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Abstract. In 1972 J.-Y. Girard showed that the Burali-Forti paradox
can be formalised in the type system U. In 1991 Th. Coquand formalised
another paradox in U™. The corresponding proof terms (that have no
normal form) are large. We present a shorter term of type L in the Pure
Type System AU~ and analyse its reduction behaviour. The idea is to
construct a universe U and two functions such that a certain equality
holds. Using this equality, we prove and disprove that a certain object in
U is well-founded.

1 Introduction

Jean-Yves Girard (1972) derived a contradiction in the type system U by for-
malising a paradox inspired by those of Burali-Forti and Russell. By formalising
another paradox, Thierry Coquand (1994) showed that the type system U~ is
also inconsistent. So there are large proof terms of type L in these type systems.

In Section 3 we present a relatively short term of type L in AU~. This Pure
Type System and some notation is described in Section 2. In the last section we
show that the B-reduction behaviour of the proof term is very simple.

In the other sections we will see that the proof has the same ingredients as
Burali-Forti’s paradox: a universe U, a relation < on U, an object {2 in U, and
the question whether {2 is well-founded or not.

In Section 4 we describe Burali-Forti’s paradox and some simplifications. We
analyse the connection between the universe of all ordinals at its power set. In
Section 5 we introduce paradozical universes. These are connected to their power
set in such a way that we can derive a Burali-Forti like contradiction. This
can be formalised in Pure Type Systems. The formalisation can be simplified
by considering powerful universes. In Section 6 we see how these universes are
connected to the power set of their power set.

2 Pure Type Systems

In this section, we describe some Pure Type Systems. For more details, see for
example (Barendregt 1992) or (Geuvers 1993).

2.1 The Pure Type Systems AHOL, AU, and AU

The typed A-calculus A\HOL (Higher Order Logic) is the Pure Type System (with
B-conversion) given by the sorts *, O, and A, the azioms * : O and O : A, and
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the rules (x,), (0,0), and (O, ). It is a consistent system, even if one adds
the rule (A, *). Adding the rule (A,0), one gets the Pure Type System AU™.
Adding both rules, one gets AU.

2.2 Typing Terms in a Pure Type System

Each term A in a Pure Type System is either a variable z, a sort s, a product
Iz : B.C, an abstraction Az : B.C, or an application (B Q).

By B[C/z] we denote the result of substituting the term C for the free
occurrences of the variable z in B (renaming bound variables if necessary). By
=p we denote the equivalence relation between terms that is induced by (-
reduction: replacing a subterm of the form (Az : A. B C) by the term B[C/z].
If a term does not contain such a subterm, then the term is called normal.

In a Pure Type System, we can derive formal judgements z; : Ay, Tp
A, + B : C, expressing that B has type C in the given context, that is, assuming
that for i = 1,...,n, variable z; has type 4;.

We start in the empty context. If, in some context, A has type s for some
sort s, then we are allowed to introduce a new variable z of type A.

The context gives the types of some variables.

The axioms give the types of some sorts.

We use the rules (s',s) to type products as follows: if A has type s' and
(under the extra assumption z : A) B has type s, then (in the original context)
Ilz : A. B also has type s.

If Iz : A. B has type s and (under the extra assumption z : A) C has type
B, then (in the original context) Az : A.C has type Ilz : A.B.

If F has type IIz : A. B and C has type A, then (F' C) has type B[C/z].

Finally, we use B-reduction to change types: if A has type B, B =g C, and
C has type s, then we may conclude that A has type C.

Note that if a variable, abstraction or application has type A, then A is of
type s for some sort.

2.3 Some Useful Properties of AU

Two terms A and B are B-equal if and only if for some C, both A and B
reduce to C. If term B has a type D, then this type is unique up to B-equality.
Furthermore, if B B-reduces to C, then C is also a term of type D.

We can calculate the level of a term (and its subterms) in a given context
zy : A1, --,2n ¢ A, as follows: The sorts *, O, and A have level 2, 3, and 4,
respectively. The level of variable z; is one less then the level of A; in the context
z1 1 Ay,-,mi—1 ¢ Ai—1. The level of a product Ilz : B.C or an abstraction
Az : B.C is the level of C in the extended context x; : Ay, -+, &n : A,z : B.
The level of an application (B C) is the level of B in the original context.

One can prove that if B has type C in some context, then the level of B is
one less than that of C. So each term has level 0, 1, 2, 3, or 4. One can also
show that no term in AU contains a subterm of lower level (in the corresponding
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context). This implies that if we use a rule (s, s) to form a product Iz : B.C,
then level(z) < level(B) = level(s) — 1 = level(C), so the variable z has no free
occurrence in C.

It turns out that each term A of level 1 is strongly normalising: there is no
infinite sequence A —5 A’ —5 A" g --- of B-reduction steps. The terms of
higher level are normal, since each abstraction or application has level 0 or 1.

2.4 The Five Levels of Terms in AU

We describe the five levels and introduce some notation to distinguish terms of
different levels. ’

The only term of level 4 is A and the only term of level 3 is O.

We will call the terms of level 2 sets or universes. We think of * as the set of
all propositions. We use calligraphic letters X, ... for set variables.

We will call the terms of level 1 objects. Objects ©, X, - . of type * are called
propositions. We use italic letters z, ... for object variables.

Finally, the terms of level 0 are called proofs or proof terms. We use natural
numbers 0,1,... for proof variables. These correspond exactly to the labels of
assumptions in a natural deduction in Gentzen’s style.

Using the rule (O0,0), we can form the set of all functions from a set S to a
set T

(S—=>T)=lz:8.T

In particular, the power set of S can be seen as the set of all predicates on S:
pS = (S — *)

Using the rule (A, O), which is not allowed in AHOL, we can form a ‘polymorphic
domain’ IIX' : O.7 (where X may occur in 7). This product of level 2 has
no clear set-theoretical interpretation. The products corresponding to the rules
(*,%), (O,%), and (A, *) are propositions:

lp=x]=T0:0.x
Ve:S.x=Mz:8S.x
VX :Ox=Ilx:0.y

Other connectives can be defined as usual. We only need falsehood and negation:

L=Vp:*xp
= [p= 1]

There are two kinds of abstractions and applications of level 1. We introduce
some new notation only for the ‘polymorphic’ ones:

AX :O.c=XXx:0c¢ PTI=0T)

Here b and c are objects and 7 is a set.
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There are three kinds of abstractions and applications of level 0:

suppose n: p. P =An: . P [PQl=(PQ)
letz:S.P=Xx:S.P (Pc)y=(Pc)
let X:O.P=XX:0.P (PTY=(PT)

Note that for proofs P and @, the application [P Q] corresponds to modus ponens
in a natural deduction.

3 A Term of Type L in AU~

We consider the following universe:
: U=T1X : O. ((ppX 2 X)—>ppX)
For each term t of type pgpld, we define a term of type U:
rt=AX:OMf: (ppX—X).Ap: pX. (t Az U. (p (f {z X} H)))

For each term s of type U, we define a term of type ppU:
os = ({s U} At : ppU. 1)

(So we do not consider o and T as terms.)
We define normal terms of type U and U, respectively:

A=Xy:U.~Vp:pU.[(oy p) = (P Toy)]
() = the normal form of 7 Ap: pU.Vz : U.[(ox p) = (P z)]

In other words, 2 = AX : OLAf : (ppX—X). Ap © pX.Vz : U.[(cx Ay :
U.(p (f y X3 ) = o (f (= X3 M-

We claim that the following is a term of type L in AU™:

[suppose 0 : Vp : pU. [Vz : U. [(oz p) = (p ©)] = (p 2)].
[[(0 A) let = : U.suppose 2 : (oz A).suppose 3:Vp: pU.[(ox p) = (p Toz))].
[[(3A) 2] letp: pUd.(3 Ay :U. (p Toy)) | let p: pU. (0 Ay : U. (p Toy))]
let p : pU.suppose 1:Vz : U.[(oz p) = (pz)].[(1 2) letz:U.(1 Toz)]|

Note that each subterm (except for the term itself ) is normal. One easily verifies
that (in the empty context) there is no normal term of type L in AU™. At the
end of this article, we analyse the B-reduction behaviour of this proof term.

The proof is simple in the sense that it contains just 6 applications corre-
sponding to modus ponens. In order to get an idea of the influence of abbre-
viations, one can also calculate the length: the total number of applications,
abstractions, products, and occurrences of variables and sorts. For example, the
terms abbreviated by L, U, A, and {2 have length 3, 15, 241, and 145. The
complete proof term has length 2039.

In order to explain the idea of this proof, we first describe the paradox of
Burali-Forti.
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4 Burali-Forti’s Paradox

Cesare Burali-Forti (1897) published a result that lead to the first paradox in
naive set theory. He showed that there are different ordinal numbers o and 8
such that neither @ < 8 nor 8 < a, which contradicts a result of Georg Cantor
(1897). (In fact, Burali-Forti considered perfectly ordered classes instead of well-
orderings, so one has to adapt his proof in order to get a contradiction.)

A binary relation < on a set X is called a well-ordering if it is connected (for
all different z and y in X, z <y or y < z) and well-founded (there is no infinite
descending sequence ... < zo < z; < Zo in X ). Then it is also irreflexive and
transitive. Each member z of X' determines an initial segment of (X, <): the set
{y € X|y < z}, ordered by the restriction of < to this set.

An ordinal number is the order type of a well-ordered set. Let o and 0B be
the order types of the well-ordered sets (X, <) and (J,<'). Then 8 = a ex-
presses that (), <') is isomorphic to (X, <) and 8 < a expresses that (Y, <" is
isomorphic to an initial segment of (X, <). (This is well-defined, since isomor-
phic well-ordered sets have isomorphic initial segments.) It is equivalent to the
existence of a monotone function from (Y, <') to an initial segment of (X,<).

Assuming that the relation < on the collection N’O of all ordinal numbers is
connected, Burali-Forti (could have) showed that it is a well-ordering. So it has
an order type f2. :

Let a be the order type of a well-ordered set (X, <). Then the function that
assigns to each z in X’ the order type of the initial segment of (X, <) determined
by z, is an isomorphism from (X, <) to the initial segment of (NO, <) deter-
mined by a. This shows that for each ordinal a, a < £2. In particular, 2 < f2.
This contradicts the fact that < is a well-ordering.

4.1 Simplifications of Burali-Forti’s Paradox

Burali-Forti’s paradox can be simplified in such a way that Cantor’s result is
irrelevant. Girard (1972) considered the universe O of all orderings without
torsion: irreflexive, transitive relations such that different elements determine
non-isomorphic initial segments. The definition of < can be extended to UO.
Then the following contradictory statements can be proved in system U:

An ordering without torsion is not isomorphic to any of its initial seg-
ments. (U0, <) is an ordering without torsion. Each ordering without
torsion is isomorphic to an initial segment of (U0, <).

Coquand (1986) formalised a version by considering the universe of order types
of transitive, well-founded relations (and using the definition of < in terms of
monotone functions). This version is similar to the paradox of Dimitry Miri-
manoff (1917):

A set z is well-founded (with respect to the membership relation) if no
infinite descending sequence ... € z; € zq € z exists. The collection W.F
of all well-founded sets is well-founded, so WF € W.F. This contradicts
the well-foundedness of W.F.
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A still simpler paradox is that of Bertrand Russell (1903):

Let A be the collection of all sets x such that z € z. Then the proposition
A € A is equivalent to its negation.

One could try to formalise this paradox in a type system like AU as follows:
Define some universe U, together with a function o from U to its power
set pi{ and a function 7 in the other direction, such that for each term X of
type plU, (o (t X)) is B-equal to X. For z and y in U, write y € = instead of
((o z) y). Write {z|z ¢ z} instead of Az : Y.~z € T and let A be the term
(r {z|z ¢ z}). Then the term A € A of type * is B-equal to its negation. So
[suppose 0: A € A.[0 0] suppose 0: A € A.[00]] is a proof term of type L.
However, as noted by Coquand (1986), Russell’s paradox cannot be for-
malised in this way since each proposition has a normal form. (Of course, in
an inconsistent system each proposition is provable equivalent to its negation.)

4.2 From Ordinal Numbers to Collections of Ordinal Numbers and
Back

We return to Burali-Forti’s paradox and analyse the connection between NO
and its power set.

For each ordinal number a, let oa be the collection of all smaller ordinals.
Let X be a collection of ordinals and let 7X be the order type of (X, <), where
< is the restriction of < to X. Then, by definition of <, for each ordinal B,
B < 7X expresses that (3 is the order type of some initial segment of (X, <).
Now assume that for each « in X, all smaller ordinals are also in X. Then each
initial segment of (X, <) is of the form (oa, <) for some « in X, where <’ is
the restriction of < to oa. Therefore 07X = {8|8 < 7X} = {B|0 is of the form
roa for some a in X} = {roaja in X}.

In fact one can show that for each a, Toa = a, but we will see that we do
not need that in order to get a contradiction.

5 Paradoxical Universes

5.1 From a Universe to Its Power Set and Back

Let us call a universe U, together with functions o : U — U and 7 : pU — u,
paradogical if for each X in pU, 07X = {roz|z in X}.

Each function f : S — 7 induces a function f, : pS — pT as follows: for
each subset X of S, f,.X = {fz|z in X }. Using this notation, we see that U,0,7)
is paradoxical if and only if the composition g o7 is equal to (T00),. Note that if
(U, 0,T) is paradoxical, then (pU, 0y, Ty) is also paradoxical: 0,07, = (00T), =
(T 0 0)xx = (T4 © 04)«. (Here we need extensionality: if two sets have the same
elements, then they are equal.) ‘
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5.2 Example of a Paradoxical Universe

Let U be the universe of all triples (A, <,a) consisting of a set A, a binary
relation < on A, and an element a of A. For each triple (A, <,a), let o(A, <, a)
be the collection of all triples of the form (A, <,b), where b < a. So ¢ is a
function from U to pU. It induces a relation < on pU as follows:

For all collections X and Y of triples, Y < X if and only if Y is in 0, X, that
is, if Y is of the form o(A, <, a) for some triple (A, <,a) in X.

For each X in pl{, let 7X denote the triple (plU, <, X).

Now 07X = o(plU,<,X) = {(pU, <,Y)|Y < X} = {rY|Y isin 0, X} =
{ro(A, <,a)|(4,<,a) in X}.

5.3 Contradiction from the Existence of a Paradoxical Universe

Let (U,0,7) be paradoxical. It is possible to derive a contradiction similar to
Russell’s paradox:

Let = be the least equivalence relation on ¢/ such that for each z in I/ ,
z ~ Tox. Define a relation € on U as follows: y € z if and only if y =~ 2
for some 2 in oz. Let A = 7{z|z € z}. Prove that for each yinU,ye A
if and only if y ¢ y. Take y = A.

We will derive a contradiction in another way.

Elements of & will be denoted by z,y, ... and subsets of I/ by X,Y,....

If y is in oz, then we say that y is a predecessor of z and we write y < z.
Since (U,o,7) is paradoxical, the predecessors of oz are the elements of the
form 7oy for some predecessor y of z (take X = oz = {yly < z}). Soify < z
then 7oy < 7ox. (We will use the special case y = TOX.)

There are several ways to define well-foundedness. The following formulation
immediately leads to the principle of proof by transfinite induction (without
using classical logic or the axiom of choice). Furthermore, the only quantifiers
and connectives that it uses are ‘for all’ and “if ... then’.

We call X inductive if the following holds: for each z, if each predecessor of
isin X, then z itself is'in X. We say that z is well-foundedif z is in each inductive
X. (One can easily prove that {z|z is well-founded} is the least inductive subset
of U, but we do not use this fact.)

Let 2 = 7{z|z is well-founded}. Since (i, o, T) is paradoxical, the predeces-
sors of {2 are of the form Tow for some well-founded w.

We claim that 2 is well-founded:

Let X be inductive. In order to show that {2 is in X , we only need to show
that each predecessor of 2 is in X. Such a predecessor is of the form Tow for
some well-founded w. We want to show that w belongs to the set {y|roy is in
X}. This follows from the fact that this set is inductive:

Let z be such that for each y < z, 7oy is in X. Then 7oz is in X since X is
inductive and each predecessor of 7oz is in X, since such a predecessor is of the
form 7oy for some y < z.
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Note that, until now, we only used the fact that for each X, 07X C {roz|z
in X}. Using the other inclusion, we now show that {2 is not well-founded:

Suppose that {2 is well-founded. Then 70?2 is of the form Tow for some well-
founded w, so To 2 is a predecessor of 2. On the other hand, 702 £ (2, since
1 is well-founded and the set {y|roy £ y} is inductive:

Let z be such that for each y < z, Toy £ y. Then 7oz £ z. For suppose that
7oz < z. Then ToToz £ Tox (take y = Toz). But ToToz is of the form Ty for
some y < z, 80 ToTox is a predecessor of Tox.

5.4 Formalisation in Pure Type Systems

The preceding derivation of a contradiction from the existence of a paradoxical
universe can be formalised in AHOL: we can find a term of type L in the context
U:0 0: U=pU), T: (pU-U), 0: VX : pU. (0 (1 X)) =pu Au: U. Tz :
U.(X z) Au =y (7 (0 z))). Here for each set A, =4 denotes Leibniz equality
on A. Instead of =,y one can also take the weaker relation of ‘having the same
elements’. Since the proof does not use ez falso sequitur quodlibet at all, 1 can
be replaced by any formula ¢.

We need a stronger Pure Type System to prove L in the empty context. Let
U be the paradoxical universe given in the example. Using the rule (A,0), we
formalise the power set pld as the term IIY : O. (XY = pX)—pd) of type O. In
other words, we read ITu : U. * as abbreviation for IIA : O.1I< : (A—pA).Ila :
A. *. It is not necessary to find a term corresponding to U itself. For example,
Vu : U. (X u) stands for VA : O.V< : (A—=pA).Va : A ({X A} <) a). Note
that the rule (A, ) is needed for the quantification over O. So this can be done
in AU.

One can also formalise the preceding paradox in AU, using for example the
paradoxical universe IIX : O. ((pX—X)—X) or the following one:

U=TX: 0. (pX > X)pX)
Define a term of type (pUd — U):
T=AX:pU. AA: D Xc: (pA— A).da: Ao

Here ¢ expresses that a is of the form (¢ ({z A} c)) for some z : U such that
(X z). (Note that ({z A} c) : pA, so (¢ ({z A} ¢)) : A.) This can be done
without defining 3, A, and =4, as follows:

@ =VP:pA.Vz:U.[(X z) = (P (c ({z A} ¢)))] = (P a)]
Define a term of type (U — plf):
o=Xx:U.{z U} T)

Then one easily verifies that (U, 0, 7) is paradoxical. In fact, for each X of type
pU, (o (t X)) is B-equal to the term corresponding to “the intersection of
all subsets P of U containing (7 (¢ z)) for each z in X”. This simplifies the
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formal proof term, since S-conversion between two propositions ¢ and x does
not “count” as a proof step: if P is a proof term of type ¢, then P also has type
X-

In this way, one finds a term of type L in AU~ that uses modus ponens 12
times. It is of the form [P Q)], where P is a normal term of type “f2 is not well-
founded” and @ is a normal term of type “f2 is well-founded”. The terms U, £2,
“2 is well-founded”, P, and @ have length 11, 163, 285, 1849, and 1405.

6 Powerful Universes

The proof term that we presented earlier, is shorter and has a simpler reduction
behaviour. Furthermore, we defined terms 7¢ and os without using quantifiers
or connectives. The main idea of the simplification is to consider the power
set of the power set of some universe . In fact, we already considered pgpl/
implicitly: Let for each subset C of pl, (| C be the intersection of all members
Y of C, that is, |C = {y|for each Y in C, y is in Y}. Then, by definition,
{z|z is well-founded} = (N{X|X is inductive} and for each X in plU, {roz|z
in X} = N{Y|for each z in X, 7oz is in Y}. In the example of a paradoxical
universe, we defined (A, <,a) = ({X|for each b < a, (4, <,b) is in X}. The
relation < on A induces a function s : A = ppA as follows: sa = {B in
pAlfor each b < a, b is in B}. In terms of this function, o(A4, <,a) = N{X|{b
in A|(A, <,b) is in X} is in sa}. Note that if < is (Leibniz) equality on A, then
the function s can be defined without using quantifiers or connectives: sa = {B
in pA|a is in B}.

By using the fact that no set is isomorphic to the power set of its power
set, John Reynolds (1984) proved that there is no set-theoretic model of poly-
morphic (or second-order) typed A-calculus. By refining this result and using
a computer, Coquand (1994) found a formal proof of a contradiction in sys-
tem U~. He considered the universe Ag = IIX : O. ((ppX —X)—X) and defined
functions match : Ag = ppAq and intro : pEAy — Ag. Then he showed that these
functions constitute an isomorphism with respect to certain partial equivalence
relations. In fact, (Ag, match, intro) can also be used to formulate a Burali-Forti
like paradox: it is an example of a powerful universe.

6.1 From a Universe to the Power Set of Its Power Set and Back

Let us call a universe U, together with functions ¢ : U — pplU and 7 : ppEU — U,
powerful if for each C in ppU, 07C = {X|the set {y|roy isin X} is in C}.
Each function f : & = T induces a function f* : pT — pS as follows:
for each subset Y of 7, f*Y = {z in S|fz is in X}. Using this notation, we
see that (U,o0,7) is powerful if and only if the composition o o 7 is equal to
(1 o o)**. Note that if (U,o,7) is powerful, then (pld,7*,0*) is also powerful:
T*00* = (0071)* = (To0)*** = (0*o7*)**. (Here we do not need extensionality.)
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6.2 Example of a Powerful Universe

Let U be the universe of all triples (A, s,a) consisting of a set A, a function
s: A— ppA, and an element a of A. For each triple (A, s,a), let 0(A, s, a) be
the collection of all subsets X of & such that {b in A|(A,s,b) isin X} is in sa.
Since o is a function from U to ppld, o** is a function from pEl to ppppEU. For
each C in ppl, let 7C denote the triple (ppU,o**,C).

In order to verify that (U, o, 7) is powerful, let C' in ppif and X in pld. Then
the following propositions are equivalent (by definition):

X isin 07C;

X is in o(ppU,o**,C);

{b in pplU|(ppU,0**,b) is in X} is in 0**C;

o*{b in ppU|7bisin X} is in C;

{y inU|roy isin X} isin C.

6.3 Contradiction from the Existence of a Powerful Universe

Let (U, o, 7) be powerful. We will derive a contradiction in a similar way as for
paradoxical universes.

Elements of I will be denoted by z,y, ... and subsets of U by X,Y,.... For
each z, oz is in pplU. (U, o,T) is powerful, so:

oroz = {X|the set {y|roy isin X} is in oz}

We say that y is a predecessor of z (and we write y < z) if for each X in oz, y
is in X (in other words, if y is in () o). One can easily prove that if y < z then
Toy < Tox. We will only do this for the special case y = 7oz. Note that if X is
in oz, then each predecessor of z is in X.

X is called inductive if the following holds: for each z in U, if X is in oz, then
z is in X. We say that z is well-founded if z is in each inductive X. (Note that it
is not clear whether {z|z is well-founded} is inductive: if one tries to prove this,
one would like to use something like: if Y is in oz and Y C'X, then X isin oz.)

Let 2 = 7{X|X is inductive}. (U,0,T) is powerful, so:

082 = {X| the set {y|roy is in X} is inductive}

We claim that {2 is well-founded:

Let X be inductive. In order to prove that {2 is in X, we only need to show
that X isin 2. In other words, we show that the set {y|7oy isin X} is inductive.
So let z be in I. Since X is inductive, we have the following: if X is in o7oz,
then 7oz is in X. In other words, if the set {y|7oy is in X} is in oz, then z is
in {y|roy is in X}. This is exactly what we had to prove.

In order to show that 2 is not well-founded, we first prove that the set
{y|roy £ y} is inductive:

Let z be such that {y|roy £ y} is in oz. Then 7oz £ z. For suppose that
rox < z. In other words, for each X in oz, 7oz is in X. Applying this to the
set {y|Toy £ y}, which is in oz, we see that 7070z £ Toz. On the other hand,
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ToTox < Toz: Let X be in pld. We have to show the following: if X is in o7oz,
then To7oz is in X. In other words, if {y|roy is in X} is in oz, then 7oz is in
{ylroy is in X}. This follows from the assumption that 7oz < z, i.e. for each Y’
inox, TorisinY. -

Now suppose that 2 is well-founded. Then, since {y|Toy £ y} is inductive,
T0§2 £ (2. On the other hand, 702 < £2: Let X be in pi{. We have to show:
if X is in 02, then 702 is in X. In other words, if the set {y|roy is in X} is
inductive, then §2 is in {y|roy is in X}. This follows from the assumption that
12 is well-founded, i.e. for each inductive Y, 2isin Y.

7 Reduction Behaviour

Douglas Howe (1987) used a computer to study the reduction behaviour of a
massive term corresponding to one particular proof of Girard’s paradox. Just
like the proofs we gave, it did not use ez falso sequitur quodlibet, so L can
be replaced by a variable of type *. Using this, Howe constructed a looping
combinator (but not a fixed-point combinator). (See (Coquand and Herbelin
1994) and also (Geuvers and Werner 1994).)

We now return to the proof term that we presented in Section 3. It formalises
the preceding derivation of a contradiction, using some other powerful universe
than the two that we mentioned earlier.

One easily verifies that (U, s : U.os, At : ppl.Tt) is powerful: in fact, for
each term t of type ppld, the term o7t B-reduces to Ap : pU. (t Az : U. (p Tox)).
One can calculate the normal form of ({ro70 - 70z X} f), where z, X, and
[ are variables. It contains nested expressions of the form Ap : pX. (o2’ Az :
U(p (f ).

For each term s of type U, let ©°s be s and, for each natural number n, let
©™*1s be the normal form of 7¢@"s. For each term p of type pU, let Ofp be
p and, for each natural number n, let O}, p be Ay : U.(p @™*'y). Then, for
variables z and p, for each natural number n, the normal form of (¢@™z p) is
(oz Okp). :

The fact that B-reduction of the proof term goes on indefinitely, is caused
by steps that correspond to the rule (x,x), that is, replacing a subterm of the
form [suppose 7 : . P Q] by P[Q/n]. One can show that each infinite sequence
of B-reduction steps, starting with a term in AU, contains such a step. So we
can concentrate on “big steps”: steps that correspond to (x,*), followed by a
maximal sequence of steps corresponding to other rules.

Let n be a natural number. We first define two propositions:

Pn =Vp: pU.[Vz : U.[(0x Op) = (p O"z)] = (p O™12)]
Yn =Vz 1 U.[(0x O, A) = ~Vp: pU.[(oz OLp) = (p O 12)]]

So ¢n expresses that ©™2 is in each subset X of U for which {y|@™y is in X}
is inductive. Note that oo is “f2 is well-founded” and ¢, is the normal form
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of “O"*12 < O™2”. The proposition 1, expresses that {y|@"+'y £ Oy} is
inductive. We also define five proof terms:

R, =letp: pU.suppose 1:Vz : U.[(cz Op) = (p O™z)].
(A 2)let z:U. (1 Toz)]
M, =let z : U.suppose 2 : (cz O} A).
suppose 3 : Vp : pl. [(ox Ofp) = (p O™ 1z)].
([(3 4) 2] let p: pU. (3 Xy : U.(p Toy))]
P,, = suppose 4 : yr,.suppose 0 : ¢,.[[(0 A) 4] let p: pld. (0 Ay : U. (p Toy))]
L,, = suppose 0 : ¢n.[[(0 A) Mp] let p: pld.{0 Ay : U. (p Toy))]
Qn =suppose 4 : ¢,.[(4 2) let z : U. (4 Tox)]

Then R,, proves ¢,, M, proves ¢, P, proves [, = —y,], L, proves -, and
Qn proves [¥n, = “Ynt1]-

Note that [Ly Ry] is the proof term that we presented in Section 3.

For each natural number n, [P, M,] Ry] reduces in one step to [L, Ry].
(Variable 4 disappears.) This reduces in a big step to [[@n My] Rp+1]. (Variable
0 disappears and some occurrences of 1 are renamed as 4.) This reduces to
[[Pn+1 Mp+1] Rny1]. (Variable 4 disappears and some occurrences of 2 and 3
are renamed as 4 and 0.)

So these proof terms of type L in AU reduce in three big steps to a similar
proof term: only the types of the proof variables change a little bit.
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