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Abstract

Self-adaptive control software is a new paradigm to cre-
ate robust, fault-tolerant mobile robots. This type of soft-
ware analyzes its performance and dynamically modifies
itself to operate better in adverse and rapidly changing
conditions. We have created two systems that facilitate
the creation of self-adaptive control software: PB3A and
RAVE. PB3A, the Port-Based Adaptable Agent Architec-
ture, is a mobile, agent-based framework that allows soft-
ware to adapt itself at all levels. RAVE, the Real And Vir-
tual Environment, is a mixed-reality simulation environ-
ment for mobile robots. Together, these two systems allow
for the creation, testing, and analysis of self-adaptive con-
trol software by on- and off-line simulation. In this paper,
we give brief overviews of PB3A and RAVE and present
applications that demonstrate robotic systems using self-
adaptive control software.

1 Introduction

In the past few years it has become imperative for
robotic systems to become more robust. Mobile robots are
being charged with handling dangerous materials and ex-
ploring distant locations on this planet, as well as others.
As these systems are conferred with increased autonomy,
their control software must be able to overcome changing
conditions as well as hardware and software failures. We
address the problem of designing robust, fault-tolerant mo-
bile robots by endowing them with self-adaptive control
software. Self-adaptive software analyzes its performance
and takes action to bring the performance to a satisfactory
level. Using several novel approaches, our control soft-
ware can diagnose, overcome, and adapt to adverse and
rapidly changing conditions. To this end, we have coupled

a distributed, mobile multi-agent framework with a mixed-
reality simulation environment.

In the monolithic programming model, increasingly
capable systems require increasingly complex software.
Multi-agent systems achieve capability through complex
interactions, not complex software. This philosophy ex-
tends to the fault-tolerance domain. More robust sys-
tems using the monolithic model require more complex
software, while systems using multi-agent paradigms can
achieve robust behavior through the inherent modularity
and reconfigurability of multi-agent systems. However,
most implementations of multi-agent systems do not take
advantage of this modularity and reconfigurability because
they depend too heavily on the foresight of the author at de-
sign time. Reconfiguration is typically a time-consuming
manual process that often involves changes to the compo-
nents themselves. The creation of a general multi-agent
software architecture that can learn from its own interac-
tions with the world, evaluate its performance, and adapt
itself to achieve its goals better would find natural use in
the fault-tolerant robotics arena. With this in mind, we
have created the Port-Based Adaptable Agent Architecture
(PB3A).

In order to focus on algorithms and architectures for ro-
bust behavior, we have also created RAVE, a framework
that provides a Real And Virtual Environment for running
multiple mobile-robot systems. RAVE provides a unique
set of capabilities to facilitate development of such sys-
tems. To have multiple-robot systems be developed and
tested in simulation and then seamlessly transferred to real
robots, RAVE allows any robot controller to be run on ei-
ther a real or simulated robot. RAVE permits off-line sim-
ulation so that the control software can be evaluated be-
fore being deployed in a robot, or changes to control soft-
ware can be simulated on-line, in real-time, and then de-
ployed into the real robot. RAVE also allows virtual ob-



stacles to be added to the world model. This is necessary
for running a system in simulation, but it also facilitates
real robots to operate in virtual or partially virtual environ-
ments. These simulation capabilities allow real and sim-
ulated robots to operate simultaneously and interact with
each other. RAVE provides a communications package
that allows system components to communicate with each
other across different computers on a network; RAVE can
run entirely on a single computer or can be distributed over
many computers.

In this paper, we describe the Port-Based Adaptable
Agent Architecture in Section 2 and the Real and Virtual
Environment in Section 3, give the three levels of self adap-
tation in Section 4, discuss issues surrounding RAVE and
PB3A as the method for creating self-adaptive control soft-
ware in Section 5, present applications using this method-
ology in Section 6, consider related work in Section 7, and
lay out conclusions and future work in Section 8.

2 Port-Based Adaptable Agent Architecture

The Port-Based Adaptable Agent Architecture (PB3A)
is a Java-based programming framework that aims to facili-
tate the development and deployment of self-adaptive, dis-
tributed, multi-agent applications. Unlike sequential pro-
gramming models that require an application to be a single
stream of instructions, PB3A utilizes a threaded program-
ming model allowing simultaneous streams of instructions.
To exploit the power of PB3A, a solution to a problem must
be decomposed into a hierarchy of interconnected tasks.
We consider a task to be some flow of execution that takes
zero or more inputs, produces zero or more outputs, and
may modify some internal state. We call these input and
output points “ports”, and refer to a fundamental unit of
execution as a Port-Based Module (PBM).

In essence, a PBM clearly defines the boundaries, en-
try points, and exit points of the smallest unit of code in
PB3A. Each PBM has zero or more input ports, zero or
more output ports, and possibly some internal state (see
Figure 1). All ports are typed in the typical object-oriented
programming (OOP) paradigm. A link is created between
two PBMs by connecting an input port to an output port
while obeying the OOP rules of inheritance. A configu-
ration can be legal if and only if every input port in the
system is connected to at most one output port, however
output ports may remain unconnected. An output port may
map to multiple input ports. PBMs use a localized, or en-
capsulated, memory model. All state variables specific to
an instantiation of a particular PBM, as well as all methods
and static members, are contained within the PBM itself.
This allows a PBM to be self-governing and independent
of other PBMs.
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Figure 1: A generic diagram of a Port-Based Module.

PB3A provides the necessary features to facilitate the
creation of self-adaptive, distributed, modular applications.
All PBM code can be dynamically loaded on demand
across a network. This ability allows for newly devel-
oped software modules to be quickly integrated into run-
ning applications with minimal down-time or disruption.
PB3A also provides a uniform port-based communication
interface to all PBMs regardless of location. While port
mappings between PBMs located on the same computing
node are established through shared-memory references,
PB3A provides replication mechanisms to establish cross-
network port mappings for PBMs residing on different
nodes. This frees the PB3A programmer to concentrate
on the information being shared, instead of on what mech-
anisms should be used to perform the information shar-
ing. Additionally, changing the structure of an execut-
ing PB3A system is achieved by loading new PBMs and
simply remapping ports. Finally, the self-contained nature
of the PBM, coupled with its completely specified port-
mapping dependencies, allows not only for easy distribu-
tion and coordination of code modules onto a network of
computers, but also for those modules to be mobile. More
succinctly, PBMs can migrate from one computing node to
another during their execution.

To aid in building complex systems, PB3A provides
three extensions to the PBM. First, recognizing that the
definition of most tasks is recursive, PB3A allows for the
creation of Macros. A Macro is a PBM that is itself com-
posed of an interconnected collection of PBMs or other
Macros. Macros allow a PB3A application to be designed
and adapted at multiple levels of abstraction. Second,
where the PBM represents the most basic unit of execu-
tion, the Port-Based Agent (PBA) represents the most basic
unit of self reconfiguration and self adaptability. In other
words, a PBA is the smallest unit of code that can ana-
lyze its performance and take steps to improve that perfor-
mance. These steps may include internal parameter tuning,
moving across processing nodes, spawning other PBAs,
being replaced by a more suitable PBA, or internal recon-
figuration of the PBA itself. Thus, the self-adapting PBA
is the cornerstone of our approach to managing software
complexity. Finally, though the PB3A is a high-level pro-
gramming framework, low-level interactions must be con-
sidered. Since most incarnations of Java are inappropriate



to interface with hardware, device drivers must be written
in a language that can handle pointers, access registers, and
other low-level, machine-specific interactions, such as C or
C++. A PBM that interfaces to non-PB3A-based software
is called a Port-Based Driver (PBD).

By coupling the PBM’s modularity and specializations
with distributed code, communication, and mobility ser-
vices, PB3A allows for the creation of self-adaptive sys-
tems where complexity arises from interactions among
simple software modules. A more detailed discussion of
PB3A is contained in [3].

3 Real and Virtual Environment

RAVE is a mixed-reality simulation environment that
allows the user to create robust control software for mo-
bile robots efficiently. RAVE’s capabilities allow robots to
simulate the performance of their controller before deploy-
ment into the real robot. Robot controller programs are
linked to libraries that provide a standard interface to real
or simulated robots. These libraries form a layer of abstrac-
tion that separates the high-level control software from the
low-level interaction with device drivers. This provides the
facility for real robots to sense virtual obstacles, the place-
ment of virtual sensors on real robots, and the interaction
between real and simulated robots. This layer of abstrac-
tion also allows the direct transferring of programs from
simulated to real robots. Transferring of programs between
real and simulated robots is accomplished by dynamically
loading the appropriate drivers at execution. This allows
the high-level control software to reconfigure and adapt it-
self without disturbing the integrity of the low-level code.

Furthermore, real robots can be endowed with virtual
sensors which are not augmentations of a real sensor coun-
terpart. For instance, if the user of RAVE had acquired a
mobile robot chassis but had not yet determined the sensor
suite, the user could place any number of virtual sensors
in appropriate (or completely inappropriate) locations and
evaluate the performance of the robot. This process can be
repeated until the user is satisfied with the locations and
types of sensors to be used. This can save much time and
energy as compared to experimentally determining the sen-
sor suite in hardware. Also, RAVE offers users the flexi-
bility to write a virtual sensor driver which has no real-
world analogue, such as a sensor that detects the velocities
of other robots, or an indoor GPS sensor. When virtual ob-
stacles are injected into the world model of a real robot,
several issues arise. First is the issue of sensor fusion. De-
tecting virtual obstacles requires RAVE to have an appro-
priate model of the real sensor being augmented. Once the
virtual component of the sensor computes its reading, this
result is then fused with the result from the real component
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Figure 2: Diagram of a hybrid real and virtual sensor.

of the sensor and a single reading is returned (cf. Figure 2).
RAVE allows for interaction between real and simulated

robots. This is useful to evaluate the performance of the
controller software against a wider range of scenarios than
would be possible with available systems, but gives more
realistic results than simulation alone. This allows the user
of RAVE to consider more avenues, with greater confi-
dence, and create controller software that is better suited
to adapt itself to changing conditions. A more detailed dis-
cussion of RAVE is given in [2].

4 Three Levels of Self Adaptation

As software systems grow in complexity, it becomes in-
feasible for humans to monitor, manage, and maintain ev-
ery detail of their operation. From a human-computer in-
teraction standpoint, it is desirable to build systems that can
be tasked easily, perform intelligently (as evaluated from
the perspective of the user), and complete the tasks with
little or no human intervention. Recognizing this need, the
ultimate goal of our system is to aid in developing sys-
tems that are self adaptive. These systems analyze their
performance and can dynamically reconfigure themselves
to fit better to the current operating conditions and goals
in a distributed environment. From a software perspective,
three natural forms of adaptation arise.

The first form of adaptation is parametric fine tuning.
Most software is written in terms of algorithms that ma-
nipulate data. The behavior of these algorithms depends on
their parameters. Much research has been done on estimat-
ing the error of an algorithm and using that metric to mod-



ify the parameters. For instance, this could be changing
the synaptic weights in an artificial neural network through
backpropagation or the coefficients of an adaptive digital
filter.

The second form of adaptation is algorithmic change.
There is seldom one way to solve a given problem; ev-
ery different approach to solve a problem or calculate a
quantity gives rise to a unique algorithm. Two algorithms
designed to address the same problem may behave dif-
ferently based on the precise circumstances under which
they are used. A system that is aware of the current op-
erating conditions and the limitations of the algorithms it
employs could dynamically choose and switch algorithms
when conditions change. For instance, as lighting condi-
tions vary, swapping a stereo vision algorithm for an HSI-
based vision algorithm may improve performance.

The third form of adaptation involves mobility. In a
distributed environment, computing resource availability
varies both temporally and by location. Certain nodes may
have special-purpose hardware, more abundant memory
and processing power, or lower data-access latency. Soft-
ware that is aware of the resource conditions under which
it operates could migrate to complete its tasks sooner or
make progress in the case of failures.

Our system provides the primitives and methodologies
by which all three forms of adaptation may be realized and
initiated by the software itself when operating conditions
warrant. These forms of adaptation are crucial to create
robust control software because of the wide range of con-
ditions under which mobile robots operate today. Control
software in these robots must be able to analyze its per-
formance and possibly invoke some form of adaptation to
achieve its goals better.

5 Self-Adaptive Control Software

Creating self-adaptive control software for mobile
robots requires the union of the distributed, mobile, multi-
agent framework that is PB3A and the mixed-reality sim-
ulation environment that is RAVE. Where RAVE provides
interfaces to both real and virtual robot entities, as well as
both a real and virtual world, PB3A provides the structure
and components for a self-adaptive robot controller.

When RAVE is used independently, each controller
must be written as an individual C++ program that uti-
lizes RAVE’s interface to the actuators and sensors of a
robot. When combined with PB3A, each robot runs a shell
program that relays actuator commands and sensor read-
ings through a TCP/IP socket to PBDs in a PB3A system.
This allows the PBMs that comprise the control software
to interface with the actuators and sensors in a port-based
manner, thus preserving the modularity and self-adaptivity

Figure 3: Robots used for mapping: Patton and Rommel.

inherent in a PB3A system. This integration allows a
PB3A-based application to simultaneously control one or
more robots through a consistent actuator and sensor in-
terface, regardless of whether the components are real or
virtual. Due to the consistent information-sharing scheme
of port-based systems, PB3A control software may execute
directly on the robot’s on-board computer (if available),
on a proxy computer, or across several computers. Also,
the control software may dynamically move its component
PBMs to different machines or the PBDs may open a new
socket and begin controlling a different robot. This facil-
ity, coupled with PB3A’s dynamic loading aspects, greatly
simplifies the task of upgrading robot control software,
which can be upgraded on the fly with minimal down-
time and disruption. Since PB3A was designed with self-
adaptability in mind, the control software can completely
change its structure of the executing robot program simply
by remapping ports or instantiating new PBMs. Finally,
PB3A’s migration aspect allows simple context transfer be-
tween robots. All or part of a robot’s executing control
software may be transferred to another robot should the
software decide such an adaptation is necessary.

6 Applications

In this section, we present two scenarios. In the first
scenario, the control software for the mobile robots is en-
dowed with the ability to be mobile in order to avoid hard-
ware failure. In the second scenario, we demonstrate self
adaptation by task decomposition and on-line skill compo-
sition.



6.1 Fault-Tolerant Mapping

In this scenario, there are two mobile robots, shown in
Figure 3, that are tasked to map an area using ultrasonic
sonars. Furthermore, the robots must be able to overcome
hardware failure to complete the task. The PB3A-based
self-adaptive control software (shown in Figure 4) consists
of a simple strategy to explore its environment, a Bayesian
mapping algorithm, and a diagnostic hardware monitor.
The diagnostic hardware monitor is responsible for detect-
ing any hardware failures and proposing remedies for the
failure. For this application, we used a naı̈ve Bayes classi-
fier (see [6]) that was trained while the robot is known to
be operating properly. If the behavior of the robot changes
dramatically while mapping, the classifier outputs a failure
flag. This flag is passed on to another PBA that analyzes
its available options. Presently, this agent uses a case-based
reasoning system to determine the course of action to take.
Once the option has been selected, the control software is
adapted accordingly. The broad classes of possible adap-
tation are discussed in Section 4 and are provided by the
PB3A system.

In a typical scenario, we have one robot that begins
mapping a laboratory, while the other robot sits idle. If
the first robot experiences a hardware failure (such as a
graduate student cutting the power to its motors) then the
hardware monitor issues a request to the system to move
the controller software to the idle robot. The system then
requests that all components of the controller serialize their
state so that any information collected by the first robot can
be sent to the second robot. The controller finally resumes
execution on the healthy second robot and then continues
mapping after the first robot fails. The transferring of the
control software takes about five seconds once hardware
failure is detected. Thus, control software written in this
fashion can overcome crippling hardware failures and still
complete its task.

6.2 Task Decomposition

In this scenario, we demonstrate self-adaptation by task
decomposition and on-line skill composition. Task decom-
position is a method used to aid the design of new software
by decomposing a task based on its similarity to previously
known tasks, or portions thereof, using a case-based rea-
soning engine [4]. Given a specification, the task is broken
into a hierarchical set of subtasks, which are subsequently
assigned to the available robots. These are then translated
into known skills implemented with PBMacros that utilize
the specific sensors and actuators available on that robot.
Finite-state and parallel automata are used for temporally
sequencing the skills. These automata are used to perform
subtasks and, ultimately, the task itself, with the subtasks

Figure 4: Layout of the PBMs used for mapping.

having been designated by the task-decomposition soft-
ware. If a resource (e.g., the robot’s motors) will be used
simultaneously by multiple skills then the task decomposer
attempts to use a skill-composition mechanism to produce
a new skill that can perform all the functions of the con-
flicting skills.

The skill composition operates by using the pre-existing
skills as guides for exploration in a reinforcement-learning
paradigm (for an overview of reinforcement learning refer
to [5]). Currently, the reward function for the reinforce-
ment learning is provided by the user, but a reward function
may be created from a specification stored in the decom-
position database. RAVE allows the robots to simulate the
new control software derived from the skill-composition
learning. When a PBA deemed the performance satisfac-
tory, the old control software is swapped out, replaced by
the new control software that could successfully complete
the task.

In addition to providing a mechanism for the initial de-
sign of the software, the task decomposition system can
also be used to facilitate the dynamic reconfiguration of the
PBAs by providing available alternatives. Within each PB-
Macro controlling a subtask is a pair of PBAs responsible
for coordinating the reconfiguration of that particular sub-
task: a ’trigger’ agent and a ’reconfiguration’ agent. The
trigger agent is responsible for deciding when the recon-
figuration needs to occur; the specifics of this agent are left
open-ended, but an example is the diagnostic monitor dis-



Figure 5: ActivMedia Pioneer II robots used in task de-
composition: Asbestos, AgentOrange, and Saccharin.

cussed in the previous section. The reconfiguration agent
is responsible for communicating with the task decompo-
sition system to determine what changes need to be made
and actually performing those changes to the software us-
ing PB3A’s built-in capability for moving and swapping
agents.

To demonstrate these capabilities, the robots are tasked
to locate lost compatriot robots in an unknown environ-
ment. Each robot (shown in Figure 5) is unaware of its
own location and how many other robots are operating in
the environment. Each robot has a color camera and a ring
of sixteen ultrasonic sonars. Each robot starts in a random
location in the environment and wanders the area, avoid-
ing whatever obstacles, whether dynamic or static, it may
encounter along the way. Using a simple HSI matching al-
gorithm, it searches for other robots with the camera. As
the robots search the area, they form together into groups
with the other robots they encounter and continue search-
ing. Within the formation, the front robot continues to
search for other robots while the other robots follow be-
hind it.

7 Related Work

Mobile robots initially began as monolithic and frag-
ile systems. The first major development was Shakey
from SRI [7]. While successful in various experiments,
Shakey operated in a sterile and unrealistic environment
and its planning software was susceptible to severe fail-
ures when it encountered small disturbances in its envi-
ronment. Brooks later created several robots that were de-
signed to operating in cluttered, unfriendly environments
using the “subsumption architecture” [1]. This architecture
allows lower, more critical levels of operation to subsume
control from higher levels. Though these special-purpose
robots interacted with this relatively hostile environment
brilliantly, their ability to reason about the world was inten-

tionally neglected thus limiting the robots to reactive con-
trol schemes. Furthermore, since the controllers for many
of these robots were designed in hardware, self-adaptation
was not feasible.

The port-based concept is derived primarily from port-
based objects, first proposed and implemented by Stew-
art and Khosla in Chimera [8]. Port-based objects were
designed for real-time control applications in a multi-
processor environment with a single high-speed backplane.
The informational scope within which the port-based ob-
jects exist is a flat, public data structure visible to all ob-
jects. This implementation is very efficient for monolithic
systems, but it provides no concept of agency [9].

PB3A should be viewed as the natural evolution of
the port-based concept. Where port-based objects were
designed for multi-processor environments and for direct
human-initiated reconfiguration, PB3A is being designed
to utilize loosely coupled distributed computing infrastruc-
tures and self-initiated software adaptivity. The modern-
day computing paradigm exemplified by distributed and
self-adaptive systems absolutely requires the autonomy
and self-awareness that are the hallmarks of agent tech-
nologies. Software composed from independent, self-
aware agents that are able to alter their own structure, are
best suited to complete tasks in the case of network laten-
cies, node failures, and general operating condition vari-
ations that characterize real-world environments. PB3A’s
first advantage over Chimera is that PB3A uses dynami-
cally loaded Java byte-code to avoid recompiling and re-
linking the entire system when new objects are added.
Specifically, to support distributed computing, PB3A aug-
ments the notion of the port to include cross-network links,
employs an encapsulated memory model to make each
PBM self-contained, and utilizes mobile Java byte-code
along with the previously mentioned dynamic loading to
provide code on demand to individual nodes of the net-
work.

8 Conclusions and Future Work

We have described two systems that facilitate the devel-
opment of self-adaptive control software for mobile robots.
The first system is a mobile, agent-based framework, the
Port-Based Adaptable Agent Architecture (PB3A). The
second is a mixed-reality simulation environment, the Real
And Virtual Environment (RAVE). Together these systems
allow the user to create self-adaptive control software at all
three levels: parametric fine tuning, algorithmic swapping,
and software mobility. When control software is written
for mobile robots incorporating this self-adaptivity, more
robust systems emerge. These robots have controllers that
can adapt to overcome adverse and rapidly changing con-



ditions.
Future work will allow the user to have a more inter-

active role in the execution of a self-adaptive controller.
Presently, once the controller begins execution, the soft-
ware itself determines when or if the system should adapt
(moving agents to different nodes, swapping algorithmic
modules, etc.). We will allow the user to adapt the system
during execution by specifying any aspect of the controller
possible. Also, we plan to extend RAVE from two to three
dimensions. Clearly mobile robots now operate in envi-
ronments that cannot be characterized by planar geometry,
which limits the usefulness of these simulations.
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