual collision without inflicting damage. However, this sheds light on one potential problem with PRP in an

online-programming environment: showing users the position of the predicted waypoint before moving the robot.

There does not seem to be an efficient solution that allows users to visualize a priori where the PRP system intends

to move the robot. One potential solution is to show users with a virtual-reality model (i.e., offline system) where

the predicted waypoint is, allowing users to determine if the prediction is appropriate. But this implementation
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may cause users to spend more time determining if the waypoint is acceptable than if they simply allowed the PRP

system to move the robot automatically and (potentially) undid it. Our solution was to have users press and hold a

button if they decide to let the PRP system move the robot. The PRP system moves toward the predicted waypoint

slowly at first and then quickly comes to full speed. If users think the prediction is unacceptable, or that a collision

may occur, then they can release the button to stop the PRP system immediately. This solution appears to work

well in practice.

4.6 Relationship to Learning By Observation

Beyond its usefulness as an application in its own right, one of the goals of PRP was to test the ability for our

CDHMM structure-estimation learning algorithm to model user subgoal selection in real-world demonstrations,

as in Figure 1.3 and Figure 1.4. From this perspective, PRP removed extraneous factors such as sensor noise and

environment considerations. Also, users were required to supply the PRP system with the task subgoals in the

form of waypoints. This left the PRP system with the simplified LBO problem of predicting only the next subgoal

(waypoint) in the sequence, without consideration for the specific actions needed to achieve that subgoal.8 From

the complex, real-world data, our PRP system was able to predict these subgoals with extremely high accuracy.

Furthermore, the learning algorithm was able to estimate a CDHMM and predict the next subgoal in about 25

milliseconds, which is adequate for real-time use in an LBO system. One potential problem with our learning

algorithm in an LBO application, mentioned in Section 4.4.1, is the relatively high perplexity of the estimated

CDHMMs. On the offline-programming data in Section 4.3, our CDHMMs had an average perplexity of about

1.54. Intuitively, this means that, over 10 states, a random walker will be presented with 5 decisions about which

state to choose next; for comparison, the algorithm of Stolcke and Omohundro (1994b) would require, on average,

only 1 decision over the same state sequence. While we generated accurate predictions of a subsequent subgoal,

this could mean that an LBO system using our CDHMM structure-estimation learning algorithm may have some

difficulty determining the long sequences of subgoals needed to automate an entire task.

4.7 Summary

We have presented a novel method for predicting the waypoints in manipulator robot programs called Predictive

Robot Programming. Using the learning algorithm derived in Chapter 3, we estimate the structure of CDHMMs

based on previously created waypoints. This CDHMM is then used to predict future waypoints. On complex, real-
8Manipulator robots typically move between waypoints in one of three interpolated modes: joint-space linear, Cartesian-space linear,

or Cartesian-space circular. These modes are simple to predict with a binary flag and nowhere near as complicated as the action sequences
used in LBO applications.
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world robot programs, the PRP system was able to generate a large percentage of highly accurate predictions. On

all programs analyzed, the median Cartesian prediction error was well under a millimeter and the median angular

prediction error was well under a milliradian. Both of these values are below the physical tolerances required by

the target process, robotic arc welding. In a laboratory setting, we showed that the PRP system was able to reduce

programming time by over a third in a statistically significant manner. These results suggest that PRP is a viable

tool for reducing the time needed to program industrial manipulator robots.
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Chapter 5

Hypothesizing About User Actions

This chapter describes our approach to hypothesizing about the response of the user to different

conditions with sequenced linear dynamical systems. For the motor-skill tasks that we consider in

this work, user actions correspond to a trajectory in state space. Our method uses a closed-form

least-squares procedure to fit a single Linear Dynamical System (LDS) to a simple trajectory. These

LDS estimates form the elemental building blocks used to describe complicated trajectories through

an automatic online-segmentation procedure that can represent complicated trajectories with high

accuracy. The response of each LDS correspond to a hypothesis about what the user would do

under those conditions and we show how multiple trajectories can be incorporated to improve

the generalization ability of the system. Each estimated LDS induces a supervisory control law,

mapping current state to desired state, that encodes the target trajectory in a generative manner.

We provide a proof of optimality and guarantee stability of the control law under a wide range of

conditions.

5.1 Introduction

One of the key issues in machine learning is feature representation. When the objective is learning from human

demonstrations, then the central idea is the representation of trajectories. LBO systems observe users performing

tasks and synthesize the information to automate the task and achieve a goal, potentially in previously unseen con-

ditions. These systems must be able to incorporate information from multiple demonstrations, including those oc-

curring in different environments. Trajectory representation for LBO systems has somewhat different requirements

from traditional robotics, since LBO systems must be able to reproduce tasks in previously unseen environments.

In other words, LBO systems must emulate “what the user would have done” in novel conditions. Consequently, it

77
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is essential that LBO systems represent trajectories in a generative manner; in other words, a control law mapping

the current state of the system to the desired state. To facilitate learning, the representation should reduce the num-

ber of parameters needed to specify the trajectory, and similar trajectories should have similar parameters. The

representation must be encoded so that it can be mapped to different environments easily to incorporate trajectories

demonstrated in different environments. To address these requirements, we propose a trajectory-representation ap-

proach based on sequenced linear dynamical systems. A single Linear Dynamical System (LDS) can represent a

trajectory in an extremely compact form by inducing a simple supervisory control law. Due to its simplicity, of

course, a single LDS cannot faithfully reproduce the complicated trajectories needed by LBO systems. However,

we create sophisticated behavior from a collection of simple components by segmenting complicated trajectories

into simple ones, with each segment represented by a single LDS. Complicated trajectories can then be reproduced

with high accuracy, using the LDS estimates in a sequential fashion.

We first develop the concept that a single LDS can represent a simple trajectory (Section 5.3). We use a

closed-form least-squares procedure to estimate the optimal LDS for that trajectory, Equation 5.3. The supervisory

control law induced by the LDS is then used to reproduce the trajectory (Section 5.4). We call the endpoint of the

trajectory an attractor, because the control law tends, or is attracted, to that point. This generative representation

is desirable since, for example, modifying the initial conditions causes the LDS to adapt its response to novel

situations automatically. Similarly, we can modify the attractor to reproduce the trajectory in a different part of

the workspace. By combining multiple demonstrations, the system can produce a better generalization of “what

the user would have done” in a wide range of conditions. Since the method is based on the least-squares principle,

it is straightforward to incorporate multiple demonstrations into the estimated LDS; we derive this formulation

in Section 5.5. Because the representation is based on a control law, its stability is extremely important. In

Section 5.6 we show that under reasonable conditions the control law will produce bounded trajectories that

terminate at the desired attractor point. Specifically, we prove that an estimated LDS is stable in the sense of

Lyapunov. To represent more complicated trajectories, we segment these trajectories into a sequence of simple

trajectories, where each segment is represented by the single-LDS building block. In Section 5.7 we derive an

online method for automatically segmenting a complicated trajectory using a normalized-prediction-error criterion.

We demonstrate how the sequence of LDS estimates reconstructs a complicated trajectory in Section 5.8. The

figures in this chapter use two-dimensional examples for illustrative purposes only; the ideas and the derivation of

the LDS estimates generalize to an arbitrary dimension, as well as state-variable derivatives such as velocity and

acceleration. Likewise, the proofs of optimality and stability are independent of the observation dimension.
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5.2 Related Work

According to Ijspeert et al. (2001), “there seems to be consensus that among the most important desirable prop-

erties of movement encoding are: 1) the ease of representing and learning a goal trajectory, 2) compactness of

the representation, 3) robustness against perturbations and changes in a dynamic environment, 4) ease of re-use

for related tasks and easy modification for new tasks, and 5) ease of categorization for movement recognition.”

To varying degrees, these criteria are applicable to the motor-skill LBO systems that we consider. We would also

recommend the ability to incorporate multiple examples of a trajectory in order to infer user intent. The most

obvious method for representing a trajectory, cubic-spline interpolation (Craig, 1989), is sensitive to changes in

initial conditions and is difficult to recompute for different operating conditions. A similar method for representing

the trajectories of mobile robots using piecewise-cubic Bézier curves has also been proposed (Hwang et al., 2003).

As Schaal et al. (2003) note, spline methods “are not very robust in coping with unforeseen perturbations of the

movement” and require “more complex computations in terms of scaling laws.” This observation underscores the

need to represent trajectories in a generative manner. Other trajectory-representation methods include symbolic

if-then coding (Nicolescu, 2003), neural networks (Friedrich et al., 1996), and optimization methods (Schaal,

1997). Ijspeert et al. (2002) describe a trajectory-representation method based on nonlinear attractor dynamics.

This approach is particularly appealing, since it is a generative method, providing a control law so that a system

can reproduce trajectories in different environment configurations by adjusting the attractor point. This method

also allows the representation of a wide variety of trajectories, including discrete and rhythmic movements. How-

ever, this formulation is sensitive to the speed with which trajectories are demonstrated, which may be undesirable

in some applications. This system can also modulate the approximated trajectory based on objects in the environ-

ment. Due to its internal representation, this approach only allows a single scaling or shifting parameter applied to

the entire trajectory, so if only some objects in the environment move then complete retraining would be required.

Estimating the parameters of a linear, time-invariant dynamical system is squarely within the domain of System

Identification (Ljung, 1999). However, this field is primarily concerned with experimental setup and unbiased-

ness, less with stability and compactness. In some sense, we have co-opted an elementary concept from system

identification and are applying the ideas to trajectory representation.

5.3 Simple Trajectory with a Known Attractor Point

Consider a trajectory sampled at discrete intervals, X = {x0,x1, . . . ,xN}, where each observation is a (d × 1)

real vector and there are more observations than rows, N ≥ d. Our approach attempts to find an LDS that captures

the “shape” of the trajectory and terminates at the final observation. In other words, the supervisory control law

induced by the LDS should be stable and have its unique attractor point at the final observation in the trajectory,
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Start

Start

Figure 5.1: The left column shows two simple trajectories fitted by an LDS according to Equation 5.3. The
dotted line represents the samples of the user trajectory and the solid line represents the trajectory reconstructed
by Equation 5.4. The middle column shows the response of the LDS to various initial conditions, and the right
column shows the response of the LDS when the attractor is shifted.

xN . A discrete-time LDS with constant input is given by the difference equation

xn+1 = Axn +Bu.

Assuming the system is stable and the matrix (I −A)−1 exists, then the unique attractor, x∞, is computed as

x∞ = (I −A)−1Bu.

By choosing B = (I −A), then the input is the point of attraction, x∞ = u. Using the LDS formulation, we

assume that observations are generated according to

xn+1 = (I +R)xn −RxN
= R(xn − xN ) + xn. (5.1)
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We give Equation 5.1 this particular form because, if the matrix (I+R) is stable, then the attractor of Equation 5.1

is xN , sinceB = (I −A). Given a trajectory, we rewrite Equation 5.1 as the column-stacked matrix equation

[x1 · · ·xN ] = R ([x0 · · ·xN−1]− [xN · · ·xN ]) + [x0 · · ·xN−1] ,

⇒
X1:N

·
= R (X0:N−1−ΓN ) +X0:N−1. (5.2)

Theorem 5.1. If the matrix (X0:N−1 − ΓN ) has full row rank, then the least-squares solution forR is

R̂ = (X1:N −X0:N−1) (X0:N−1 − ΓN )R, (5.3)

where CR denotes the right pseudoinverse of C.

The proof is given in Section A.1.8. The estimated matrix R̂ captures the salient features of the trajectory such

as direction, curvature, and speed, as in Figure 5.1. The final observation in the demonstrated trajectory, xN ,

becomes the attractor, which specifies the terminus of the estimated trajectory.

5.4 Reproducing a Simple Trajectory

To reproduce the trajectory, the LDS difference equation is initialized with x̂0 ≡ x0, which induces from Equa-

tion 5.1 the autonomous control law

x̂n+1 = R̂ (x̂n − xN ) + x̂n. (5.4)

This iteration repeats until reaching the stopping criterion, ‖x̂n − xN‖2 ≤ ζ, where ζ > 0 is some scalar thresh-

old. Since the trajectory is reproduced using an autonomous control law, it can be modified by shifting the ini-

tial conditions, the attractor point, or both; there are no complicated scaling laws that plague other trajectory-

representation methods such as spline interpolation (Craig, 1989). Modifying either the initial conditions or the

attractor will cause the estimated trajectory to stretch, shrink, etc. Shifting the initial conditions and the attractor

by the same amount would cause Equation 5.4 to reproduce a trajectory of the same shape, simply offset by the

shift amount. In Figure 5.1 we use Equation 5.3 to fit an LDS to different trajectories and then use Equation 5.4

to reproduce the estimated trajectories. We also show the response of the LDS to various initial conditions and to

a shifted attractor point. The response of the LDS to different initial conditions corresponds to the hypothesis of

“what the user would have done” in that situation.

When applied to the real-time control of a system such as a robot, then the deterministic iteration in Equa-
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Figure 5.2: Block diagram for real-time control using an estimated LDS.

tion 5.4 becomes the desired state of the system. Like other researchers (Schaal et al., 2003), we assume that

the system can estimate its current state, x̂n, and that there exists a low-level controller that can actuate toward a

desired state, x̂n+1. The block diagram for the supervisory control strategy using the estimated LDS is shown in

Figure 5.2. However, if the system is nonholonomic or saturating, then it may not be able to achieve the desired

state within the allotted time. At each iteration of the control locus, the system senses its new state and computes

a new desired state. In this sense, Equation 5.4 computes the sequence of states specifying how to achieve a goal,

even if the system diverges from the intended trajectory.

5.5 Combining Multiple Trajectories

Since our representation uses a least-squares procedure, it is simple to incorporate multiple examples of a trajec-

tory to create an estimate that generalizes better. Suppose we have two demonstrations of a trajectory, X 1 =

{x1
0, . . . ,x

1
N1
} and X2 = {x2

0, . . . ,x
2
N2
}, though in principle and in practice the following method works with

an arbitrary number of demonstrations. We rewrite Equation 5.2 by column-stacking both trajectories and define

the matrices:

X1,2
1:N ,

[
x1

1 · · ·x1
N1
x2

1 · · ·x2
N2

]
;

X1,2
0:N−1 ,

[
x1

0 · · ·x1
N1−1x

2
0 · · ·x2

N2−1

]
;

Γ1,2
N ,

[
x1
N1
· · ·x1

N1
x2
N2
· · ·x2

N2

]
.

Similar to Equation 5.3, the least-squares estimate for these combined trajectories is

R̂
1,2

=
(
X1,2

1:N −X
1,2
0:N−1

)(
X1,2

0:N−1 − Γ1,2
N

)R
. (5.5)

The ability for an LBO system to incorporate multiple demonstrations of a task is critical to inferring user intent.

Computing the least-squares solution to the LDS allows our system to hypothesize better about “what the user

would have done” by reducing the unintended, demonstration-specific artifacts often found in user actions. In Fig-
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Figure 5.3: The left and middle columns show two examples of trajectories with a slight counter-clockwise curva-
ture, with the original trajectories on top and the response of the LDS on bottom. Individually, neither estimate
produces the intended generalization. In the right column is the combined estimate of the two trajectories, com-
puted from Equation 5.5, which yields the desired slight counter-clockwise generalization.

ure 5.3 we provide two examples of a simple trajectory, both with a slight counter-clockwise curvature. The LDS

fitted to each individual trajectory is optimal in the least-squares sense. Considering the response of these control

laws to various initial conditions, it is clear that the individual LDS estimates do not generalize to “slight counter-

clockwise curvature.” However, computing the least-squares estimate of the combined trajectories produces the

intended generalization.
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5.6 Stability of the LDS Estimate

Define the vector δn , xn − xN and the column-stacked matrices

∆1:N , X1:N − ΓN

≡ [δ1 · · · δN ] ;

∆0:N−1 , X0:N−1 − ΓN

≡ [δ0 · · · δN−1] .

If the matrix ∆0:N−1 has full row rank, then we can rewrite Equation 5.3 as

R̂ = (X1:N −X0:N−1) (X0:N−1 − ΓN )R

= ((X1:N − ΓN )− (X0:N−1 − ΓN )) (X0:N−1 − ΓN )R

= (X1:N − ΓN ) (X0:N−1 − ΓN )R− I
·

= ∆1:N∆0:N−1
R− I.

We note that the estimated LDS is

xn+1 = R̂ (xn − xN ) + xn

=
(
R̂+ I

)
xn − R̂xN

·
=

(
∆1:N∆0:N−1

R− I + I
)
xn − R̂xN

=
(
∆1:N∆0:N−1

R
)
xn − R̂xN .

There are two broad approaches to ensure the stability of a discrete time-invariant dynamical system. The

primary method for linear systems is showing that the system matrix is convergent, i.e., having eigenvalues inside

the unit circle (Antsaklis & Michel, 1997). The magnitude of the largest eigenvalue of a matrix A is called the

spectral radius and is written ρ(A). If the matrixA is constant and the values known, then the eigenvalues can be

evaluated directly to ensure stability. When the system matrix is determined algorithmically from inputs unknown

a priori, then properties of the spectral radius must be invoked. For instance, it is well known that ρ(A) ≤ ‖A‖p,
where ‖·‖p is any of the matrix p-norms (Golub & Van Loan, 1996). We note that our LDS estimate is computed

from the product of two matrices, ∆1:N∆0:N−1
R. There are recent results indicating that bounding the eigenvalues

of a product of two matrices is, in general, undecidable (Blondel & Tsitsiklis, 2000). Even with this discouraging

result, it is certainly possible to place restrictions on the constituent matrices to bound the eigenvalues of the

product. Using this approach, we investigated a variety of conditions to guarantee stability by restricting the class
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of acceptable trajectories. Unfortunately, we were unsuccessful in deriving any useful, reasonable, or meaningful

conditions. Our difficulty seems in line with anecdotal evidence from other researchers (Blondel et al., 2003).

The more general approach for ensuring stability of a linear or nonlinear dynamical system is by Lyapunov’s

direct (or second) method. In the discrete-time LDS case, for stability in the sense of Lyapunov (i.s.L.), it is

sufficient to find a symmetric PD matrix P̃ such that P̃ −ATP̃A = Q̃, where Q̃ is some symmetric PSD matrix

(Antsaklis & Michel, 1997). Since the eigenvalues of A and AT are the same, stability i.s.L. can be determined

equivalently by choosing a symmetric PD matrix P such that

P −APAT = Q, (5.6)

where Q is some symmetric PSD matrix. This equation sometimes goes by the name of the Discrete Algebraic

Lyapunov Equation (DALE). Finding the matrixP is more of an art than a science and typically relies on problem-

specific intuition. Applying this intuition sidesteps the undecidability problem of bounding the eigenvalues of a

product of arbitrary matrices mentioned earlier.

Theorem 5.2. Equation 5.4 is stable i.s.L. about the attractor xN if the matrix ∆0:N−1 has full row rank.

The proof is given in Section A.1.10.

The assumptions of Theorem 5.2 imply that, if the trajectory is anything other than a perfect line, then Equa-

tion 5.4 will produce bounded trajectories that terminate at the desired attractor. However, as observations become

increasingly collinear, there could be numerical-precision problems, causing the matrix ∆0:N−1 to become effec-

tively rank deficient. This is typically manifested by the estimated matrix R̂ becoming poorly conditioned, which

can be determined by checking if the condition number exceeds some threshold, κ(R̂) > κmax. A poorly condi-

tioned matrix is then replaced by a scaled identity matrix. Since every vector is an eigenvector of a scaled identity

matrix, Equation 5.4 will then induce a control law that produces straight lines terminating at the attractor from

any initial condition.

5.7 Complicated Trajectories with Unknown Attractor Points

In this section, we consider trajectories that cannot be faithfully reproduced using a single LDS estimate. We for-

mulate the problem as finding a sequence of LDS estimates that represent the complicated trajectory. Furthermore,

we assume that there are no auxiliary signals indicating an appropriate segmentation. Somewhat arbitrarily, we

pursued a method that allows the system to perform the segmentation online, as observations become available,

instead of a batch-processing method that requires the trajectory be complete. It appears that finding the optimal

segmentation of a trajectory has no closed-form solution and is heuristic in nature, similar to determining the op-
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(a) (b)

Figure 5.4: Trajectory of the cursive word “hello” with attractors extracted automatically using Equation 5.7
(Figure 5.4(a)). The solid curve indicates the estimated trajectory from Equation 5.4 (Figure 5.4(b)).

timal number of clusters in the k-means algorithm. Our segmentation heuristic is based on the predictability of

subsequences of the trajectory, where its observations can be modeled by a single LDS. At an unknown point in

time, Ni, the ith subsequence is no longer well represented by the LDS that generated recent observations. To

determine this segmentation, we compute a prediction of the next observation in the trajectory at each time step.

If the prediction is sufficiently accurate, then we consider the current LDS estimate appropriate. If the prediction

is inaccurate, then a new LDS should be computed. Specifically, at time n, we estimate an LDS according to

Equation 5.3 between time Ni−1 and time n−1. This matrix is written as R̂Ni−1:n−1. We assign xn as the attractor

of the LDS and predict the previous observation,

x̂n−1 = R̂Ni−1:n−1 (xn−2 − xn) + xn−2.

We define the normalized prediction error as

εn , ‖xn−1 − x̂n−1‖2
‖xn−1 − xn−2‖2

. (5.7)

This definition attempts to normalize the error so that its value is independent of the speed or sampling rate of

the trajectory. For instance, if the user moves very quickly, then we expect predictions to be less accurate, on an

absolute scale. On the other hand, when a trajectory is sampled at a relatively high rate, we expect predictions to

be more accurate on an absolute scale, since not much time has elapsed between observations. Normalizing by the

distance between observations accounts for this discrepancy, so that an inaccurate prediction is somewhat invariant
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with respect to these issues. If the normalized prediction error exceeds a predetermined threshold, εn > εmax,

then we assume that the observation xn is not an appropriate attractor for this segment. Therefore, we assign the

segmentation time as Ni = n− 1 and the attractor as xNi = xn−1. We then segment the trajectory between time

Ni−1 and time Ni and compute the corresponding LDS as in Equation 5.3,

R̂Ni =
(
XNi−1+1:Ni −XNi−1:Ni−1

) (
XNi−1:Ni−1 − ΓNi

)R
.

After the entire trajectory has been segmented, a sequence ofM LDS estimates, {(R̂N1 ,xN1), . . . , (R̂NM ,xNM )},
now describes the complicated trajectory. In most cases this sequence of matrix-attractor pairs will reduce the num-

ber of parameters needed to represent the trajectory. Let N be the number of (d × 1) observations in the original

trajectory. The number of parameters used to specify the trajectory is then Nd. With the sequenced-LDS method,

the number of parameters needed to specify the approximated trajectory is M(d2 + d), where M is the number

of LDS estimates, since d2 numbers are needed for the matrix R̂Ni and d for the attractor xNi . In Figure 5.4, we

apply the segmentation algorithm to the trajectory of the cursive word “hello.” The original trajectory is specified

by 350 numbers. The LDS representation used 12 matrix-attractor pairs, or 72 numbers, a reduction of almost

80%. However, the reduced-parameter representation results in an error between the original and approximated

trajectories. Like many algorithms, there is a trade-off between the expressiveness of the system and the number of

parameters used. In Figure 5.5 we segment the cursive word “hello” with high and low values of the normalized-

prediction-error threshold, εmax. Qualitatively, the approximated trajectory in Figure 5.5(a) is less faithful to the

original trajectory than the estimate in Figure 5.5(b), which uses nearly twice as many matrix-attractor pairs.

5.7.1 Analysis of Normalized-Prediction-Error Threshold

To quantify this trade-off between simplicity and accuracy, we compute the error between the original and ap-

proximated trajectories. The error is defined to be the Euclidean distance between an observation in the original

trajectory and the closest point in the approximated trajectory. In Figure 5.6 we plot the resulting average error

and number of matrix-attractor pairs as a function of the normalized-prediction-error threshold, εmax. The curves

show the anticipated result: as the number of parameters decreases, the average error generally increases. The

optimal value for the normalized-prediction-error threshold is task dependent: some tasks require high accuracy,

while others favor a simpler representation. As such, the correct value of εmax depends on the task at hand.

However, since we use an online approach to trajectory segmentation, lower values of the normalized-prediction-

error threshold do not necessary result in better approximation. Notice the “bump” in the approximation-error plot,

around the value of εmax ≈ 0.6, highlighted by the dashed line in Figure 5.6(b). This temporary increase in approx-

imation error results because our method computed a poor segmentation of the trajectory, as in Figure 5.7. Locally

optimal segmentations resulting in poor global error arise because the segmentation algorithm is unaware of future



88 CHAPTER 5. HYPOTHESIZING ABOUT USER ACTIONS

(a) (b)

Figure 5.5: Representation of the cursive word “hello” from different values of the normalized-prediction-error
threshold. The segmentation with εmax = 0.8 in Figure 5.5(a) uses 12 matrix-attractor pairs. The segmentation
with εmax = 0.4 in Figure 5.5(b) uses 22 matrix-attractor pairs.
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Figure 5.6: Trade-off between simplicity and accuracy: number of matrix-attractor pairs and average approxima-
tion error as a function of normalized-prediction-error threshold.
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Figure 5.7: Some values of the normalized-prediction-error threshold result in poor approximations using our
online-segmentation method.

observations. These idiosyncrasies are inevitable for some trajectories when using an online-segmentation method

such as ours.

5.8 Reproducing a Complicated Trajectory

To reproduce a complicated trajectory, given a sequence of matrix-attractor pairs, we simply initialize the differ-

ence equation with x̂0 = x0 and repeatedly apply

x̂n+1 = R̂N1 (x̂n − xN1) + x̂n,

until achieving ‖x̂n − xN1‖2 ≤ ζ. At this point, the next matrix-attractor pair is used (R̂N2 ,xN2), and so forth,

until the final attractor point is reached, as in Figure 5.4(b). Since each LDS estimate is stable i.s.L., any trajectories

generated by the difference equations will be bounded and terminate at the final attractor point in finite time. Finite

termination is guaranteed regardless of initial conditions or deviations from the prescribed control law.

5.9 Relationship to Learning By Observation

There are several aspects of the sequenced-LDS representation that are appealing for LBO applications. When

a complicated trajectory is segmented, the attractors mark important points in the trajectory. In an LBO system,

these attractors become the subgoals of the demonstrated task. For example, in our LBO system (Chapter 6), the

subgoals are associated with objects in the environment. As the objects move, the subgoals update accordingly.

Because the trajectory is represented in a generative manner, the LBO system can modify the locations of the
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attractors and each LDS will adapt its response to these new conditions automatically. This allows our LBO

system to hypothesize about what actions the user would perform in novel conditions. The ability to combine

multiple trajectories together to estimate an LDS that generalizes better is helpful in inferring user intent.

At the same time, we note that our proofs of optimality and stability do not respect the dynamics of the robot

and are guaranteed only for idealized systems. This ignores the fact that all robots have saturating actuators and

many are nonholonomic. It would be useful to provide system-specific proofs, but we note that, for example,

showing the stability of saturating dynamical systems is generally undecidable (Blondel et al., 2000).

5.10 Summary

We have presented a novel method for representing trajectories using sequenced linear dynamical systems. Simple

trajectories are represented by a single LDS estimate while complicated trajectories use the sequenced represen-

tation. The LDS estimates are computed in closed form by a least-squares procedure. We showed that multiple

demonstrations can be combined in order to improve generalization. We provided a proof of optimality and we

guarantee stability of the LDS estimates under reasonable conditions. In the introduction, we posed several ques-

tions about hypotheses of user actions (Section 1.3.2). Specifically, the first question was:

• Can we optimally represent hypotheses of user actions to novel conditions?

In our sequenced-LDS formulation, we define optimality as minimizing the squared one-step prediction error and

derived an optimal supervisory control law (Theorem 5.1). This allows our system to compute least-squares hy-

potheses based on the available information. However, the term optimal is somewhat ambiguous and there are

other reasonable interpretations of “optimality.” While the control law is optimal with respect to the demonstra-

tions, our formulation ignores the dynamics of the system and environment factors, such as collision avoidance.

These considerations seem like plausible extentions and, after writing down a precise cost function, it should be

possible to derive an optimal estimate, though it may take quite a bit of effort to arrive at the answer. The second

question asked was:

• Under what conditions will the model succeed and fail?

We showed that the supervisory control law is stable i.s.L. (Theorem 5.2) for essentially all possible demonstra-

tions. The exception is when the observations from a trajectory form a straight line. However, this condition can

be checked quickly and ameliorated with a simple if− then statement (Section 5.6). Another potential problem

with our formulation arrise from the online approach we use to segment complicated trajectories (Section 5.7).

It may be more intuitive to specify the segmentation according to an allowable error and performing offline (i.e.,

batch) segmentation so that the result achieves an error less than the requested amount.



Chapter 6

Learning By Observation

We present a computational approach to Learning By Observation (LBO) that allows users to pro-

gram mobile robots by demonstrating a task. Unlike previous approaches, our system incorporates

statistical-learning techniques and concepts from control theory to reduce the amount of domain

knowledge needed to infer the intent of users. To improve the generalization ability of the system,

users can demonstrate the task multiple times. We extract task subgoals from these demonstrations

and automatically associate them with objects in the environment. As these objects move, the sub-

goals are updated accordingly. This gives our system the ability to learn from demonstrations of a

task performed in different environments. We describe the concepts used in our LBO system, as well

as experimental laboratory results in learning motor-skill tasks.

6.1 Introduction

User demonstrations can be viewed as a sequence of goal-directed actions. Consider a user teaching a robot to

vacuum a room by walking the route. It is undesirable to require retraining each time furniture is moved. By

capturing the intent of users, an LBO system can determine the sequence of subgoals and overall goal of the task,

despite changes in the environment, human imprecision, or sensor noise. The objective of our work is to create an

LBO system that reduces the dependence on a priori task-specific information while producing robust behavior.

To this end, we have created an LBO system called “Dollop”1 that employs statistical-learning techniques, as

well as concepts from control theory, to allow users to program a mobile robot through one of the most natural

methods possible: walking around. The target tasks for Dollop are motor-learning skills where the demonstrations

may occur in different environments. We show that a computational approach to LBO can extract user intentions
1In contrast to many engineering projects, Dollop is not an acronym.

91
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Figure 6.1: Conceptual flow diagram of Dollop.

Figure 6.2: Agent Orange, the mobile robot used in these experiments.

accurately in laboratory experiments.

The conceptual flow diagram of Dollop is shown in Figure 6.1. While observing users, Dollop extracts im-

portant points, or subgoals, from the trajectory from the sequenced Linear Dynamical System (LDS) formulation

(Section 6.3). These subgoals are automatically associated with objects in the environment so that as the environ-

ment changes the subgoals are updated accordingly (Section 6.4). Dollop forms a hypotheses of user intent by

allowing the LDS estimates to adapt their responses automatically to these new conditions. When learning from

multiple demonstrations performed in different environments, Dollop hypothesizes what the user would have have

done if all demonstrations had been performed in the same environment (Section 6.5). Our learning algorithm

(Chapter 3) then estimates a CDHMM that describes the subgoals from the demonstrations and determines the

most likely sequence of subgoals needed to complete the task.

The mobile robot used in these experiments was an ActivMedia Pioneer II DX named Agent Orange, equipped

with a SICK scanning laser range finder, shown in Figure 6.2. We used the Carnegie Mellon Robot Navigation
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Figure 6.3: Background grid map of the laboratory.

Toolkit (Carmen) (Montemerlo et al., 2003) to provide base services such as localization, mapping, and low-level

control. The localization is based on a variant of Monte Carlo Localization (MCL) (Thrun et al., 2001). Before

operation, Agent Orange is driven around the workspace manually with a joystick, and Carmen computes an

occupancy grid map of the area, as in Figure 6.3. (Computing a map need only be done during the first use in a

given area.) During operation, Carmen uses a laser reading to compute the likelihood of being at various locations

and orientations in the map, building a probabilistic hypothesis about the position of the robot in the workspace. As

the robot moves, Carmen incorporates odometry information to update its hypothesis; subsequent laser readings

cause Carmen to refine its position estimate further. This iterative process repeats until the hypothesis converges. If

properly initialized, the hypothesis converges in well under a second and, in our experience, the estimated position

appears accurate to within a centimeter or two. MCL frees Dollop from relying on external-reference sensors such

as GPS, or error-accumulating methods such as dead-reckoning.

6.2 Observing Users

The primary sensor used in these experiments is a scanning laser range finder. This sensor gives a two-dimensional

polar-coordinate binary reading that indicates the range to the nearest object along a particular bearing. The laser

scans the horizontal plane at a fixed height, determined by its position on Agent Orange, about a half meter above

the floor. The angular resolution is one degree and the distance resolution is one centimeter. In terms of gross

errors, the laser appears to return only false-negative readings, i.e., indicating free space when an object is present.

This seems to be caused when the object does not reflect enough energy back to the receiver due to a glancing
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Figure 6.5: Flow diagram for observing users.

incident angle, for example, when the robot is nearly parallel to a wall.2 While the laser provides extremely accu-

rate measurements, it cannot discriminate between geometrically similar objects in the view plane, such as a the

waist of a person and a trash can. Therefore Dollop must use extensive processing to extract meaningful informa-

tion from these measurements, with an example shown in Figure 6.4. The method for processing laser readings,

shown graphically in Figure 6.5, requires a background occupancy grid map of the workspace and is similar to the

methodology of Fod et al. (2002). Objects detected by the laser are classified as belonging to one of two classes:

background or foreground. Background objects are those that can be explained by the background occupancy grid

map, while foreground objects are those that cannot. For the experiments in this work, background objects are

things always found in the laboratory: desks, stools, computers, etc. Foreground objects consist of experiment-
2Certain round, shiny objects, like polished metal chair legs, can also fail to reflect the laser, yielding a false-negative reading.
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Name Meaning

Laser Readings
Robot-centric binary readings of the distance and bearing to ob-
jects

Background Occupancy Grid Map
Map of “empty” laboratory, with a discrete grid indicating the oc-
cupancy of each real-valued cell

Background Object
Laser readings that can be explained by the background occupancy
grid map

Foreground Occupancy Grid Map
Map indicating the locations of laser readings not explained by
the background occupancy grid map, with each real-valued cell
updated in an autoregressive manner

Occupied Foreground Cell
Any cell in the foreground occupancy grid map with a value above
a predefined threshold

Blob Group of adjacent occupied foreground cells

Foreground Object Any blob enveloping an area larger than a predefined threshold

User The foreground object with the highest estimated velocity

Table 6.1: Terms used in the observation process.

specific objects, such as slalom cones and humans. A laser reading is designated as a foreground cell if there is

no background object within some radius, e.g., 20 centimeters, of the measurement. Foreground cells are stored

in a separate foreground occupancy grid map, with the cells updated in an autoregressive manner. A foreground

cell is considered occupied if its value exceeds a predetermined threshold, and adjacent occupied foreground cells

are called a blob. We determine the blobs by performing a breadth-first search on occupied foreground cells. A

foreground object is a blob that envelops more than a required area, e.g., 100 square centimeters. The position of

the foreground object is the centroid of the blob.

6.2.1 Foreground Object State Estimation

There appear to be two primary sources of error in determining the position of a foreground object. The first is

due to the fact that line-of-sight sensing yields a much different blob centroid when viewing the same object from

different perspectives, as in Figure 6.6. The second source of noise stems from positioning uncertainty. The MCL

algorithm used by Carmen has an error of about one to two centimeters. Since laser readings are robot-centric,

the position of a foreground object in a global-frame map requires the position of the robot in the global frame.

Consequently, errors in the MCL robot position are propagated to foreground-object-position errors. However, for

most objects that we consider in these experiments, blob-centroid errors (Figure 6.6) tend to dominate over MCL

errors.
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Perceived Centroids

Figure 6.6: Viewing the same object from different perspectives causes the Dollop to compute different blob
centroids.

Start

Figure 6.7: Hypothetical tracking by a Kalman filter of an object temporarily occluded by a rectangular obstacle.
The object follows the dash arc path. The circles represent measurements of the object position, while the crosses
mark the Kalman estimates of the object position. Since we do not incorporate estimates of acceleration, objects
are assumed to move in straight lines while occluded.

We use a Kalman filter (Stengel, 1986) to estimate the position and velocity of a foreground object and to

filter out sensor noise. Since Dollop must operate in relatively unstructured environments, it must be prepared to

cope with losing sight of various objects of interest, including users. There are several attractive choices to cope

with temporary object occlusion, including particle filters and Kalman predictions. In our experiments, Kalman

predictions were more reliable in modeling occluded foreground-object motion. It is well known that estimates of

the derivative of a signal amplify noise; incorporating these derivatives may cause system performance to decline.

We found that incorporating an estimate of velocity, but not acceleration, generally produced the best performance

in tracking occluded objects. This implies that our Kalman predictions of occluded objects will proceed in straight

lines, as in Figure 6.7. The measurement noise covariance, R, and state noise covariance, Q, were determined

experimentally in a lab. The Kalman gain matrix, K, and the steady-state covariance, V , are the solution to the
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Riccati equation.

The laser can sense only the {x, y} position of a foreground object, which is the blob centroid. We use a linear

motion model, where the estimated state vector is b̂
i

n = [x y ẋ ẏ]T, and the dynamical-system parameters are

A =




1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1




and C =

[
1 0 0 0

0 1 0 0

]
,

whereA is the system matrix andC is the output-selector matrix. The Kalman prediction of the foreground-object

state at the subsequent time step is

b̂
i

n+1|n = Ab̂
i

n.

Let the sensed position of the foreground object at time n + 1 be Cbin+1. The error between the sensed position

and the prediction is defined as

εn+1 , Cbin+1 −Cb̂
i

n+1|n

= C(bin+1 −Ab̂
i

n).

The Kalman gain matrix, K, essentially determines how much to “believe” the sensor and how much to trust the

prediction by influencing the estimated foreground-object state, given the previous estimated state and the sensed

position of the foreground object,

b̂
i

n+1 = b̂
i

n+1|n +Kεn+1

·
= Ab̂

i

n +KC
(
bin+1 −Ab̂

i

n

)
. (6.1)

Coupling this estimate with the Kalman prediction covariance, V , allows Dollop to compute the likelihood that a

sensed foreground object, Cbjn+1, is really a previously seen foreground object, b̂
i

n,

p
(
Cbjn+1|b̂

i

n

)
∼ N (C(bjn+1 −Ab̂

i

n),V ).

This gives Dollop a probabilistic model of motion needed to track foreground objects through time.
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6.2.2 Tracking Foreground Objects Through Time

In any practical situation, there will be multiple foreground objects in the workspace at any given time. For

tracking purposes, it is necessary to match foreground objects at successive time steps. Let the set of estimated

foreground-object states at time n be B̂n and the set of sensed foreground-object states at time n + 1 be Bn+1.

We would like to find the matching between the sensed foreground-object states at time n + 1 and the estimated

foreground-object states at time n. Our foreground-object matching is a simple greedy search for the maximum-

likelihood match between foreground objects. The algorithm computes a matching function f : Bn+1 → B̂n with

the properties

• If the foreground object bjn+1 is new, then f(bjn+1) = ∅.
• Otherwise, f(bjn+1) = b̂

j

n is the estimated state of the foreground object at the previous time step n.

If a Kalman prediction cannot be matched to a sufficiently close foreground object at time n+1, then the

object is considered occluded. If a foreground object remains occluded for more than some predetermined amount

of time, e.g., 5 seconds, then it is considered disappeared. The algorithm greedy-foreground-object-

match is given in Figure 6.8. This greedy search for foreground-object tracking works well in environments

that are relatively sparse. However, a joint optimization procedure may be more appropriate in workspaces with

a large number of coinciding dynamic foreground objects. After matching foreground objects, we then estimate

their velocities using the Kalman updates. For example, Equation 6.1 becomes

b̂
j

n+1 =

{
bjn+1, f(bjn+1) = ∅
Af(bjn+1) +KC

(
bjn+1 −Af(bjn+1)

)
, otherwise

.

We consider the user to be the foreground object with the highest estimated velocity,

b̂
∗
n = arg max

b̂
i
n∈Bn

∥∥∥b̂in −CTCb̂
i

n

∥∥∥
2
.

We then pass the estimated user state through a moving-average low-pass filter to remove jitter that is transmit-

ted through the Kalman filter. The bank of filters for estimating the position and velocity of users is shown in

Figure 6.9.

6.2.3 Tracking Example

We placed two obstacles, i.e., trash cans, about four meters apart in a laboratory, shown in Figure 6.10(a), and then

asked a user to walk several iterations of a “figure-eight” trajectory while Agent Orange observed the user from a

fixed location. We plot the results of tracking the user in Figure 6.10(b). Though the user is temporarily occluded
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Algorithm greedy-foreground-object-match
Bn+1 is the set of sensed foreground objects at time n+ 1.
B̂n is the set of esimated foreground objects at time n.
hn : Bn → Z≥0 is time since the object was last sensed.
hmax is the timeout threshold for occluded objects.
τ is a probability threshold for matching.

1: Btemp
n+1 := Bn+1.

2: for all b̂
i

n ∈ B̂n
3: p∗i = max

bjn+1∈Btemp
n+1

p
(
Cbin+1|b̂

i

n

)

4: if p∗i ≥ τ then
5: bjn+1 := arg max

bjn+1∈Btemp
n+1

p
(
Cbin+1|b̂

i

n

)

6: Btemp
n+1 := Btemp

n+1 \ {bjn+1}
7: hn+1(bjn+1) := 0

8: end if
9: else then
10: /∗ Object occluded. ∗/
11: bjn+1 := Ab̂

i

n

12: Bn+1 := Bn+1
⋃{bjn+1}

13: hn+1(bjn+1) := hn(b̂
i

n) + 1

14: end else
15: if hn(b̂

i

n) < hmax then

16: f(bjn+1) := b̂
i

n

17: end if
18: else then
19: /∗ Object disappeared. ∗/
20: end else
21: end for all
22: for all bjn+1 ∈ Btemp

n+1

23: /∗ Any remaining objects are new. ∗/
24: f(bjn+1) := ∅
25: hn+1(bjn+1) := 0

26: end for all
27: return f , hn+1

Figure 6.8: The greedy-matching algorithm for foreground-object tracking.
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Laser Scan
of User

Autoregressive
Low−Pass Filter

Kalman Filter
(AR LP)

Moving−Average
Low−Pass Filter

Estimated
User State

Figure 6.9: Bank of filters for estimating the position and velocity of users.

(a) (b)

Figure 6.10: Tracking the user during five demonstrations of a “figure-eight” trajectory. The red boxes indicate
the location of obstacles, and the yellow circle indicates the position of the robot while tracking the user.

while demonstrating the trajectory, the filters are able to interpolate the trajectory accurately.3

6.3 Describing User Trajectories

We automatically identify the subgoals in the trajectory using the sequenced Linear Dynamical System (LDS)

representation from Chapter 5. Each trajectory segment between the subgoals is fitted by a single LDS that

captures its salient features such as direction, curvature, and speed. This sequenced-LDS approach is particularly

appealing for LBO applications since it represents trajectories in a generative fashion, encoding the trajectory

with a stable control law induced by the LDS. That is, the generative representation provides a mapping from

current state to desired state. In Figure 6.11(b) we extract subgoals and the LDS estimates from the trajectory in

Figure 6.11(a). Qualitatively, this estimated trajectory appears to capture the intentions of the original trajectory: a
3During one demonstration the Kalman filter temporarily lost track of the user. This is manifested by the outlying line on the bottom-

right side of Figure 6.10(b).
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(a) (b)

Figure 6.11: Extracting the subgoals and the control law from the demonstrations in Figure 6.11(a). The green
line in Figure 6.11(b) represents the control law the robot used to perform the task, based on the sequenced-LDS
representation, and the crosses mark the location of subgoals.

“figure-eight” trajectory that avoids the obstacles. Quantitatively, the trajectory is represented by six LDS estimates

and has an average error of 20 millimeters compared to the original trajectory. However, the LDS representation

does not respect the dynamics of Agent Orange. The sequenced-LDS representation is optimal for idealized

systems (cf. Theorem 5.1), but we make no guarantees for nonholonomic, underactuated, or saturating systems.

In Figure 6.12(a) we plot the response of Agent Orange during ten runs of the estimated task. While it does not

exactly follow the idealized trajectory in Figure 6.11(a), the robot does come fairly close to the predicted path.

In Figure 6.12(b) we plot the response on five runs during which we “kidnap” Agent Orange during execution

and plot its response to these perturbed conditions.4 Because we represent the trajectory in a generative manner,

using a control law induced from the LDS, Dollop automatically interpolates its response to being kidnapped.

It is coincidental that none of the responses to the kidnapping resulting in Agent Orange hitting the obstacles,

or laboratory walls, since the response of the control laws only depends on the current state of the robot and is

independent of objects in the environment. However, the response of Agent Orange to being kidnapped seems to

be a reasonable estimate of “what the user would have done.”
4During “kidnapping,” we simply stop the LBO control locus and move the robot with a joystick to a new location. This allows the

MCL to keep Agent Orange globally localized. This is different from what Thrun (2001) refers to as “kidnapping,” where the robot loses
its localization.
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(a) (b)

Figure 6.12: Figure 6.12(a) shows the result of ten runs of Agent Orange performing the estimated trajectory of
Figure 6.11(a). In Figure 6.12(b) we show the response of Agent Orange after being “kidnapped” during five
executions of the trajectory.

6.4 Environment Configuration

Since demonstrations may be performed in different environments, an LBO system must have the ability to deter-

mine how the actions of users are affected by these changes.

6.4.1 Determining Environment Configuration

In Dollop, the environment configuration is the set of static foreground objects in a workspace. To determine the

environment configuration, Dollop extracts the set of static foreground objects from the foreground occupancy

grid described in Section 6.2. During the course of its operation of tracking the user, if the laser scans a static

object (e.g., a slalom cone), then the foreground occupancy grid will contain readings at the location of that object.

Unless the object moves and a subsequent laser scan reveals the previous location empty, at the end of operation

Dollop will determine that there is a static foreground object at its location. Dollop then places a bounding box

around each static foreground object. The environment configuration is then defined to be the set of vertices of

the bounding boxes enveloping each static foreground object. If there are N static foreground objects, then the

environment configuration would contain 4N locations, one for each corner of the bounding boxes. If the ith
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Figure 6.13: The eight objects on the left must be matched to those on the right.

1 2

3 4

5 6

7 8

Figure 6.14: Intuitive representation of the “spring” optimization.

demonstration of a task contains N static foreground objects, then the environment configuration is

Ωi = {ωi1, . . . ,ωi4N},

where ωi4(n−1)+2 contains the {x, y} coordinates for the 2nd corner of the bounding box of the nth static fore-

ground object.

6.4.2 Mapping Environment Configurations

A crucial step in learning from, and performing, tasks demonstrated in different environment configurations is

determining how different environment configurations relate to each other. For example, in Figure 6.13 each

object on the left, {1, 2, 3, 4, 5, 6, 7, 8}, must be matched to one on the right, {a, b, c, d, e, f, g, h}. There are

many possible solutions, and any objective function giving preference to one possible mapping over another is

implicitly assuming that some mappings are more likely than others. We formulate the matching problem by

considering each object connected to all others by “springs,” with stronger springs connected to closer objects,

as in Figure 6.14. These springs result in a “force” on the object. Matching one object with another results in a

change in force and we compute the matching that minimizes the total change in force on all objects.

Let the environment configuration of the ith demonstration be given by Ωi = {ωi1, . . . ,ωi4N} and let the en-

vironment configuration of the jth demonstration be given by Ωj = {ωj1, . . . ,ωj4N}. Formally, we are computing

the function g : Ωi → Ωj that minimizes the cost function c : Ωi × g(Ωi)→ Z summed over all objects. Let the
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spring constant between object ωim and object ωin be

kim,n ,
∥∥ωim − ωin

∥∥−2
.

The total force on object ωim is

f im ,
∑

ωin∈Ωi

ωin 6=ωim

kim,n
ωin − ωim
‖ωin − ωim‖

.

If object ωim is matched with object ωjq, then the magnitude change in force caused by this individual match is

c(ωim,ω
j
q) ,

⌈
α
∥∥f im − f jq

∥∥⌉ ,

where dbe is the ceiling operation on b, which rounds up b ∈ R to the next greatest integer, and α is a large constant,

e.g., 103, to alleviate numerical rounding. It is straightforward to cost this formulation as a weighted bipartite-

graph matching problem known as the Hungarian Method (Papadimitriou & Steiglitz, 1998). This formulation can

be solved optimally by linear programming; in practice, a large number of environment objects can matched in

well under a second. However, the Hungarian Method requires that the matching function, g(·), be bijective. This

means that the number of environment objects must be the same in all demonstrations of a task. In our experiments

this has not shown itself as a problem, but, in general, this is a restrictive assumption. Fortunately, there are many

sophisticated, and very complex, matching formulations with more realistic assumptions (Cheriyan, 1997).

6.4.3 Associating Subgoals with Environment Objects

To learn from demonstrations performed in different environments, Dollop hypothesizes about what the user would

have done had the demonstrations been performed under the same conditions. This is accomplished by associating

subgoals with environment objects, a subject of previous investigations of LBO methods. Morrow and Khosla

(1995), for instance, extracted the corners of objects in the workspace from camera images. In that work, users

were then required to supply the location of the subgoals and manually associate them with the corners. As objects

in the workspace moved, a corner-tracking algorithm updated the subgoal locations accordingly. Our method for

associating subgoals is conceptually similar, but performed automatically. First, Dollop determines the closest m

environment objects to a subgoal. The difference between the subgoal and these environment objects is weighted

so that closer environment objects have higher weights. These weighted differences are the subgoal associations.

Given a mapping between the environment objects in two different configurations, g : Ωi → Ωj , Dollop uses the

mapped location of the environment objects, g(ωil), and the environment association to reconstruct the position

of the subgoal in the new environment configuration. Essentially, this forms the hypothesis about where the user
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would have located the subgoals in the new environment.

Let the closest m environment objects to the subgoal xih in the environment configuration Ωi be AΩi

xih
. For

each environment object in the set ωil ∈ AΩi

xih
, compute the difference $l = xih − ωil . Let the weight of the asso-

ciation be wl = ‖$l‖−1 /
∑

k ‖$k‖−1. Dollop reconstructs the position of subgoal xih in the new environment

configuration as

xjh =
∑

ωil∈AΩi

xi
h

wl
(
$l + g(ωil)

)
.

6.4.4 Environment Mapping Example

In Figure 6.15 we moved the obstacles from the original “figure-eight” demonstration (Figure 6.11(b)) to different

locations in the laboratory. Because the subgoals are associated with the obstacles, their locations update accord-

ingly. Furthermore, the subgoals make modifying the task trivial: a trajectory can be scaled or shifted by simply

moving the subgoals and allowing the LDS to interpolate its response. The locations of the subgoals in the modi-

fied environment and the corresponding response of each LDS form the hypothesis of user intent. Independently

of the hypothesis, we asked the user to demonstrate another figure-eight trajectory in the modified environment,

shown in Figure 6.16. Quantitatively, the average error of the hypothesized trajectory to what the user actually

performed was about 200 millimeters. Qualitatively, Dollop succeeded in determining what the user would have

done: creating a “figure-eight” trajectory that avoids the obstacles.

6.5 Learning

As mentioned in previous chapters, we model the user as generating subgoals according to a Continuous-Density

Hidden Markov Model (CDHMM). Since we do not know the set of tasks that the user will demonstrate a pri-

ori, we must estimate the structure of the CDHMM from user demonstrations alone. To accomplish this, we use

the learning algorithm derived in Chapter 3. When applied to Dollop, this algorithm analyzes the sequences of

subgoals from different task demonstrations. If the algorithm finds similarities between the subgoals of different

demonstrations, then the CDHMM is simplified by combining the similarities. This merging process gives an

increasingly accurate estimate about where the user intended the subgoals to be located. Since the sequenced-LDS

approach is based on least-squares estimation, multiple demonstrations of a trajectory can be incorporated to com-

pute a more accurate generalization of the indented actions of the user. Consequently, upon finding similarities in

different demonstrations, Dollop estimates a single LDS that describes both segments, which improves the gener-

alization ability of the estimate, as in Section 5.5. Both of these attributes mean that Dollop is able to reproduce
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(a) (b)

(c) (d)

Figure 6.15: Moving the slalom cones causes the subgoals to modify their locations automatically due to the
subgoal associations. The control laws for each trajectory segment automatically adapt to “what the user would
have done.”
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Figure 6.16: We asked the user to perform a figure-eight path in the modified environment, and the resulting
trajectory observed by the robot, with our hypothesized trajectory in green. Quantitatively, the average error of
the hypothesized trajectory was about 200 millimeters.

and generalize user actions if it has access to multiple demonstrations performed under different environment

configurations. This gives Dollop a better idea of how the user would perform the task in varying conditions.

In Figure 6.17 we show two demonstrations of a task performed in different environments, along with the

subgoals and trajectories estimated by Dollop. Before learning occurs, the subgoals from both demonstrations

are mapped to the same environment configuration. Dollop then estimates a CDHMM that describes the subgoals

in the demonstrations. We compute the most likely sequence of subgoals needed to complete the task, using the

unconditional Viterbi path. The Viterbi path is typically defined as the maximum-likelihood sequence of states

conditioned on an observation sequence (Rabiner & Juang, 1993). However, we are computing the unconditional

Viterbi path, the most likely sequence of states through the CDHMM, which is equivalent to finding the conditional

Viterbi path averaged over all possible observation sequences. Define the unconditional Viterbi variable as

δn(qj) ,





max
qi∈Q

aj|iδn−1(qi), n > 0

πj , n = 0
.

We keep track of the state sequences using back-pointers,

ψn(qj) , arg max
qi∈Q

aj|iδn−1(qi),

when n > 0. We slightly modify our previous definition of a CDHMM (Section 3.4) to include termination states,
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(a) (b)

(c) (d)

Figure 6.17: Two demonstrations of a task in modified environments and the corresponding estimated trajectories.
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(a)

(b) (c) (d)

Figure 6.18: Mapping the demonstrations from Figure 6.17(b) and Figure 6.17(d) to the modified environment
in Figure 6.18(a). Individually, the average error is 364 (Figure 6.18(b)) and 236 millimeters (Figure 6.18(c))
respectively. When Dollop learns from both demonstrations, the average error is 189 millimeters (Figure 6.18(d)).
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Figure 6.19: CDHMM estimated from the two trajectories in Figure 6.17, with the most likely sequence of subgoals
shown in red.

and this set is written as Qλ. We then search for the most likely state sequence finishing at a termination state

within a specified time window, 0 < Nmin ≤ Nmax,

(q∗, N∗) = arg max
qi∈Qλ

n∈{Nmin,... ,Nmax}

δn(i).

We use the back-pointers to reconstruct the Viterbi path from the initial conditions n = N∗ and qN∗ = q∗,

qn−1 = ψn(qn),

for n = N∗, . . . , 1. For the CDHMM estimated from the demonstrations in Figure 6.17 we show the Viterbi path

in Figure 6.19.

In Figure 6.18 we show how the hypotheses estimated from the demonstrations in Figure 6.17 are modified

when presented with the new environment configuration, in Figure 6.18(a). Independently, we also asked the

user to demonstrate a slalom trajectory through the three obstacles. The average errors of the hypotheses are

364 and 236 millimeters, respectively, when learning only from a single demonstration. However, when Dollop

learns from both demonstrations and maps its hypothesis to the modified environment, the average error is 189

millimeters. This implies that giving Dollop the opportunity to learn from both demonstrations allowed it to form

a more accurate hypothesis of user intent than either demonstration individually.

6.6 Summary

We have presented a system that pursues a computational approach to Learning By Observation, called Dollop.

Our approach allows Dollop to learn motor-skill tasks by observing user demonstrations with its scanning laser
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range finder. From these demonstrations, subgoals are extracted and associated with objects in the environment,

so that, as these objects move, the subgoals update accordingly. We described how Dollop can learn from multiple

demonstrations in different environments to infer the intentions of the user. We also showed examples of Dollop

learning from demonstrations in a laboratory setting with a mobile robot.
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Chapter 7

Conclusions

In this chapter, we summarize our work, restate the contributions, and point out limitations and

possible future directions of this work.

7.1 Summary

In this dissertation, we have presented an approach to inferring user intent for learning motor-skill tasks by obser-

vation. We began by decomposing the complex LBO problem and analyzing the simpler components. We have

modeled the process by which users create task subgoals by a Continuous-Density Hidden Markov Model. Since

the LBO system does not know the tasks users will perform a priori, we derived a learning algorithm that esti-

mates the structure of CDHMMs from observations of user demonstrations alone. From a theoretical analysis, our

learning algorithm produces CDHMMs with a locally minimal number of states, with worst-case computational

complexity quadratic in the number of observations. Assuming users behave as a CDHMM, we showed that the

probability of correctly estimating the states in the target CDHMM increases asymptotically as more demonstra-

tions are incorporated. We analyzed the performance of the learning algorithm on complex, real-world tasks with

an application of predictive robot programming. By isolating the performance from sensor noise and environment

considerations, we showed that our model is able to predict task subgoals with a high degree of accuracy.

We then presented a method for hypothesizing about the response of users to different conditions with se-

quenced linear dynamical systems. This method encodes user actions by first segmenting a demonstration at

important points in the trajectory, the subgoals; each segment is represented by a single LDS that induces a control

law forming a hypothesis about the response of users as the subgoals or conditions change. Multiple demonstra-

tions can be incorporated to improve the generalization of the system and infer user intent. We also provided

proofs of optimality and stability for the sequenced-LDS representation.

113
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Finally, we described our LBO system, Dollop, which learns to automate motor-skill tasks by observing users

with a laser while they demonstrate tasks. User demonstrations are segmented using the sequenced-LDS ap-

proach and the resulting subgoals are automatically associated with objects in the environment. As these ob-

jects move, the subgoals are updated accordingly, and each LDS automatically adapts its response to these new

conditions. Multiple demonstrations of a task can be incorporated even demonstrations performed in different

environment configurations allowing Dollop to infer user intent. To learn from tasks demonstrated in different

environments, demonstrations are first mapped to a common environment; then Dollop hypothesizes about what

the user would have done had the demonstrations been performed under the same conditions. Finally, Dollop

estimates a CDHMM that describes the subgoals from the various demonstrations and computes the most likely

sequence of subgoals needed to complete the task.

7.2 Contributions

The main contributions of this dissertation are: 1

• A CDHMM structure-estimation algorithm (Dixon et al., 2004). This algorithm is designed to cope with

the characteristic difficulties of LBO: scarce training data and real-time operation. The algorithm can oper-

ate in an online fashion, as observations become available, or as batch processing, on a complete data set.

We provide a theoretical analysis showing the strengths and weaknesses of the algorithm.

• Design and analysis of a Predictive Robot Programming system (Dixon & Khosla, 2003). In addition

to isolating variables to study LBO performance, the application of PRP is worthwhile in its own right to

decrease manipulator-robot programming time. We show that the PRP system has a median prediction error

less than 0.5% of the distance traveled during prediction on a set of data from complex, real-world robotic

tasks. We also present laboratory experiments showing that the PRP system results in a significant reduction

in programming time, with users completing simple robot-programming tasks over 30% faster when allow-

ing the PRP system to compute predictions of future positions.

• Trajectory representation using Sequenced Linear Dynamical Systems (Dixon & Khosla, 2004b). We

have derived a novel method to represent hypotheses of user actions by estimating a sequence of linear dy-

namical systems that describes a demonstration. We show optimality of the formulation and provide a proof

of stability of the induced supervisory control law.

• Development of a computational approach to Learning By Observation (Dixon & Khosla, 2004a). We
1Repeated from Section 1.4
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leverage the analyses from the previous contributions to develop an LBO system that learns motor-skill

tasks from user demonstrations. Multiple demonstrations can be incorporated to improve system perfor-

mance, and demonstrations can be performed in different environment configurations. We present laboratory

experiments showing that the LBO system accurately infers user intent.

7.3 Conclusions

7.3.1 Structure Estimation

Limitations

Our algorithm was created for instances where there exist short-sequence similarities, which prompted us to derive

a memoryless merging criterion. A byproduct of our derivation is that the learning algorithm will not represent

finite-looping tasks well. In domains with long-sequences similarities or finite looping, such as speech and gesture

recognition or some types of assembly tasks, then we suspect that our algorithm will not perform as well as other

algorithms derived for those applications, e.g., Ron et al. (1998) and Stolcke and Omohundro (1994b).

Our application domains require real-time use and we do not typically have large amounts of training data.

This means that our algorithm must provide an answer as quickly as possible from a heavily biased space. For

practical purposes, this prevents us from deriving an asymptotic convergence guarantee, such as those described

by Ephraim and Merhav (2002).

Future Directions

We would like to derive a proof guaranteeing a negative correlation between prediction confidence and prediction

accuracy, although we have been unsuccessful so far. One possibility for future use of graph-based structure

estimation is in speculative precomputation (Collins et al., 2001) in computer-processor design. These systems

attempt to predict memory-page faults based on the previous behavior of a computer program.

Given the severe theoretical limitations for structure estimation in graph-based models (Section 2.4), it appears

unlikely that any one-size-fits-all algorithm will emerge in the near future. One possibility to broaden the appeal

of a particular structure-estimation approach is by using anytime algorithms (Zilberstein & Russell, 1996). These

algorithms improve their performance as their alloted time increases.

Currently, system designers needing structure-estimation algorithms in their applications should first delineate

the requirements. For example, are acyclic models acceptable or are cyclic models needed? What computational

complexity should the algorithm be allowed? How much training data will the algorithm be given? Is it possible
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to discretize observations? Answers to these questions should lead future researchers to existing algorithms, or

shed light on the attributes needed in the structure-estimation algorithm.

7.3.2 Predictive Robot Programming

Limitations

Because the PRP system does not consider the environment when computing a prediction, collisions between the

robot and various objects do occur. While these collisions are not problematic for most industrial manipulators,

there may be fragile objects in the workspace, including the user, that might be damaged in a collision. As such,

any PRP system should avoid suggesting waypoints that result in a collision, and, for safety reasons, the motion

of the PRP system must be easily stopped by the user.

Currently, the PRP system does not indicate the position of a predicted waypoint to users before moving

the robot. There does not seem to be an efficient solution that allows users to visualize a priori where the PRP

system intends to move the robot. One potential solution is to show users with a virtual-reality model (i.e., offline

system) where the predicted waypoint is, allowing users to determine if the prediction is appropriate. But this

implementation may cause users to spend more time determining if the waypoint is acceptable than if they simply

allowed the PRP system to move the robot automatically and (potentially) undid it.

Because PRP does not have a well-defined domain, such as a dictionary for word-completion tasks, it may

require a substantial amount of effort to build a sufficient repertoire of examples to predict waypoints reliably. It

would be helpful to users to “seed” the CDHMM with generic movements that tend to be found in various tasks.

This might help the PRP system predict waypoints sooner.

In our PRP implementation, all parameters are fixed a priori, such as the CDHMM complexity, δ, and the

prediction-confidence threshold, φmin. These parameters should certainly be adapted online, based on feedback

from the user.

Future Directions

Currently, the PRP system identifies similarity to previous subtasks using a single, monolithic CDHMM. It may

be helpful to allow users to provide the PRP system with labeled tasks. The PRP system could then create many

smaller CDHMMs that describe these patterns. In this scenario, users would demonstrate a task and indicate that

the PRP system should create a new CDHMM describing that task. In the future, the PRP system would then

decide which CDHMM best describes recently created waypoints and use that model to predict the next waypoint.

After completing the task, the PRP system could improve its ability to recognize and predict these patterns by
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incorporating semi-supervised learning techniques (Seeger, 2000). This would give users more input about how

the PRP system assists them.

7.3.3 Hypotheses of User Actions

Limitations

The proof of stability for the sequenced-LDS approach requires that the observations not be collinear or, in the

high-dimension case, that the observations do not lie on a hyperplane. As the observation dimension is increased,

it becomes more likely that there will be a hyperplane on which all the observations lie. For example, suppose the

observation vector includes a velocity magnitude. In this case, we do not guarantee the stability of LDS estimates

from constant-velocity trajectories, regardless of the position components.

We assume that observations are generated according to a type of linear, time-invariant, constant-input dynam-

ical system. We fit a parametric model to the given observations that minimizes the squared one-step prediction

error. This results in two artifacts. The first is that a discrete-time LDS assumes a geometric progression of the

state variables. Thus, if the user demonstrates a trajectory with equally spaced observations, our approach will

still attempt to fit a least-squares geometric series to the data, which may be undesirable. The second artifact from

our formulation is that we only guarantee optimal one-step predictions. A user of the sequenced-LDS approach

may be more interested in minimizing the error between the demonstrated trajectory and the estimated trajectory,

which appears to be a significantly more difficult formulation.

Unlike cubic-spline interpolation, our sequenced-LDS approach does not have a smoothness criterion between

segments, though one does seem possible. Consequently, at the boundary of an LDS segment, the supervisory

control law could send large reference-error commands to the low-level controller, potentially resulting in high-

jerk motion.

Future Directions

We would like to formulate an offline-segmentation scheme where the input is an allowable error and the output is

a segmentation that achieves no worse than that error, while using the fewest parameters possible. Also, we would

like to derive a smoothness criterion between LDS segments, for minimum-jerk or minimum-acceleration profiles.

Other potential applications of this approach include modeling how efficient a new room design may be. By

observing how a user moves between, e.g., a computer, desk, and book case, we can design more efficient offices

for people by hypothesizing about their movements to a novel configuration. It should be simple to extend this idea

to design more efficient factories and office buildings prior to investing time and money in physically rearranging
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the space.

7.3.4 Learning By Observation

Limitations

The representation of the environment is probably the weakest point in Dollop. While we can compute envi-

ronment matchings quickly and consistently, it is an inherently ill-posed problem. The geometric information

obtained from laser readings disregards many cues that could be helpful in disambiguating the matching process.

As such, it is not difficult to contrive environments that result in counter-intuitive matchings. Coupling laser

readings with a more expressive sensor, such as a camera, could result in improved performance. Before being

used in more realistic environments, Dollop will have to incorporate a more sophisticated environment-matching

algorithm, since the current formulation, the Hungarian Method, requires that the same objects be present in each

demonstration. We would expect this robust matching procedure to be iterative and heuristic in nature, based on

the EM algorithm.

The supervisory control laws from the sequenced-LDS approach do not respect environment factors, such

as object collisions. As such, it is possible that certain environment configurations will result in the estimated

supervisory control law directing the robot into a collision.

Also, the CDHMM learning procedure is sensitive to the segmentation derived from the sequenced-LDS ap-

proach. If dramatically different segmentations are produced for different demonstrations, then the learning algo-

rithm will not find similarities in the different demonstrations. This could result in unpredictable generalizations

to novel environment configurations. In our experiments, this has not shown itself to be a problem, since the LDS

segmentation appears to identify important locations in trajectories reliably.2

Future Directions

Similar to PRP, the parameters of the LBO system should be adapted based on user feedback. Currently, all

parameters are fixed a priori, such as the CDHMM complexity, δ, and the number of environment objects as-

sociated with a subgoal. In particular, we would like to formulate the environment-object association problem

adaptively by incorporating information from multiple demonstrations. This would allow Dollop to learn about

which environment objects are important to a particular task.

In the future, we plan on extending Dollop to encode higher-level knowledge, giving it the ability to learn
2In fact, in results not included in this dissertation, the automatic segmentation was more consistent – and performed better – than a

manual segmentation.
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more complex tasks. Dynamical systems can represent motor-skill tasks efficiently, but they may not be the

best approach for learning more sophisticated skills. We are interested in pursuing a hierarchical representation,

with the motor-skill-learning ability at the lowest level, and some as-yet-undefined method encoding high-level

knowledge.

7.4 List of Parameters

This section lists the parameters, as well as the typical values used, in this work.

Parameter Range Typical Description Described in

Value

φmin [0, 1] 0.7 Prediction-confidence threshold Section 3.11

δ (0, 1] 0.7
Complexity of the CDHMM estimated by the learning

algorithm
Section 3.12

ζ (0,∞) 0.2meters Stopping criterion for sequenced LDS estimates Section 5.4

κmax [1,∞) 10
Maximum condition number of LDS matrix estimate R̂

before declaring trajectory collinear
Section 5.6

εmax [0,∞) 0.7
Normalized-prediction-error threshold for trajectory

segmentation
Section 5.7

hmax [0,∞) 5sec Timeout threshold for occluded objects Section 6.2.2

τ [0, 1] 0.5 Probability for foreground-object matching Section 6.2.2

|AΩi

xih
| [0,∞) 5

Number of environment objects to associate with a sub-

goal
Section 6.4.3
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Appendix A

Technical Details

This chapter contains the proofs of various propositions and lengthy derivations.

A.1 Proofs

A.1.1 Proof of Lemma 3.1

Proof. Equation 3.1, µ, was defined using any symmetric PD precision matrix C ∈ X × X and any reference

vector u ∈ X . A measure on the multiset, A, is defined by the properties nonnegativity and countable subaddi-

tivity,

µC(Ã,u) ≥ 0, ∀Ã ⊆ A (A.1)

µC(
⋃

n

Ãn,u) =
∑

n

µC(Ãn,u), ∀Ãn ⊆ A and finite n. (A.2)

We begin by showing the nonnegativity (Equation A.1) of our function. For any Ã ⊆ A,

µC(Ã,u) ,
∑

x∈Ã
‖x− u‖2C

=
∑

x∈Ã
(x− u)TC(x− u)

≥ 0,

by definition of PDC. Note that ‖x− u‖2C = 0 if and only if x = u. For any finite multisets, Ã = B∪C implies

121
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Ã \B = C and Ã \ C = B.

µC(Ã,u) ,
∑

x∈Ã
‖x− u‖2C

=
∑

x∈B∪C
‖x− u‖2C

=
∑

x∈B
‖x− u‖2C +

∑

y∈C
‖y − u‖2C ,

so the function also obeys countable subadditivity (Equation A.2). Therefore the function µ is a measure. Note

that the proof would be unchanged if the domain of the measure were a set, instead of a multiset. This is because

countable subadditivity is defined only over mutually disjoint subsets.

When Ã = ∅, µC(∅,u) = 0 and any u is a minimum. When Ã 6= ∅, we start by differentiating the measure

0 =
∂

∂u
µC(Ã,u)

=
∂

∂u

∑

x∈Ã
‖x− u‖2C

=
∑

x∈Ã

∂

∂u
(x− u)TC(x− u)

=
∑

x∈Ã

∂

∂u

(
xTCx− 2uTCx+ uTCu

)

=
∑

x∈Ã
(−2Cx+ 2Cu)

2|Ã|Cu = 2C
∑

x∈Ã
x

⇒ u∗ =
1

|Ã|
∑

x∈Ã
x.

To ensure a minimum, we check the Hessian,

∂2

∂u∂uT
µC(Ã,u) = 2|Ã|C,

which must be a symmetric PD matrix, by definition of C and the assumption that |Ã| > 0. This implies that

〈Ã〉 = arg min
u∈X

µC(Ã,u). Note that the proof is similar to the derivation to the sample mean for iid draws from

a multivariate Gaussian using the log-ML approach.
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A.1.2 Proof of Lemma 3.2

Proof.

µC(A, 〈A〉) ≤ µC(A, 〈B〉)
≤ µC(A, 〈B〉) + µC(B \A, 〈B〉)
= µC(B, 〈B〉)
≤ µC(B, 〈C〉)
≤ µC(B, 〈C〉) + µC(C \B, 〈C〉)
= µC(C, 〈C〉),

which completes the claim.

A.1.3 Proof of Lemma 3.4

Proof. The sufficient statistics are the values needed to compute a function without the underlying set of data. We

expand the definition of the measure as

µC(Vvi , 〈Vvi〉) ,
∑

x∈Vvi
‖x− 〈Vvi〉‖2C

=
∑

x∈Vvi

(
xTCx− 2〈Vvi〉TCx+ 〈Vvi〉TC〈Vvi〉

)

=
∑

x∈Vvi


xTCx− 2

( 1

|Vvi |
∑

y∈Vvi
y
)T

Cx+
( 1

|Vvi |
∑

y∈Vvi
y
)T

C
( 1

|Vvi |
∑

y∈Vvi
y
)



=
∑

x∈Vvi
xTCx− 2

|Vvi |
( ∑

x∈Vvi
x
)T
C
( ∑

x∈Vvi
x
)

+
|Vvi |
|Vvi |2

( ∑

x∈Vvi
x
)T
C
( ∑

x∈Vvi
x
)

=
∑

x∈Vvi
xTCx− 1

|Vvi |
( ∑

x∈Vvi
x
)T
C
( ∑

x∈Vvi
x
)
.

From here, it is clear that the sufficient statistics are the scalar number of observations, the scalar sum of Maha-

lanobis distances, and the vector sum of observations

ξi = |Vvi |; κi =
∑

x∈Vvi
xTCx; σi =

∑

x∈Vvi
x.
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Using the sufficient statistics, the measure can be computed as

µC(Vvi , 〈Vvi〉) ≡ κi −
1

ξi
σi

TCσi.

Likewise, the sufficient statistics can be used to compute the measure for the union of two multisets (Vvk =

Vvi ∪ Vvj ).

ξk = |Vvk | = |Vvi ∪ Vvj | = |Vvi |+ |Vvj | = ξi + ξj .

κk =
∑

x∈Vvk
xTCx =

∑

x∈Vvi∪Vvj
xTCx =

∑

x∈Vvi
xTCx+

∑

x∈Vvj
xTCx = κi + κj .

σk =
∑

x∈Vvk
x =

∑

x∈Vvi∪Vvj
x =

∑

x∈Vvi
x+

∑

x∈Vvj
x = σi + σj .

This update rule implies that the measure can be computed independent of the cardinality of either multiset.

A.1.4 Proof of Corollary 3.4.1

Proof. From Lemma 3.4, Equation 3.1 can be computed using sufficient statistics as

µC(Vvk , 〈Vvk〉) ≡ κk −
1

ξk
σk

TCσk.

Using the update rules, and if Vvk = Vvi ∪ Vvj then

µC(Vvi ∪ Vvj , 〈Vvi ∪ Vvj 〉) = (κi + κj)−
1

ξi + ξj
(σi + σj)

TC(σi + σj)︸ ︷︷ ︸
(?)

.

The cost of computing this equation is dominated by the quadratic term (?), which is of computational complexity

O(d2), where d is the dimension of σk.

A.1.5 Proof of Theorem 3.8

Proof. Let ui = 〈Vvi〉 be the finite mean of observations from state qi ∈ λ̂. We also assume that the variance of

observations from state qi ∈ λ̂ is finite. Let u∗ be the finite mean of observations from some state q∗ ∈ λ∗ and
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Σ∗ = arg max
qk∈λ∗

tr[CVar(x|qk)].

Pr
{
λ∗

γ→ qi ∈ λ̂
}

= 1− Pr
{
λ∗ 6 γ→ qi ∈ λ̂

}

= 1− Pr {‖ui − u∗‖C ≥ γ} , ∀q∗ ∈ λ∗.

From Theorem 3.3, ‖x− 〈Vvi〉‖C ≤
√
ε, for all x ∈ Vvi . Using the Multivariate Chebyshev’s Inequality (Sec-

tion A.1.6), the probability that these states could generate one observation is

Pr
{
‖x− u∗‖C ≥ γ −

√
ε
}
≤ tr[CΣ∗]

(γ −√ε)2
.

Since qi ∈ λ̂ was created from |Vvi | observations from iid tasks,

Pr
{
λ∗

γ→ qi ∈ λ̂
}

> 1−
(

tr[CΣ∗]
(γ −√ε)2

)|Vvi |
.

A.1.6 Multivariate Chebyshev’s Inequality

Before beginning, we need a slight generalization of Markov’s inequality, called Bienaymé’s Inequality (Papoulis

& Pillai, 2002).

Lemma A.1 (Bienaymé’s Inequality). For any random variable X ≥ 0 and any real r ≥ 0 and ε > 0,

Pr {X ≥ ε} ≤ E{Xr}
εr

,

provided E{Xr}exists.
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Proof. The general case of r > 0 is shown as

E{Xr} ,
∞∫

0

xrp(x) dx

≥
∞∫

ε

xrp(x) dx

≥
∞∫

ε

εrp(x) dx

= εr
∞∫

ε

p(x) dx

= εr Pr {X ≥ ε} .

The case of r = 0 is trivial, since Pr {X ≥ ε} ≤ 1 is always true.

We can use this result to generalize Chebyshev’s Inequality to the hyperelliptical case.1 The trace of a matrix

has many interesting properties, and we will make use of the following:

tr[a] = a;

tr[aA] = atr[A] ;

tr[A+B] = tr[A] + tr[B] ;

tr[AB] = tr[BA] ;

aTAb = tr
[
AbaT

]
.

Lemma A.2 (Multivariate Chebyshev’s Inequality). For any real-valued (d × 1) random vector, x, any real

y ∈ Rd, ε > 0, and symmetric positive definite C ∈ Rd× Rd,

Pr {‖x−y‖C ≥ ε} ≤
tr[CVar(x)] + ‖y−E{x}‖2C

ε2
,

provided x has finite first and second moments.

1After a fairly exhaustive search, we cannot find a similar inequality in reference books or the literature. Although, we still suspect that
this inequality, or a similar one, has been derived before, it is outside our purview.
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Proof. Let µ = E{x}and Σ = Var(x). From Bienaymé’s Inequality, with r = 2, we get

ε2 Pr {‖x−y‖C ≥ ε} ≤ E
{
‖x−y‖2C

}

= E
{

(x−y)TC(x−y)
}

= E
{

tr
[
C(x−y)(x−y)T

]}

= tr
[
E
{
C(x−y)(x−y)T

}]

= tr
[
CE
{
xxT− 2xyT + yyT

}]

= tr
[
C
(

E
{
xxT

}
− 2µyT + yyT

)]

= tr
[
C
(

(Σ + µµT)− 2µyT + yyT
)]

= tr[CΣ] + µTCµ− 2yTCµ+ yTCy

= tr[CΣ] + (y−µ)TC(y−µ)
·

= tr[CVar(x)] + ‖y−E{x}‖2C .

This completes the claim.

There are several useful special cases of this inequality, when y = µ, C = Id×d, or C = Σ−1. For instance,

Pr
{
‖x−µ‖Σ−1 ≥ ε

}
≤ d

ε2
,

where d is the length of x.

A.1.7 Proof of Theorem 3.9

Proof. The definition of the Viterbi Approximation is

α̂cλ , max
q0,...,qN

p(xcN |cN=qN ,λ) P(cN=qN |cN−1=qN−1,λ) · · ·p(xc0|c0=q0,λ) P(c0=q0|λ) .

Since we are considering the log conditional-likelihood ratio, then we need to consider only those Viterbi paths

that include state qi or state qj in the original CDHMM λ, or qk in the merged CDHMM λ̃. The only components

of the Viterbi Approximation that change involve either state qi or state qj (Figure A.1).
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qi qj qk

fe0→i fe1→i

fei→a fei→b

fe1→i fe2→i

fej→cfej→b fej→c

fe2→jfe1→i+fe1→jfe0→i

fei→b+fej→bfei→a

Figure A.1: Hypothetical merging of state qi and qj to form state qk.

log

M∏
m=1

α̂m
λ̃

M∏
m=1

α̂mλ

≡ log

∏
x∈Vqk

bk(x)

∏
x∈Vqi

bi(x)
∏

x∈Vqj
bj(x)

︸ ︷︷ ︸
(?)

+ log
∏

ql∈Q

a
fek→l
l|k

a
fei→l
l|i a

fej→l
l|j︸ ︷︷ ︸

(�)

+ log
∏

ql∈Q

a
fel→k
k|l

a
fel→i
i|l a

fel→j
j|l︸ ︷︷ ︸

(†)

,

where (?) is the log observation-likelihood ratio, (�) is the log inbound transition-probability ratio, and (†) is the

difference in the log outbound transition-probability ratio. If we merge state qi and state qj to form qk then the log

observation-likelihood ratio is

2 log

∏
x∈Vqk

bk(x)

∏
x∈Vqi

bi(x)
∏

x∈Vqj
bj(x)

= 2
∑

x∈Vqk
log bk(x)− 2

∑

x∈Vqi
log bi(x)− 2

∑

x∈Vqj
log bj(x)

= −
∑

x∈Vqk
‖x−〈Vqk〉‖2Σ−1 +

∑

x∈Vqi
‖x−〈Vqi〉‖2Σ−1 +

∑

x∈Vqj

∥∥x−〈Vqj 〉
∥∥2

Σ−1

·
= µΣ−1(Vqi , 〈Vqi〉) + µΣ−1(Vqj , 〈Vqj 〉)− µΣ−1(Vqk , 〈Vqk〉). (A.3)

Using the sufficient statistics derived in Lemma 3.4,

ξk = ξi + ξj ; κk = κi + κj ; σk = σi + σj .
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We can rewrite Equation A.3 as

µΣ−1(Vqi , 〈Vqi〉) + µΣ−1(Vqj , 〈Vqj 〉)− µΣ−1(Vqk , 〈Vqk〉)
·

= κi −
σi

TΣ−1σi
ξi

+ κj −
σj

TΣ−1σj
ξj

− κk +
σk

TΣ−1σk
ξk

=
(σi+σj)

TΣ−1(σi+σj)

ξi + ξj
− σi

TΣ−1σi
ξi

− σj
TΣ−1σj
ξj

=
σi

TΣ−1σi
ξi + ξj

+
σj

TΣ−1σj
ξi + ξj

+ 2
σi

TΣ−1σj
ξi + ξj

− σi
TΣ−1σi
ξi

− σj
TΣ−1σj
ξj

=
−1

ξi + ξj

(
ξj
ξi
‖σi‖2Σ−1 +

ξi
ξj
‖σj‖2Σ−1 − 2σi

TΣ−1σj

)

=
−1

ξi + ξj

∥∥∥∥∥σi

√
ξj
ξi
− σj

√
ξi
ξj

∥∥∥∥∥

2

Σ−1

.

If we use the convention that 0 log 0 = 0, noting that the edge counts from state qk equal the sum from the two

merged nodes, the log inbound transition-probability ratio is

log
∏

ql∈Q

a
fel→k
k|l

a
fel→i
i|l a

fel→j
j|l

=
∑

ql∈Q

(
fel→k log ak|l − fel→i log ai|l − fel→j log aj|l

)

=
∑

ql∈Q

(
(fel→i + fel→j ) log

fel→i + fel→j
ξl

− fel→i log
fel→i
ξl
− fel→j log

fel→j
ξl

)

=
∑

ql∈Q

(
fel→i log

fel→i + fel→j
fel→i

+ fel→j log
fel→i + fel→j

fel→j

)
.

The log outbound transition-probability ratio is

log
∏

ql∈Q

a
fek→l
l|k

a
fei→l
l|i a

fej→l
l|j

=
∑

ql∈Q

(
fek→l log al|k − fei→l log al|i − fej→l log al|j

)

=
∑

ql∈Q

(
(fei→l + fej→l) log

fei→l + fej→l
ξi + ξj

− fei→l log
fei→l
ξi
− fej→l log

fej→l
ξj

)

=
∑

ql∈Q

(
fei→l log

ξi
ξi + ξj

fei→l + fej→l
fei→l

+ fej→l log
ξj

ξi + ξj

fei→l + fej→l
fej→l

)
.
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When we put it all together, the log conditional-likelihood ratio from merging state qi and qj is

log
M∏

m=1

α̂m
λ̃
− log

M∏

m=1

α̂mλ =
−1/2

ξi + ξj

∥∥∥∥∥σi

√
ξj
ξi
− σj

√
ξi
ξj

∥∥∥∥∥

2

Σ−1

+
∑

ql∈Q

(
fel→i log

fel→i + fel→j
fel→i

+ fel→j log
fel→i + fel→j

fel→j

)

+
∑

ql∈Q

(
fei→l log

ξi
ξi + ξj

fei→l + fej→l
fei→l

+ fej→l log
ξj

ξi + ξj

fei→l + fej→l
fej→l

)
.

Furthermore, this quantity can be computed independent of the cardinality of any state in the CDHMM.

A.1.8 Proof of Theorem 5.1

Proof. The proof is similar to Theorem 5.5.1 in Golub and Van Loan (1996). Let A = X 1:N − X0:N−1 and

B = X0:N−1−ΓN . Furthermore, letB = UΣVT be the SVD ofB, and letB have full row rank, d. Let R̂LS be

the least-squares estimate ofR, i.e., the matrix that minimizes the squared Frobenius norm of one-step prediction

errors (Kreyszig, 1999). Let the squared error of the least-squares estimate be

ε2
LS =

∥∥∥X1:N −
(
R̂LS (X0:N−1 − ΓN ) +X0:N−1

)∥∥∥
2

F

=
∥∥∥(X1:N −X0:N−1)− R̂LS (X0:N−1 − ΓN )

∥∥∥
2

F

·
=

∥∥∥A− R̂LSB
∥∥∥

2

F

=
∥∥∥AV − R̂LSUU

TBV
∥∥∥

2

F

=
∥∥∥AV − R̂LSUΣ

∥∥∥
2

F

=
∥∥∥A [v1 · · ·vN ]− R̂LS

[
σ2

1u1 · · ·σ2
dud0 · · ·0

]∥∥∥
2

F

=
d∑

n=1

∥∥∥Avn − σ2
nR̂LSun

∥∥∥
2

2

︸ ︷︷ ︸
(�)

+
N∑

n=d+1

‖Avn‖22
︸ ︷︷ ︸

(?)

.
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Since the right term (?) does not depend on R̂LS, there is no way to minimize it. The left term (�) can forced to

zero by setting R̂LS = AV diag
(
1/σ2

1, . . . , 1/σ
2
d, 0, . . . , 0

)
UT. Then we have

R̂LS = AV diag
(
1/σ2

1, . . . , 1/σ
2
d, 0, . . . , 0

)
UT

= ABR

·
= (X1:N −X0:N−1) (X0:N−1 − ΓN )R.

A.1.9 Lemmas for Theorem 5.2

Lemma A.3. ∆0:N−1∆0:N−1
T = δ0δ0

T + ∆1:N∆1:N
T.

Proof.

∆0:N−1∆0:N−1
T =

N−1∑

n=0

δnδn
T

= δ0δ0 +
N−1∑

n=0

δn+1δn+1
T− δNδNT

= δ0δ0 + ∆1:N∆1:N
T,

since by definition δN = 0.

Lemma A.4. Let d < N be the number of rows and columns in ∆0:N−1 and let ∆0:N−1 have full row rank. This

implies

∆0:N−1
R∆0:N−1 =

d∑

i=1

vivi
T,

where vi is the ith column of the matrix V resulting from the SVD of ∆0:N−1.
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Proof. Let the SVD be ∆0:N−1 = UΣVT.

∆0:N−1
R∆0:N−1 = ∆0:N−1

T
(
∆0:N−1∆0:N−1

T
)−1

UΣVT

= V ΣTUT
(
UΣVTV ΣTUT

)−1
UΣVT

= V ΣTUT
(
UΣΣTUT

)−1
UΣVT

= V ΣTUTU
(
ΣΣT

)−1
UTUΣVT

= V ΣT
(
ΣΣT

)−1
ΣVT

= V ΣTdiag(1/σ2
1, . . . , 1/σ

2
d)ΣV

T

= [v1 · · ·vd · · ·vN ]

[
I(d×d) 0(d×d−N)

0(N−d×d) 0(N−d×N−d)

]




vT
1
...

vT
d
...

vT
N




=
d∑

i=1

vivi
T.

A.1.10 Proof of Theorem 5.2

Proof. Let the equilibrium point of Equation 5.4 be x∞,

x∞ = (R̂+ I)x∞ − R̂xN
−R̂x∞ = −R̂xN
⇒ x∞ = xN ,

provided R̂
−1

exists.

Let d be the number of rows in ∆0:N−1. We use the Discrete Algebraic Lyapunov Equation (Equation 5.6) to
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show stability i.s.L. by choosing the symmetric PD matrix P = ∆0:N−1∆0:N−1
T,

∆0:N−1∆0:N−1
T−A∆0:N−1∆0:N−1

TAT

= ∆1:N∆0:N−1
R∆0:N−1∆1:N

T∆0:N−1
RT

∆1:N
T

= ∆0:N−1∆0:N−1
T−∆1:N∆0:N−1

T(∆0:N−1∆0:N−1
T)−1∆0:N−1∆0:N−1

T(∆0:N−1∆0:N−1
T)−1∆0:N−1∆1:N

T

= ∆0:N−1∆0:N−1
T−∆1:N∆0:N−1

T(∆0:N−1∆0:N−1
T)−1∆0:N−1∆1:N

T

= ∆0:N−1∆0:N−1
T−∆1:N∆0:N−1

R∆0:N−1∆1:N
T

= Q.

From Lemma A.3 and Lemma A.4 and, by definition, δN = 0,

Q = δ0δ0
T + ∆1:N∆1:N

T− δNδNT−∆1:N

(
d∑

i=1

vivi
T

)
∆1:N

T

= δ0δ0
T + ∆1:NI∆1:N

T−∆1:N

(
d∑

i=1

vivi
T

)
∆1:N

T

= δ0δ0
T + ∆1:NV V

T∆1:N
T−∆1:N

(
d∑

i=1

vivi
T

)
∆1:N

T

= δ0δ0
T + ∆1:N

(
N∑

i=1

vivi
T

)
∆1:N

T−∆1:N

(
d∑

i=1

vivi
T

)
∆1:N

T

= δ0δ0
T + ∆1:N

(
N∑

i=d+1

vivi
T

)
∆1:N

T

+∆1:N

(
d∑

i=1

vivi
T

)
∆1:N

T−∆1:N

(
d∑

i=1

vivi
T

)
∆1:N

T

= δ0δ0
T + ∆1:N

(
N∑

i=d+1

vivi
T

)
∆1:N

T.

Clearly, this matrix is symmetric PSD since

xTQx = xTδ0δ0
Tx+ xT∆1:N

(
N∑

i=d+1

vivi
T

)
∆1:N

Tx

= xTδ0δ0
Tx+ yT

(
N∑

i=d+1

vivi
T

)
y

≥ 0,
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for any x. The matrix is PD unless δ0 lies in the space spanned by the first d principal row components of ∆0:N−1.

Since the matrix ∆0:N−1∆0:N−1
T− A∆0:N−1∆0:N−1

TAT is PSD, then the dynamical system in Equation 5.4 is

stable i.s.L..

A.2 Derivations

A.2.1 Derivation of Equation 3.4

The prior is the description length of the model (Stolcke & Omohundro, 1994b):

` (qi) ∼= log |Var(x|qi) |+ |Eqi | log |Q|
p(qi) ∝ exp{−` (qi)}

∼= |Var(x|qi) |−1|Q|−|Eqi |

p(λ) =
∏

qi∈Q
p(qi)

∼∝
∏

qi∈Q
|Var(x|qi) |−1|Q|−|Eqi |

= |Q|−|E|
∏

qi∈Q
|Var(x|qi) |−1.

A.2.2 Derivation of Equation 3.9

The “forward variables” are defined as

αn(j) , p(cn=qj ,X
c
0:n|λ)

=
∑

qi∈Q
p(xn|cn=qj ,λ) p

(
cn=qj , cn−1=qi,X

c
0:n−1|λ

)

= p(xn|cn=qj ,λ)
∑

qi∈Q
P(cn=qj |cn−1=qi,λ) p

(
cn−1=qi,X

c
0:n−1|λ

)

·
=





bj(xn)
∑
qi∈Q

aj|iαn−1(i), n > 0

bj(x0)πj , n = 0
.
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The next-state pmf is defined as

νn(j) , P
(
cn=qj |Xc

0:n−1,λ
)

=
p
(
cn=qj ,X

c
0:n−1|λ

)

p
(
Xc

0:n−1|λ
)

=

∑
qi∈Q

p
(
cn=qj , cn−1=qi,X

c
0:n−1|λ

)

∑
qk∈Q

p
(
cn−1=qk,X

c
0:n−1|λ

)

=

∑
qi∈Q

P(cn=qj |cn−1=qi,λ) p
(
cn−1=qi,X

c
0:n−1|λ

)

∑
qk∈Q

p
(
cn−1=qk,X

c
0:n−1|λ

)

·
=

∑
qi∈Q

aj|iαn−1(i)

∑
qk∈Q

αn−1(k)
.

If we use these definitions, the ML estimator, Equation 3.9, is computed as

x̂∗n = arg max
xn

p
(
xn|Xc

0:n−1,λ
)

= arg max
xn

∑

qj∈Q
p
(
xn, cn=qj |Xc

0:n−1,λ
)

= arg max
xn

∑

qj∈Q
p(xn|cn=qj ,λ) P

(
cn=qj |Xc

0:n−1,λ
)

·
= arg max

xn

∑

qj∈Q
bj(xn)νn(j).
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A.2.3 Derivation of Equation 4.5

Because the observation pdf is Gaussian and Ψ is a diagonal (symmetric) matrix,

∂

∂ψ
bj,ψ(xn) =

∂

∂ψ
p(xn|cn=qj , ψ,λ)

=
∂

∂ψ

exp
{
−1

2(Ψxn−µj)TΣ−1(Ψxn−µj)
}

√
(2π)d|Σ|

= p(xn|cn=qj , ψ,λ)
∂

∂ψ
(Ψxn−µj)TΣ−1(Ψxn−µj)

= p(xn|cn=qj , ψ,λ)
{

(Ψ′xn)
T
Σ−1(µj−Ψxn)

}

·
=

{
(Ψ′xn)

T
Σ−1(µj−Ψxn)

}
bj,ψ(xn).

We will also need the following notation:

p
(
cn=qj ,X

c
0:n−1|ψ,λ

)
=

∑

qi∈Q
p
(
cn=qj , cn−1=qi,X

c
0:n−1|ψ,λ

)

=
∑

qi∈Q
P(cn=qj |cn−1=qi,λ) p

(
cn−1=qi,X

c
0:n−1|ψ,λ

)

·
=

∑

qi∈Q
aj|iαn−1(i, ψ),

and its corresponding partial derivative:

∂

∂ψ
p
(
cn=qj ,X

c
0:n−1|ψ,λ

) ·
=

∑

qi∈Q
aj|i

∂

∂ψ
αn−1(i, ψ).
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The partial derivative of Equation 4.4 with respect to the scale factor is

∂

∂ψ
αn(j, ψ) =

∂

∂ψ
p(cn=qj ,X

c
0:n|ψ,λ)

=
∂

∂ψ
p(xn|cn=qj , ψ,λ) p

(
cn=qj ,X

c
0:n−1|ψ,λ

)

= p
(
cn=qj ,X

c
0:n−1|ψ,λ

) ∂

∂ψ
p(xn|cn=qj , ψ,λ) + p(xn|cn=qj , ψ,λ)

∂

∂ψ
p
(
cn=qj ,X

c
0:n−1|ψ,λ

)

= p
(
cn=qj ,X

c
0:n−1|ψ,λ

) ∂

∂ψ
p(xn|cn=qj , ψ,λ) + p(xn|cn=qj , ψ,λ)

∂

∂ψ
p
(
cn=qj ,X

c
0:n−1|ψ,λ

)

·
=

( ∑

qi∈Q
aj|iαn−1(i, ψ)

)( ∂

∂ψ
bj,ψ(xn)

)
+
(
bj,ψ(xn)

)( ∑

qi∈Q
aj|i

∂

∂ψ
αn−1(i, ψ)

)

=
{

(Ψ′xn)
T
Σ−1(µj−Ψxn)

}
αn(j, ψ) + bj,ψ(xn)

∑

qi∈Q
aj|i

∂

∂ψ
αn−1(i, ψ).
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