A Multimodal Interface for Solving Equations

Phase I: Evaluation of Multimodal Input for Entering Mathematical Equations on the Computer

Lisa Anthony, Jie Yang, Kenneth R. Koedinger

Condition

Keyboard-and-

Handwriting-

Speech only

Handwriting-

plus-speech

mouse

only

Project Goal

- o Develop a multimodal intelligent tutoring system
- o Allow students to use natural input (handwriting and speech) to solve mathematics equations online
- o Paper-like interface should be more natural and reduce cognitive load of student
- o Achieve better learning and increased transfer of equation-solving skills

Project Phases (Year 1)

Phase I: Input Modalities study

- o Test speed, user error, and user preferences for various modalities when entering mathematical equations
- o Completed

Phase II: Data Analysis, Recognition Engine Testing

- o Analysis of corpus from Study 1 for design recommendations
- o Testing recognition engines on corpus from Study 1
- o Training recognition engines on samples of real student handwriting and speech
- o Prototype implementation

Phase III: Prototype Usability study

- o Test usability of prototype system
- o Multimodal versus unimodal equation entry (handwriting and/or speech)
- o Test both with and without active machine recognition of input
- o Learning gains within Cognitive Tutor lesson on equation solving

Sample Stimuli and User Input

Phase I Method

Description

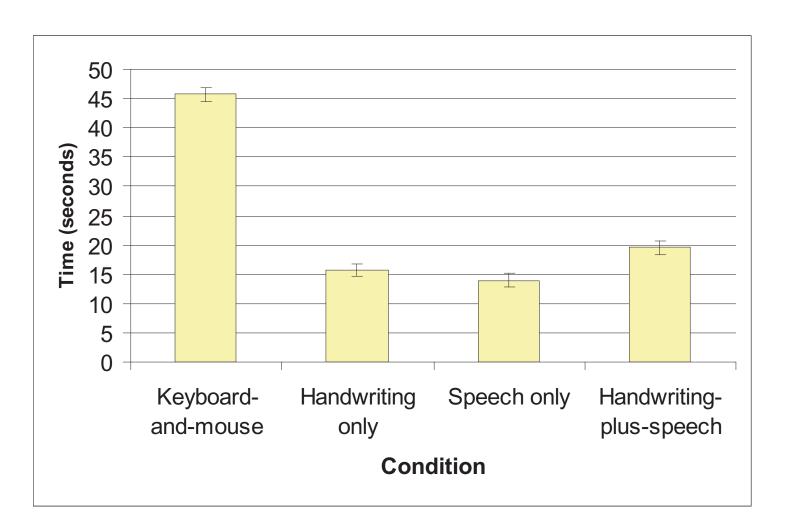
Wrote on TabletPC Journal program;

Dictated into microphone; without

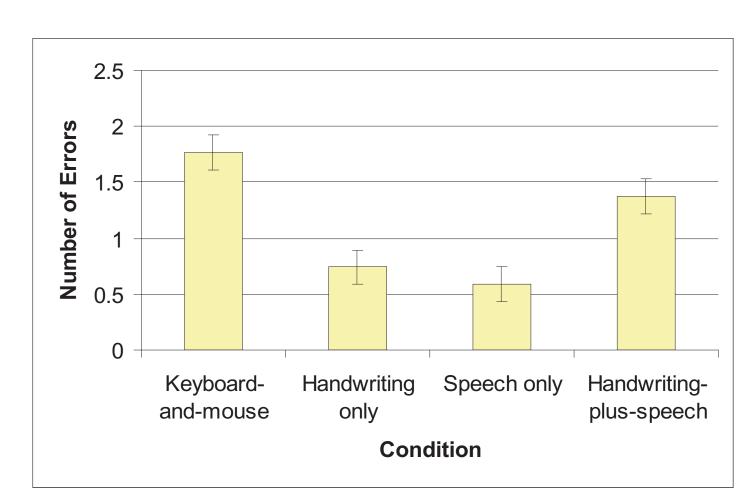
Both spoke and wrote either in series

recognition or visual feedback.

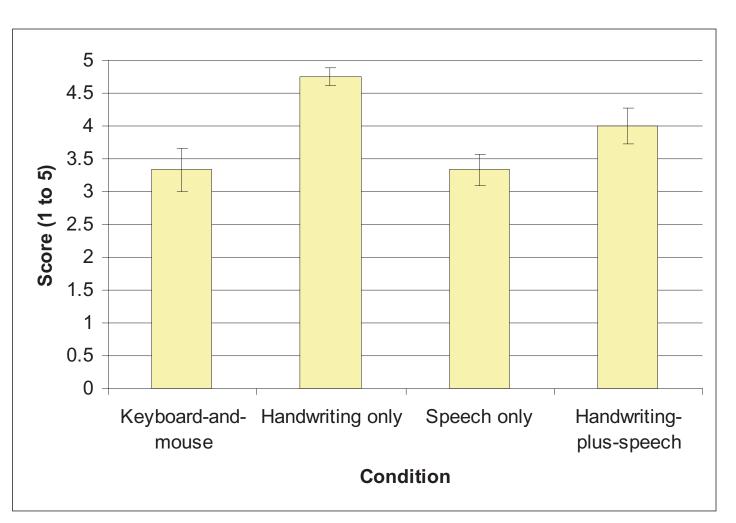
or in parallel (user choice).


Used keyboard and mouse with

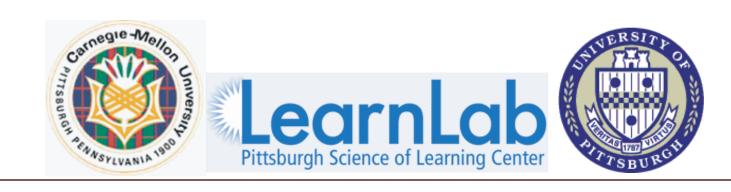
Microsoft Equation Editor.


without recognition.

Condition	Typeset Version	User Input
Keyboard- and-mouse	$\frac{1}{ x +1} - \frac{x^2}{2} \le y$	$\frac{1}{1/1+1} - \frac{x^2}{2} \le y$
Handwriting only	$f(x) = 5(y_1 - y_2)$	f(x)=5(y2-yi)
	4	
Speech only	$\frac{y-4}{y^2-5y+4} = 9$	"y minus four over y squared minus five y plus four equals nine"
Speech only Handwriting- plus-speaking	$\frac{y-4}{y^2-5y+4} = 9$ $\sum \left[c_k^2 - 2c_k - 10 \right]$	squared minus five


Phase I Results

Average time in seconds per equation by condition. Error bars show 95% confidence interval (CI).


Mean number of errors made per equation by condition. Error bars show 95% CI.

Post-test questionnaire rankings of each condition on a 5-point Likert scale. Error bars show 95% CI.

Current Findings

- o Handwriting faster, more efficient, and more enjoyable to novice users than standard keyboard-and-mouse
- o Handwriting-plus-speech faster and better liked than keyboard-and-mouse
- o Handwriting-plus-speech not much worse than handwriting alone, so multimodal may be a winner

